Question	Answer	Mark	Guidance
1 (a) (i)	The pH OR point at which the zwitterion exists ✓	1	ALLOW pH/point at which there is no overall/net charge IGNORE pH/point at which there is no charge/ neutral charge <i>ie overall/net is required</i> ALLOW pH/point at which contains COO ⁻ AND NH ₃ ⁺
	$H_{3} \stackrel{+}{\overset{-}{\overset{-}{\underset{C}{\overset{-}{\underset{C}{\overset{-}{\underset{C}{\overset{-}{\underset{C}{\overset{-}{\underset{C}{\underset{C}{\overset{-}{\underset{C}{\overset{-}{\underset{C}{\underset{C}{\overset{-}{\underset{C}{\underset{C}{\overset{-}{\underset{C}{\underset{C}{\overset{-}{\underset{C}{\underset{C}{\overset{-}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset{C}{\underset$	2	ALLOW CH ₃ CH(NH ₃) ⁺ COO ⁻ ALLOW CH ₃ CH(NH ₃) ⁺ COOH ALLOW CO ₂ ⁻ and CO ₂ H ALLOW + charge on N or H: ie ⁺ NH ₃ or NH ₃ ⁺ DO NOT ALLOW ' ' charge on C: ie ⁻ COO DO NOT ALLOW H or CH ₃ missing ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous

C	Quest	ion	Answer		Guidance
1	(a)	(iii)	pH < 3: COOH ✓		ALLOW carboxyl group OR carboxylic acid DO NOT ALLOW 'acid' OR just 'carboxylic' (without 'acid')
			pH > 10: NH₂ ✓	2	ALLOW amino group OR amine
					DO NOT ALLOW if give correct formula but wrong name or correct name and wrong formula eg NH_2 and amide
					IF any carbon chain is shown attached to BOTH functional groups ALLOW 1 mark eg CH ₂ COOH AND CH ₂ NH ₂ for 1 mark CH ₃ COOH AND CH ₃ NH ₂ for 1 mark RCOOH AND RNH ₂ for 1 mark
					IF functional groups are shown the wrong way round, ALLOW 1 mark i.e. NH ₂ COOH
	(b)		Н О Н О 		DO NOT ALLOW more repeat units IGNORE brackets and 'n' ALLOW end bonds shown as DO NOT ALLOW if end bonds are missing
			peptide link must be fully displayed, i.e. O C C H V H ✓		ALLOW terminal N–H on right (OR C=O on left), <i>ie</i> H O H O C C C N C C N CH ₂ OH H CH ₂ OH H
			TWO repeat units shown correctly ✓	2	IF peptide bond is shown not displayed, i.e. CONH, 2nd mark can still be awarded

C	Quest	ion	Answer	Mark	Guidance
	Quest (C)	ion (i) (ii)	Answer There is no chiral carbon OR there is no asymmetry in the molecule \checkmark Image: Coord H2N	Mark 1	GuidanceALLOW there is no asymmetric carbonOR it has no non-superimposable mirror imageOR there are not four different atoms/groups of atoms (attached to carbon)OR there are only three different atoms/groups of atoms (attached to carbon)OR because there are two hydrogen atoms on the carbonALLOW Add the same 3-D structure repeated but with 2 groups 'swapped' as after rotation the 2nd isomer is a mirror image of the first, i.e.LoopCOOHCOOHCOOHConnectivity: Chiral C must be linked to the C of the COOH, the C of the CH2SH and the N of the NH2 (ie connectivity is being tested)ie, ALLOW as in the example but DO NOT ALLOW an attempted NH2 shown as below: COOH

C	Quest	ion	Answer	Mark	Guidance
					For bond into plane of paper, ALLOW:

C	Question		Answer	Mark	Guidance	
1	(C)	(iii)	 Disadvantages: any two from: (one stereoisomer might have harmful/adverse) side effects√ 		ANNOTATIONS MUST BE USED	
			 reduces the (pharmacological) activity/effectiveness ✓ cost of separating stereoisomers 	2	ALLOW a response that implies an increased dose	
			OR difficulty in separating stereoisomers ✓ Synthesis of a single optical isomer any two from:		IGNORE it takes time to separate	
			 using enzymes or bacteria ✓ using (chemical) chiral synthesis 		ALLOW biological catalysts ALLOW chiral transition metal complex/catalyst	
			 OR using chiral catalysts ✓ using (natural) chiral molecules/compounds ✓ 	2	OR stereoselective transition metal complex/catalyst ALLOW 'chiral pool' OR L-amino acids / D-sugars	
			Quality of Written Communication For full marks to be awarded for this question chiral OR enzyme OR bacteria OR catalyst must be spelled correctly at least once in the correct context			

C	Question			Answe	r		Mark	Guidance
1	(d)		amino acid number of peaks	isoleucine 6 ✓	leucine 5 ✓	tyrosine 7 ✓	3	1 mark for each number
	(e)		$\begin{array}{c} \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow &$		hydride	2	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous Common errors: Look for NH ₂ on first structure and NH on second structure	
						Total	19	

Question	Answer	Mark	Guidance	
Question 2 (a) (i) 4 4 4 5 4 4 6 4 4 7 4 4 8 4 4 18 4 4 19 4 4 19 4 4 19 4 4 19 4 4 19 4 4 19 4 4 19 4 4 19 4 4 19 4 4 19 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 4 <	Answer Response requires three stages • chlorination • nitration • reduction Reduction must be a later stage than nitration Mark according to which sequence chosen. Stage 1 organic product: Cl OR V chemicals: Cl_2 AND AICl ₃ OR HNO ₃ AND H ₂ SO ₄ Cl NO ₂ V chemicals: Cl NO ₂ OR HNO ₃ AND H ₂ SO ₄ Cl NO ₂ OR NH ₂ V Stage 2 organic product: NO ₂ Cl NO ₂ NO ₂ OR Stage 3 Sn AND HCl ✓		Guidance Acceptable sequence of stages are: • nitration, reduction, chlorination • nitration, chlorination, reduction, • chlorination, nitration, reduction For organic products, ALLOW C6H5NO2 OR C6H5CI OR C6H5NH2 ALLOW NO2- AND NH2- DO NOT ALLOW CIC6H4NO2 (formula ambiguous) DO NOT ALLOW CIC6H4NO2 (formula mbiguous) DO NOT ALLOW molecular formulae IGNORE any additional structures shown eg 2- (ortho) and 3- (meta) substituted isomers In chemicals boxes, IGNORE temperatures IGNORE temperatures IGNORE temperatures IGNORE for chlorination chemicals, ALLOW Cl2 AND FeCl3 OR Cl2 AND Fe OR Cl2 AND Fe OR Cl2 AND Fe OR Cl2 AND Fe OR Cl2 AND halogen carrier For nitration chemicals, 'concentrated' not required for HNO3 OR H2SO4 BUT DO NOT ALLOW 'dilute' For reduction chemicals, 'concentrated' HCl not required but DO NOT ALLOW 'dilute' For Sn/HCl ALLOW addition of NaOH also IF it is clear that it is a second step BUT DO NOT ALLOW Sn AND HCl AND NaOH </th	
	chemicals: Cl₂ AND AICl₃ OR Sn AND HCl ✓	5	IGNORE catalyst	

	Questi	ion	Answer	Mark	Guidance
					ALLOW Kekulé mechanism $mark 2 \bigcirc 0^{\delta}$ $mark 1 \longrightarrow 0^{\delta}$ $mark 1 \longrightarrow 0^{\delta}$ $mark 1 \longrightarrow 0^{\delta}$ $mark 4 \longrightarrow 0^{\delta}$ $step 1 \longrightarrow 0^{\delta}$ $mark 4 \longrightarrow 0^{\delta}$ mark
2	(c)	(i)	Various possibilities, eg: H_3C C N H OH H H H H H H H H H		 ALLOW 1, 2, 3 or 4 Br atoms substituted on phenol ring at carbon atoms 2, 3, 5 or 6 BUT –OH must be in correct position shown DO NOT ALLOW O⁻ or ONa ALLOW for side chain: CH₃CONH but aromatic part of structure must be shown IGNORE any additional inorganic products in boxes (even if incorrect
			Reaction with Na $H_3C - C - N - O^-Na^+$ $H - \sqrt{C^-Na^+}$	2	 ALLOW ONa OR O⁻ as alternative to O⁻Na⁺ DO NOT ALLOW O–Na OR O⁻Na (i.e. Na without charge) –ONa must be in correct position shown ALLOW for side chain: CH₃CONH but aromatic part of structure must be shown IGNORE any additional inorganic products in boxes (even if incorrect)

Question	Answer	Mark	Guidance
2 (c) (ii)	Hydrolysis with NaOH(aq) $H_{3}C - C - O^{-}Na^{+}$ $H_{2}N - O^{-}Na^{+}$ Mark independently	2	On BOTH structures, ALLOW ONa OR O ⁻ as alternative to O ⁻ Na ⁺ DO NOT ALLOW O–Na OR O ⁻ Na (i.e. Na without charge) –ONa must be in correct position shown on 2nd structure ALLOW CH ₃ COONa/ CH ₃ CO ₂ Na OR CH ₃ COO ⁻ / CH ₃ CO ₂ ⁻ ALLOW one mark for carboxylic acid AND phenol, rather than sodium salts: H_2N OH H_3C OH ALLOW NH ₂ -, CH ₃ - IGNORE any additional inorganic products in boxes (even if incorrect)
	Total	15	

Q	uestic	on	Answer	Mark	Guidance
3	(a)	(i)	One mark is for positive carbonyl test (Add) 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate ✓		ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
			One mark is for negative aldehyde test EITHER (Add) Tollens' reagent/Tollens' test		ALLOW AgNO ₃ /NH ₃ (Formulae must be correct) OR ammoniacal silver nitrate
			AND no change OR no reaction OR no silver (mirror)		ALLOW Fehling's solution OR Benedict's solution AND no (brick-red) precipitate
					ALLOW any response that implies that nothing happens ie no change OR no reaction OR no silver (mirror)
					ALLOW 'the aldehyde/pentanal gives a silver mirror'
			OR (Add) H ₂ SO ₄ AND K ₂ Cr ₂ O ₇ AND		ALLOW H ⁺ AND Cr ₂ O ₇ ²⁻ (Formulae must be correct)
			no change OR no reaction OR no green colour ✓	2	ALLOW any response that implies that nothing happens IGNORE responses using NaBH ₄ (as no observations)
		(ii)	1st mark Take melting point of orange crystals/derivative/product from 2,4-DNP ✓		NOTE: a(ii) is marked completely independently of a(i)
			2nd mark Compare melting point with known values OR		Mark independently of response for 1st mark
			compare melting point with value in database/reference book ✓	2	DO NOT ALLOW 1st or 2nd marks for taking and comparing boiling points OR chromatograms

Ques	stion	۱	Answer	Mark	Guidance	
4 ((a)		$\begin{array}{rcl} (CH_{3}CO)_{2}O + CH_{3}CH(OH)CH_{3} \\ & \rightarrow & CH_{3}COOCH(CH_{3})_{2} + & CH_{3}COOH \end{array}$	2	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALLOW (CH ₃) ₂ CHOOCCH ₃ OR (CH ₃) ₂ CHOCOCH ₃	
((b)	(i)	(relative) solubility ✓	1	IGNORE partition DO NOT ALLOW adsorption OR absorption	
		(ii)	The esters would have similar retention times AND similar structures/molecules OR same functional groups OR similar polarities OR similar solubilities ✓ Alcohol would have short retention time AND alkane would have long retention time ✓	2	IGNORE similar properties	

Question	Answer	Mark	Guidance	
4 (c)	Elemental analysis and molecular formula – 2 marks Use of percentages (to find EF) AND 144 \checkmark Molecular formula = C ₈ H ₁₆ O ₂ \checkmark	2 marks	ANNOTATIONS MUST BE USED Working C:H:O = $66.63/12$: $11.18/1$: $22.19/16$ 5.5525: 11.18 : 1.3868754 : 8 : $1Alternative method:carbon: (144 \times 66.63/100)/12 = 8hydrogen: (144 \times 11.18/100)/1 = 16oxygen: (144 \times 22.19/100)/16 = 2$	
	ester structure – 4 marks $H_3C \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_3$ $H_3C \longrightarrow CH_3 \longrightarrow \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt$	4 marks	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous NO ECF from earlier structures If not fully correct award following marks: If structure an ester of formula $C_8H_{16}O_2$ OR the organic structure contains $C(CH_3)_3 \checkmark$ If structure is an ester of formula $C_8H_{16}O_2$ AND ester contains $C(CH_3)_3 \checkmark \checkmark$ If structure is an ester of formula $C_8H_{16}O_2$ AND ester contains $O-CH_2C(CH_3)_3$ AND ester contains $O-CH_2C(CH_3)_3$ AND ester contains $CH_3CH_2COO \checkmark \checkmark \checkmark$ <i>i.e. If the ester link is reversed</i> $CH_3 - CH_2 - C - O - CH_2 - C - CH_3$ IGNORE any name	

F324

CHERRY HILL TUITION OCR A CHEMISTRY A2 PAPER 21 MARK SCHEME Mark Scheme

January 2012

Question	Answer	Mark	Guidance
	NMR analysis – 4 marks		 NOTE: Each peak can be identified from: its δ value: ± 0.2 ppm a range, eg 'the peak between 2 and 3' its relative peak area (CARE two peaks have an area of 2) its splitting (CARE: two peaks are singlets) labelling on the spectrum
	Triplet (at δ 1.3) shows an adjacent CH ₂ OR triplet (at δ 1.3) shows (C with) 2 adjacent Hs/protons \checkmark (because of splitting: so triplet)		QWC: triplet must be spelled correctly ALLOW neighbouring Hs for adjacent to Hs
	Peak at (δ) 2.2 shows H adjacent to C=O AND adjacent to (C with) no hydrogens \checkmark (because of no splitting: so singlet)		For peak at (δ) 2.2 ALLOW singlet at (δ) 2.2 ALLOW singlet labelled 2
	Peak at (δ) 4.2 shows H–C–O AND adjacent CH ₃ OR 3 adjacent Hs/protons ✓ (because of splitting: so quartet)		For peak at (δ) 4.2 ALLOW quartet (labelled 2)
	Peak at (δ) 0.9 show 3 x CH ₃ \checkmark (because of singlet and area 9)	4 marks	Check back for any responses added to spectra ADD ^ MARK TO THE SPECTRUM PAGE TO SHOW THAT IT HAS BEEN LOOKED AT
	Total for 4(c)	10	II HAS BEEN LOOKED AT
	Total	15	