

Question			Answer	Mark	Guidance
1	(a)	(iii)	$\mathrm{pH}<3: \mathrm{COOH} \checkmark$ $\mathrm{pH}>10: \mathrm{NH}_{2} \checkmark$	2	ALLOW carboxyl group OR carboxylic acid DO NOT ALLOW 'acid' OR just 'carboxylic' (without 'acid') ALLOW amino group OR amine DO NOT ALLOW if give correct formula but wrong name or correct name and wrong formula eg NH_{2} and amide IF any carbon chain is shown attached to BOTH functional groups ALLOW 1 mark eg $\quad \mathrm{CH}_{2} \mathrm{COOH}$ AND $\mathrm{CH}_{2} \mathrm{NH}_{2}$ for 1 mark $\mathrm{CH}_{3} \mathrm{COOH}$ AND $\mathrm{CH}_{3} \mathrm{NH}_{2}$ for 1 mark RCOOH AND RNH_{2} for 1 mark IF functional groups are shown the wrong way round, ALLOW 1 mark i.e. $\quad \mathrm{NH}_{2}$ COOH
	(b)		 peptide link must be fully displayed, i.e. TWO repeat units shown correctly \checkmark	2	DO NOT ALLOW more repeat units IGNORE brackets and ' n ' ALLOW end bonds shown as \qquad DO NOT ALLOW if end bonds are missing ALLOW terminal $\mathrm{N}-\mathrm{H}$ on right ($\mathrm{OR} \mathrm{C}=\mathrm{O}$ on left), ie IF peptide bond is shown not displayed, i.e. CONH, 2nd mark can still be awarded

Question			Answer	Mark	Guidance
1	(c)	(i)	There is no chiral carbon OR there is no asymmetry in the molecule \checkmark	1	ALLOW there is no asymmetric carbon OR it has no non-superimposable mirror image OR there are not four different atoms/groups of atoms (attached to carbon) OR there are only three different atoms/groups of atoms (attached to carbon) OR because there are two hydrogen atoms on the carbon
		(ii)		2	ALLOW Add the same 3-D structure repeated but with 2 groups 'swapped' as after rotation the 2nd isomer is a mirror image of the first, i.e. Connectivity: Chiral C must be linked to the C of the COOH , the C of the $\mathrm{CH}_{2} \mathrm{SH}$ and the N of the NH_{2} (ie connectivity is being tested) ie, ALLOW as in the example but DO NOT ALLOW an attempted NH_{2} shown as below: The 2nd mark is for the mirror image of CORRECT optical isomer only CARE: may be orientated differently DO NOT penalise connectivity more than once Each structure must have four central bonds, with at least one wedge in AND one wedge out

CHERRY HILL TUITION OCR A CHEMISTRY A2 PAPER 21 MARK SCHEME

Question			Answer	Mark	Guidance
2	(a)	(i)	Response requires three stages - chlorination - nitration - reduction Reduction must be a later stage than nitration Mark according to which sequence chosen. Stage 1 organic product: chemicals: Cl_{2} AND AlCl_{3} OR OR HNO_{3} AND $\mathrm{H}_{2} \mathrm{SO}_{4}$ Stage 2 organic product: OR chemicals: $\mathrm{HNO}_{3} \text { AND } \mathrm{H}_{2} \mathrm{SO}_{4} \quad \text { OR } \quad \text { Sn AND HCl } \checkmark$ Stage 3 chemicals: Cl_{2} AND AlCl_{3} OR Sn AND HCI \checkmark	5	Acceptable sequence of stages are: - nitration, reduction, chlorination - nitration, chlorination, reduction, - chlorination, nitration, reduction For organic products, ALLOW $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ ALLOW NO ${ }_{2}$ - AND $\mathrm{NH}_{2}-$ DO NOT ALLOW $\mathrm{CIC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$ (formula ambiguous) DO NOT ALLOW molecular formulae IGNORE any additional structures shown eg 2- (ortho) and 3- (meta) substituted isomers In chemicals boxes, IGNORE temperatures IGNORE 'catalyst' For chlorination chemicals, ALLOW Cl ${ }_{2}$ AND FeCl_{3} OR Cl_{2} AND Fe OR Cl_{2} AND halogen carrier For nitration chemicals, 'concentrated' not required for HNO_{3} OR $\mathrm{H}_{2} \mathrm{SO}_{4}$ BUT ... DO NOT ALLOW 'dilute' For reduction chemicals, 'concentrated' HCl not required but DO NOT ALLOW 'dilute' For $\mathrm{Sn} / \mathrm{HCl}$ ALLOW addition of NaOH also IF it is clear that it is a second step BUT . \qquad DO NOT ALLOW Sn AND HCl AND NaOH IGNORE catalyst

Question

Question			Answer	Mark	Guidance
					ALLOW Kekulé mechanism intermediate = mark 3 ALLOW double bonds shown in other Kekulé arrangement
2	(c)	(i)	Various possibilities, eg:		ALLOW 1, 2, 3 or 4 Br atoms substituted on phenol ring at carbon atoms $2,3,5$ or 6 BUT -OH must be in correct position shown DO NOT ALLOW O- or ONa ALLOW for side chain: $\mathrm{CH}_{3} \mathrm{CONH}$ but aromatic part of structure must be shown IGNORE any additional inorganic products in boxes (even if incorrect
			Reaction with Na	2	ALLOW ONa OR O ${ }^{-}$as alternative to $\mathrm{O}^{-} \mathrm{Na}^{+}$ DO NOT ALLOW O-Na OR $\mathrm{O}^{-} \mathrm{Na}$ (i.e. Na without charge) -ONa must be in correct position shown ALLOW for side chain: $\mathrm{CH}_{3} \mathrm{CONH}$ but aromatic part of structure must be shown IGNORE any additional inorganic products in boxes (even if incorrect)

Question			Answer	Mark	Guidance
2	(c)	(ii)	Hydrolysis with $\mathrm{NaOH}(\mathrm{aq})$ Mark independently	2	On BOTH structures, ALLOW ONa OR O^{-}as alternative to $\mathrm{O}^{-} \mathrm{Na}^{+}$ DO NOT ALLOW O-Na OR $\mathrm{O}^{-} \mathrm{Na}$ (i.e. Na without charge) -ONa must be in correct position shown on 2nd structure ALLOW one mark for carboxylic acid AND phenol, rather than sodium salts: ALLOW $\mathrm{NH}_{2}-, \quad \mathrm{CH}_{3}-$ IGNORE any additional inorganic products in boxes (even if incorrect)
			Total	15	

Question			Answer	Mark	Guidance
3	(a)	(i)	One mark is for positive carbonyl test (Add) 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate \checkmark One mark is for negative aldehyde test EITHER (Add) Tollens' reagent/Tollens' test AND no change OR no reaction OR no silver (mirror) OR (Add) $\mathrm{H}_{2} \mathrm{SO}_{4}$ AND $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ AND no change OR no reaction OR no green colour \checkmark	2	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate ALLOW $\mathrm{AgNO}_{3} / \mathrm{NH}_{3}$ (Formulae must be correct) OR ammoniacal silver nitrate ALLOW Fehling's solution OR Benedict's solution AND no (brick-red) precipitate ALLOW any response that implies that nothing happens ie no change OR no reaction OR no silver (mirror) ALLOW 'the aldehyde/pentanal gives a silver mirror' ALLOW H^{+}AND $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ (Formulae must be correct) ALLOW any response that implies that nothing happens IGNORE responses using NaBH_{4} (as no observations)
		(ii)	1st mark Take melting point of orange crystals/derivative/product from 2,4-DNP \checkmark 2nd mark Compare melting point with known values OR compare melting point with value in database/reference book	2	NOTE: $\mathbf{a}(\mathbf{i i})$ is marked completely independently of $\mathbf{a}(\mathbf{i})$ Mark independently of response for 1st mark DO NOT ALLOW 1st or 2nd marks for taking and comparing boiling points OR chromatograms

Question			Answer	Mark	Guidance
3	(b)	(i)	Synthesis 1 Ester linkage must be fully displayed Synthesis 2	6	NOTE: ALL Structures MUST have Hs shown IGNORE bond angles DO NOT ALLOW more than one repeat unit IGNORE brackets and ' n ' ALLOW terminal O - on right (OR $\mathrm{C}=\mathrm{O}$ on left), i.e. ALLOW end bonds shown as \qquad DO NOT ALLOW if structure has no end bonds

Question

Question			Answer	Mark	Guidance
4	(a)		$\begin{aligned} & \left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \\ & \quad \rightarrow \mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{CH}_{3} \mathrm{COOH} \\ & \text { 1st mark } \\ & \text { Correct structure of ester: } \mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2} \downarrow \\ & \text { 2nd mark } \\ & \text { Equation contains correct formulae for }\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} \text {, } \\ & \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \text { AND } \mathrm{CH}_{3} \mathrm{COOH} \checkmark \end{aligned}$	2	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALLOW $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOOCCH}_{3} \mathrm{OR}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOCOCH}_{3}$
	(b)	(i)	(relative) solubility \checkmark	1	IGNORE partition DO NOT ALLOW adsorption OR absorption
		(ii)	The esters would have similar retention times AND similar structures/molecules OR same functional groups OR similar polarities OR similar solubilities Alcohol would have short retention time AND alkane would have long retention time \checkmark	2	IGNORE similar properties

	stion	Answer	Mark	Guidance
4	(c)	Elemental analysis and molecular formula - 2 marks Use of percentages (to find EF) AND $144 \checkmark$ $\text { Molecular formula }=\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2} \checkmark$	$\begin{gathered} 2 \\ \text { marks } \end{gathered}$	ANNOTATIONS MUST BE USED Working $\begin{array}{rccccc} \mathrm{C}: \mathrm{H}: \mathrm{O} & =66.63 / 12 & : & 11.18 / 1 & : & 22.19 / 16 \\ & 5.5525 & : & 11.18 & : & 1.386875 \\ & 4 & : & 8 & : & 1 \end{array}$ Alternative method: carbon: $(144 \times 66.63 / 100) / 12=8$ hydrogen: $(144 \times 11.18 / 100) / 1=16$ oxygen: $(144 \times 22.19 / 100) / 16=2$
		ester structure - 4 marks	$\begin{gathered} 4 \\ \text { marks } \end{gathered}$	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous NO ECF from earlier structures If not fully correct award following marks: If structure an ester of formula $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ OR the organic structure contains $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ If structure is an ester of formula $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ AND ester contains $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ If structure is an ester of formula $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ AND ester contains $\mathrm{O}-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ AND ester contains $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO} \checkmark \checkmark \checkmark$ i.e. If the ester link is reversed IGNORE any name

