Biostatistics

Lecture 4

Prepared by Dr. Ibrahim AL-Jaafari

Descriptive Statistics Measures of Central Tendency

Mean

* For Ungrouped Data

Mean $=$ The sum of all values \div Number of values

Note : The mean is used to represent the average when the data are normally distributed or symmetrical shaped.

Descriptive Statistics Measures of Central Tendency

Mean

* For Ungrouped Data

Example / Find the mean of the following data ($158,189,265,127,191$)

$$
\begin{gathered}
158+189+265+127+191=930 \\
930 \div 5=186
\end{gathered}
$$

Descriptive Statistics Measures of Central Tendency

* For Grouped Data

$$
\text { Mean }=\Sigma \mathrm{mf} / \mathrm{n}
$$

$$
\begin{aligned}
& \Sigma=\text { Sum } \\
& F=\text { Frequency }
\end{aligned}
$$

M = Midpoint of the class
$\mathrm{n}=$ Total of frequencies

Descriptive Statistics Measures of Central Tendency

Mean

* For Grouped Data

Example / Find the mean of the following grouped data

Age	Frequency
$10-12$	4
$13-15$	12
$16-18$	20
$19-21$	14
	Total $=50$

Descriptive Statistics Measures of Central Tendency

Mean

* For Grouped Data

Solution $/$ Mean $=\Sigma \mathrm{mf} / \mathrm{n}=832 / 50=16.64$

Age	Frequency	Class Midpoint	Midpoint \times Frequency
$10-12$	4	11	$11 \times 4=44$
$13-15$	12	14	$14 \times 12=168$
$16-18$	20	17	$17 \times 20=340$
$19-21$	14	20	$20 \times 14=280$
	Total $=50$		Total $=832$

Descriptive Statistics Measures of Central Tendency

Mean

Advantages and disadvantages of using the mean

The most common measure of central tendency
Easy to use

It is effected by adding or deleting a new values
It is effected by outlier or exterem values
No need to order the data
It takes into account the whole values to be calculated
The sum of deviations from the mean must be equal to zero

Descriptive Statistics Measures of Central Tendency

Median

Median $=$ The midpoint value of a set of ordered data from lowest to highest
How to calculate median ?
1-) If the number of values is odd.
Order the values from lowest to highest
Find the location of the median \quad Median Location $=\frac{N+1}{2}$

Descriptive Statistics Measures of Central Tendency

Median

Example:
Find the median for the following values (1, 6, 5, 2, 4)
Order the data (1, 2, 4, 5, 6)

The location of the median $=5+1 / 2=3$ (The third value of the data set)
Median $=4$

Descriptive Statistics Measures of Central Tendency

Median

2-) If the number of values is even.

Order the values from lowest to highest

Find the location of the median $=$ Number of values $+1 / 2$

Descriptive Statistics Measures of Central Tendency

Median

Example:
Find the median for the following values (7, 1, 6, 5, 2, 4)
Order the data ($1,2,4,5,6,7$)

The location of the median $=6+1 / 2=3.5$
Median $=4+5 / 2=4.5$

Descriptive Statistics Measures of Central Tendency

> | Median |
| :---: |
| Advantages and disadvantages of using the median |
| Easy to use |
| It is not effected by adding or deleting a new values |
| It is not affected by outlier or extreme values |
| The data should be ordered from lowest to the highest |
| It does not take into account the whole values to be calculated |
| The sum of deviations from the mean should not be equal to zero |

Note : The median is used to represent the average when the data are not normally distributed or symmetrical, for instance the skewed distribution to the right or to the left.

Descriptive Statistics Measures of Central Tendency

Mode

Mode is the most frequent value in the distribution, there is no way to calculate the mode.
Uni-modal can be found when the data have only one peak, just one mode in the distribution.

Bi-modal can be found when the data have two peaks, this means two modes in the distribution.

Multi-modal can be found when the data have more than two peaks, it means more than two modes.

Descriptive Statistics Measures of Central Tendency

Mode

Example:
Find the mode for the following data ?

Mode $=74$

Descriptive Statistics Measures of Central Tendency

Mode

Advantages and disadvantages of using the mode

Easy to use

It is not effected by adding or deleting a new values
It is not effected by outlier or exterem values
The data should not be ordered from lowest to the highest
It does not take into account the whole values to be calculated
The sum of deviations from the mean should not be equal to zero

Descriptive Statistics Measures of Central Tendency

The relationship between mean, median and mode
1-) The data is normally distributed (Symmetry)
The values of mean, median and mode are very close to each other in
Uni-modal and the shape of the distribution is symmetrical (bell shaped).

Descriptive Statistics Measures of Central Tendency

The relationship between mean, median and mode

1-) The data is normally distributed (Symmetry)

Descriptive Statistics Measures of Central Tendency

The relationship between mean, median and mode
2-) The data is skewed to the right (positive skewed)

The mean is greater than median and the tail is longer on the right side.

Descriptive Statistics
 Measures of Central Tendency

The relationship between mean, median and mode

2-) The data is skewed to the right (positive skewed)

Descriptive Statistics Measures of Central Tendency

The relationship between mean, median and mode
3-) The data is skewed to the left (negative skewed)

The mean is lower than median and the tail is longer on the left side.

Descriptive Statistics Measures of Central Tendency

The relationship between mean, median and mode

3-) The data is skewed to the left (negative skewed)

Negative Skew

Reference

- Prem S. Mann 1998, Introductory Statistics, $7^{\text {th }}$ edn, New York, USA.

Descriptive Statistics Measures of Dispersion

The measures of central tendency, such as the mean, median, and mode, do not reveal the whole picture of the distribution of a data set.

Two data sets with the same mean may have completely different spreads.

Descriptive Statistics Measures of Dispersion

- Mean for Group $1=728 / 10=72.8$
- Mean for Group $2=728 / 10=72.8$

100	90	88	85	80	75	70	55	45	40	Group 1
78	77	76	75	74	73	72	70	68	65	Group 2

Descriptive Statistics Measures of Dispersion (Range)

- Range for Group $1=100-40=60$

Group 1 has large variation

- Range for Group $2=78-65=13$

Group 2 has small variation
Range $=$ Largest value - Smallest value

100	90	88	85	80	75	70	55	45	40	Group 1
78	77	76	75	74	73	72	70	68	65	Group 2

Descriptive Statistics Measures of Dispersion (Variance \& Standard Deviation)

- The standard deviation is the most-used measure of dispersion. The value of the standard deviation tells how closely the values of a data set are spread around the mean.
- Lower value of the standard deviation = Smaller range around the mean.
- Larger value of the standard deviation = Larger range around the mean.

Descriptive Statistics
 Measures of Dispersion (Variance \& Standard Deviation)

- How to calculate variance and standard deviation ??
- Variance $=$

$$
s^{2}=\frac{\sum\left(x_{i}-\bar{X}\right)^{2}}{n-1}
$$

- Standard Deviation $=s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{N-1}}$

Descriptive Statistics
 Measures of Dispersion (Variance \& Standard Deviation)

- Example / Calculate variance and standard deviation for the following data
- $1,2,3,4,5$
- Answer /
- Mean $=1+2+3+4+5=15 / 5=3$

Descriptive Statistics

X	$x_{i}-\bar{X}$	$\left(x_{i}-\bar{X}\right)^{2}$
1	$1-3=-2$	4
2	$2-3=-1$	1
3	$3-3=0$	0
4	$4-3=1$	1
5	$5-3=2$	4
Total	$=\mathbf{0}$	$\mathbf{1 0}$

Deviation)

Variance $=10$ / 5-1
Variance $\mathbf{= 1 0 / 4 = 2 . 5}$
Standard deviation $=$ Square root of variance
$\sqrt{ } 2.5=1.58$

Descriptive Statistics
 Measures of Dispersion (Variance \& Standard Deviation)

Advantages and disadvantages of using standard deviation

The most common measure of dispersion

Easy to use

It is effected by outlier or exterem values
It takes into account the whole values to be calculated

Descriptive Statistics
 Measures of Dispersion (Variance \& Standard Deviation)

Descriptive Statistics

Measures of Dispersion (Variance \& Standard Deviation)

- If we have a group of students had a normal distribution for weight. The mean weight was 70 kg and the SD was 5 kg .

Reference

- Prem S. Mann 1998, Introductory Statistics, $7^{\text {th }}$ edn, New York, USA.

Inferential Statistics Hypothesis Test About the Mean

- There are two types of hypothesis:-

1- Null Hypothesis (H0) / It is a claim (or statement) about a population parameter that is assumed to be true until it is declared false.

Null hypothesis is denoted by : H0

Inferential Statistics Hypothesis Test About the Mean

- There are two types of hypothesis:-

1- Null Hypothesis (H0) /It means there is no difference or relationship between the variables. If there is a significant difference or relationship between variables, we would reject the null hypothesis and accept alternative hypothesis. while, If there is no significant difference or relationship between variables, then we would accept the null hypothesis and reject alternative hypothesis.

Inferential Statistics Hypothesis Test About the Mean

- There are two types of hypothesis:-

1- Alternative Hypothesis (H1) or (Ha) / It is a claim about a population parameter that will be true if the null hypothesis is false.

Alternative Hypothesis is denoted by: H 1 or Ha

Inferential Statistics Hypothesis Test About the Mean

- There are two types of hypothesis:-

1- Alternative Hypothesis (H1) or (Ha) /
It means a research hypothesis. This is what the researcher want to prove in his research.

Inferential Statistics Hypothesis Test About the Mean

- There are two types of errors in hypothesis test:-

1- Type I Error or (α Error):- It means reject null hypothesis when it is true, the probability of making type I error is call Alpha, it can be determined by level of significance ($0.01,0.05$ and 0.10) $=$ ($1 \%, 5 \%$ and 10%)

Inferential Statistics Hypothesis Test About the Mean

- There are two types of errors in hypothesis test:-

1- Type II Error or ($ß$ Error):- It means accept null hypothesis when it is false, the probability of making type II error is call Beta, it is related to power of the test (1 -Beta) which means the probability of detecting the real difference or relationship between variables so, the power of the test would be increased if we accept the true null hypothesis.

Inferential Statistics Hypothesis Test About the Mean

- There are two types of errors in hypothesis test:-

Inferential Statistics
 Hypothesis Test About the Mean

- Example of types of errors in hypothesis test:-

		Actual Situation	
		The Person Is Guilty	
Court's decision	The person is not guilty	Correct decision	Type II or β error
	The person is guilty	Type I or α error	Correct decision

Inferential Statistics Hypothesis Test About the Mean

- If the P-value is less than < significance level (0.01 or 0.05 or 0.10) then reject null hypothesis and accept alternative hypothesis.

There are enough evidences to reject H 0 and accept H 1

- If the \mathbf{P}-value is greater than > significance level (0.01 or 0.05 or 0.10) then accept null hypothesis and reject alternative hypothesis

There are less evidences to reject H 0 and accept H 1

Reference

- Prem S. Mann 1998, Introductory Statistics, $7^{\text {th }}$ edn, New York, USA.

Good Luck for All Students

- Please do not hesitate to contact me if you have any questions.
- Dr. Ibrahim AL-Jaafari
- www.Alghamdi-Biostatistics.com
- Email. Bio-stat@Hotmail.com
- Mobile Number : 0553777925

