|      | Answer <b>all</b> questions.                                                                                               |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 01.1 | Explain how the electron pair repulsion theory can be used to deduce the shape of, and the bond angle in, $PF_3$ [6 marks] |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |
|      |                                                                                                                            |  |  |  |  |  |  |

| 01.2 | State the full electron configuration of a cobalt(II) ion. [1 mark]                                                                          |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 01.3 | Suggest <b>one</b> reason why electron pair repulsion theory <b>cannot</b> be used to predict the shape of the $[CoCl_4]^{2-}$ ion. [1 mark] |
| 01.4 | Predict the shape of, and the bond angle in, the complex rhodium ion [RhCl <sub>4</sub> ] <sup>2-</sup> [2 marks] Shape Bond angle           |
|      | Turn over for the next question                                                                                                              |
|      |                                                                                                                                              |

٦

| 02.1 | Explain why the atomic radii of the elements decrease across Period 3 from sodium to chlorine. [2 marks]  |
|------|-----------------------------------------------------------------------------------------------------------|
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |
| 02.2 | Explain why the melting point of sulfur (S $_8$ ) is greater than that of phosphorus (P $_4$ ). [2 marks] |
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |
| 02.3 | Explain why sodium oxide forms an alkaline solution when it reacts with water.<br>[2 marks]               |
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |
|      |                                                                                                           |

**3** Fuel cells are an increasingly important energy source for vehicles. Standard electrode potentials are used in understanding some familiar chemical reactions including those in fuel cells.

 Table 1 contains some standard electrode potential data.

| Electrode half-equ                        | <i>Е<sup>ө</sup>/</i> V             |       |
|-------------------------------------------|-------------------------------------|-------|
| $F_2 + 2e^- \longrightarrow$              | 2F <sup>−</sup>                     | +2.87 |
| $Cl_2 + 2e^- \longrightarrow$             | 2CI <sup>−</sup>                    | +1.36 |
| $O_2 + 4H^+ + 4e^- \longrightarrow$       | 2H <sub>2</sub> O                   | +1.23 |
| $Br_2 + 2e^- \longrightarrow$             | 2Br <sup>−</sup>                    | +1.07 |
| $I_2 + 2e^- \longrightarrow$              | 2I <sup>-</sup>                     | +0.54 |
| $O_2 + 2H_2O + 4e^- \longrightarrow$      | 4OH <sup>-</sup>                    | +0.40 |
| $SO_4^{2-} + 4H^+ + 2e^- \longrightarrow$ | SO <sub>2</sub> + 2H <sub>2</sub> O | +0.17 |
| $2H^+ + 2e^- \longrightarrow$             | H <sub>2</sub>                      | 0.00  |
| $4H_2O + 4e^- \longrightarrow$            | 40H <sup>-</sup> + 2H <sub>2</sub>  | -0.83 |

## Table 1

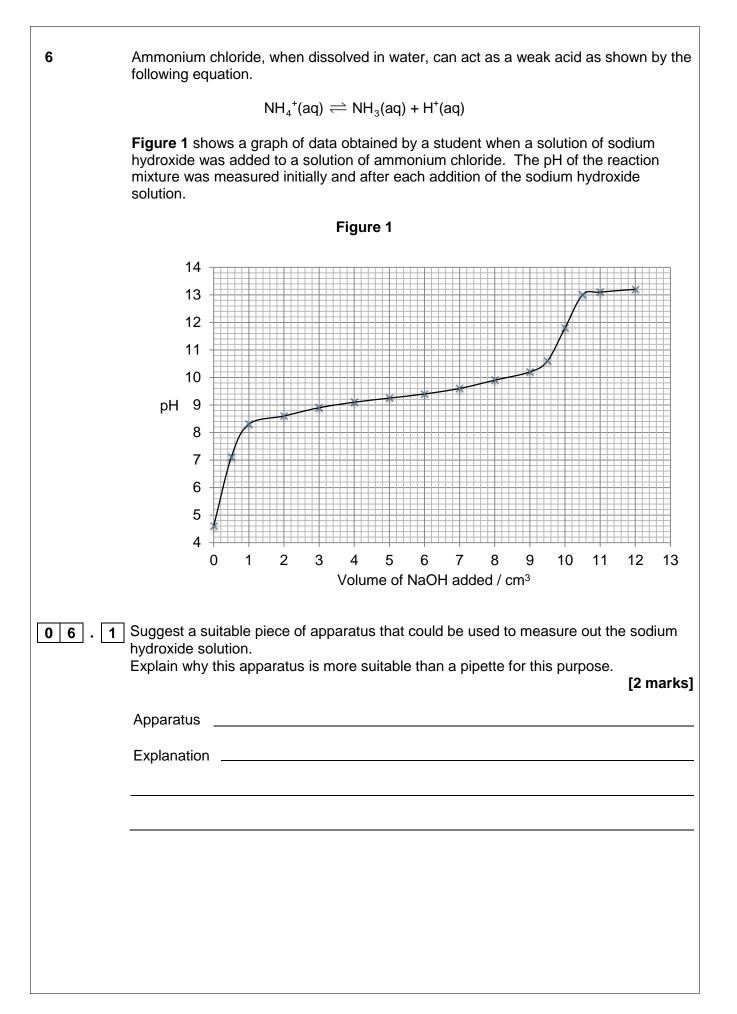
**0 3 . 1** A salt bridge was used in a cell to measure electrode potential.

Explain the function of the salt bridge.

[2 marks]

0 3 . 2 Use data from Table 1 to deduce the halide ion that is the weakest reducing agent. [1 mark]

| 03.3 | Use data from <b>Table 1</b> to justify why sulfate ions should <b>not</b> be capable of oxidising bromide ions. [1 mark]                                             |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                       |
| 03.4 | Use data from <b>Table 1</b> to calculate a value for the EMF of a hydrogen–oxygen fuel cell operating under alkaline conditions. [1 mark]                            |
|      | EMF = V                                                                                                                                                               |
| 03.5 | There are two ways to use hydrogen as a fuel for cars. One way is in a fuel cell to power an electric motor, the other is as a fuel in an internal combustion engine. |
|      | Suggest the major advantage of using the fuel cell. [1 mark]                                                                                                          |
|      |                                                                                                                                                                       |
|      |                                                                                                                                                                       |
|      | Turn over for the next question                                                                                                                                       |
|      |                                                                                                                                                                       |
|      |                                                                                                                                                                       |
|      |                                                                                                                                                                       |
|      |                                                                                                                                                                       |


| dı<br>pi<br>m | 4 Many chemical processes release waste products into the atmosphere. Scientists are developing new solid catalysts to convert more efficiently these emissions into useful products, such as fuels. One example is a catalyst to convert these emissions into methanol. The catalyst is thought to work by breaking a H–H bond.<br>An equation for this formation of methanol is given below.<br>$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g) \qquad \Delta H = -49 \text{ kJ mol}^{-1}$<br>Some mean bond enthalpies are shown in <b>Table 2</b> . |              |            |                 |     |                     |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-----------------|-----|---------------------|--|--|--|
|               | Table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |            |                 |     |                     |  |  |  |
|               | Bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C=O          | C–H        | C-0             | O-H |                     |  |  |  |
|               | Mean bond enthalpy / kJ mol <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 743          | 412        | 360             | 463 |                     |  |  |  |
|               | H–H t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oond entha   | lpy =      |                 | k.  | J mol <sup>-1</sup> |  |  |  |
| <b>0</b> 4.2A | data book value for the H–H bond e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enthalpy is  | 436 kJ mol | <sup>-1</sup> . |     |                     |  |  |  |
| s             | uggest <b>one</b> reason why this value is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | different fi | rom your a | nswer to Q      |     | mark]               |  |  |  |
| _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                 |     |                     |  |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                 |     |                     |  |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                 |     |                     |  |  |  |

| 04.3 | Suggest <b>one</b> environmental advantage of manufacturing methanol fuel by this reaction.                                               |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|
|      | [1 mark]                                                                                                                                  |
|      |                                                                                                                                           |
|      |                                                                                                                                           |
| 04.4 | Use Le Chatelier's principle to justify why the reaction is carried out at a high pressure rather than at atmospheric pressure. [3 marks] |
|      |                                                                                                                                           |
|      |                                                                                                                                           |
|      |                                                                                                                                           |
|      |                                                                                                                                           |
| 04.5 | Suggest why the catalyst used in this process may become less efficient if the carbon dioxide and hydrogen contain impurities. [1 mark]   |
|      |                                                                                                                                           |
|      |                                                                                                                                           |
|      |                                                                                                                                           |
|      | Question 4 continues on the next page                                                                                                     |
|      |                                                                                                                                           |
|      |                                                                                                                                           |
|      |                                                                                                                                           |
|      |                                                                                                                                           |

| 1.0 mol of c | ory experiment to invest<br>arbon dioxide and 3.0 n<br>had reached equilibriun<br>ol. | nol of hydrogen were                                          | sealed into a contai | ner. After |
|--------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------|------------|
|              | $CO_2(g) + 3H_2(g)$                                                                   | $\rightleftharpoons$ CH <sub>3</sub> OH(g) + H <sub>2</sub> ( | D(g)                 |            |
| Give your a  | value for <i>K</i> <sub>p</sub><br>nswer to the appropriate<br>vith your answer.      | e number of significa                                         | nt figures.          | [7 marks]  |
|              |                                                                                       |                                                               |                      |            |
|              |                                                                                       |                                                               |                      |            |
|              |                                                                                       |                                                               |                      |            |
|              |                                                                                       |                                                               |                      |            |
|              |                                                                                       |                                                               |                      |            |
|              |                                                                                       |                                                               |                      |            |
|              |                                                                                       |                                                               |                      |            |
|              |                                                                                       |                                                               |                      |            |
|              |                                                                                       |                                                               |                      |            |
|              | K =                                                                                   |                                                               | _ Units =            |            |
|              | · р —                                                                                 |                                                               |                      |            |
|              |                                                                                       |                                                               |                      |            |
|              |                                                                                       |                                                               |                      |            |
|              |                                                                                       |                                                               |                      |            |

5 Table 3 contains some entropy data relevant to the reaction used to synthesise methanol from carbon dioxide and hydrogen. The reaction is carried out at a temperature of 250 °C. Table 3 Substance  $CO_2(g)$  $H_2(g)$ CH<sub>3</sub>OH(g)  $H_2O(g)$ Entropy ( $S^{\Theta}$ ) / J K<sup>-1</sup> mol<sup>-1</sup> 214 131 238 189  $CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$   $\Delta H = -49 \text{ kJ mol}^{-1}$ 0 5 . 1 Use this enthalpy change and data from **Table 2** to calculate a value for the free-energy change of the reaction at 250 °C. Give units with your answer. [4 marks] Free-energy change = \_\_\_\_\_ Units = \_\_\_\_\_

| 0 5 . 2 | Calculate a value for the temperature when the reaction becomes feasible.                                        | [2 marks]       |
|---------|------------------------------------------------------------------------------------------------------------------|-----------------|
|         | Temperature =                                                                                                    | ĸ               |
|         |                                                                                                                  |                 |
| 0 5 . 3 | Gaseous methanol from this reaction is liquefied by cooling before storage.                                      |                 |
|         | Draw a diagram showing the interaction between two molecules of methano Explain why methanol is easy to liquefy. | l.<br>[4 marks] |
|         | Diagram                                                                                                          |                 |
|         |                                                                                                                  |                 |
|         |                                                                                                                  |                 |
|         |                                                                                                                  |                 |
|         |                                                                                                                  |                 |
|         |                                                                                                                  |                 |
|         |                                                                                                                  |                 |
|         | Explanation                                                                                                      |                 |
|         |                                                                                                                  |                 |
|         |                                                                                                                  |                 |
|         |                                                                                                                  |                 |
|         |                                                                                                                  |                 |
|         |                                                                                                                  |                 |
|         |                                                                                                                  |                 |
|         |                                                                                                                  |                 |



Γ

| 06.2 | Use information from the curve in Figure 1 to explain why the end point of this                                        | reaction             |
|------|------------------------------------------------------------------------------------------------------------------------|----------------------|
|      | would be difficult to judge accurately using an indicator.                                                             | 2 marks]             |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
| 06.3 | The pH at the end point of this reaction is 11.8                                                                       |                      |
|      | Use this pH value and the ionic product of water, $K_{\rm w} = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ , to | 0                    |
|      | calculate the concentration of hydroxide ions at the end point of the reaction.                                        | 3 marks]             |
|      | Ľ                                                                                                                      | 5 marksj             |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      | Concentration =                                                                                                        | mol dm <sup>-3</sup> |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      | Question 6 continues on the next page                                                                                  |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |
|      |                                                                                                                        |                      |

| 06.4 | The expression for the acid dissociation constant for aqueous ammonium ions is                                                                                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | $Ka = \frac{\left[NH^3\right]\left[H^+\right]}{\left[NH_4^{+}\right]}$                                                                                                        |
|      | The initial concentration of the ammonium chloride solution was 2.00 mol dm <sup><math>-3</math></sup> .                                                                      |
|      | Use the pH of this solution, before any sodium hydroxide had been added, to calculate a value for $K_a$                                                                       |
|      | ٌ [3 marks]                                                                                                                                                                   |
|      |                                                                                                                                                                               |
|      |                                                                                                                                                                               |
|      |                                                                                                                                                                               |
|      | $K_{\rm a} = \_\_\_$ mol dm <sup>-3</sup>                                                                                                                                     |
| 06.5 | A solution contains equal concentrations of ammonia and ammonium ions.                                                                                                        |
|      | Use your value of $K_a$ from Question <b>6.4</b> to calculate the pH of this solution. Explain your working.                                                                  |
|      | (If you were unable to calculate a value for $K_a$ you may assume that it has the value 4.75 × 10 <sup>-9</sup> mol dm <sup>-3</sup> . This is <b>not</b> the correct value.) |
|      | [2 marks]                                                                                                                                                                     |
|      |                                                                                                                                                                               |
|      |                                                                                                                                                                               |
|      |                                                                                                                                                                               |
|      |                                                                                                                                                                               |
|      | pH=                                                                                                                                                                           |
|      |                                                                                                                                                                               |
|      |                                                                                                                                                                               |
|      |                                                                                                                                                                               |
|      |                                                                                                                                                                               |

|         |          | nows some s<br>X, Y and Z. | uccessive ion                   | isation ener | gy data for at | coms of three | e different |
|---------|----------|----------------------------|---------------------------------|--------------|----------------|---------------|-------------|
| E       | Elements | X, Y and Z a               | re Ca, Sc and                   | V but not ir | n that order.  |               |             |
|         |          |                            | Tab                             | le 4         |                |               |             |
|         |          | First                      | Second                          | Third        | Fourth         | Fifth         | Sixth       |
|         | X        | 648                        | 1370                            | 2870         | 4600           | 6280          | 12 400      |
|         | Y        | 590                        | 1150                            | 4940         | 6480           | 8120          | 10 496      |
|         | Z        | 632                        | 1240                            | 2390         | 7110           | 8870          | 10 720      |
|         |          |                            | you must cros<br>reviously cros |              |                |               |             |
| 0 7 . 1 | Which e  | element is ca              | alcium?                         |              |                |               | [1 mark     |
|         | X        | 0                          |                                 |              |                |               |             |
|         | Y        | 0                          |                                 |              |                |               |             |
|         | Z        | 0                          |                                 |              |                |               |             |
| 07.2    | Which    | element is va              | anadium?                        |              |                |               | [1 mark     |
|         | x        | 0                          |                                 |              |                |               |             |
|         | Y        | 0                          |                                 |              |                |               |             |
|         | Z        | 0                          |                                 |              |                |               |             |
|         |          |                            |                                 |              |                |               |             |

## CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 24

| 07.3 | Justify your choice of vanadium in Question <b>7.2</b> [1 mark]                                                             |
|------|-----------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                             |
| 07.4 | An acidified solution of $NH_4VO_3$ reacts with zinc.                                                                       |
|      | Explain how observations from this reaction show that vanadium exists in at least two different oxidation states. [2 marks] |
|      |                                                                                                                             |
|      |                                                                                                                             |
|      |                                                                                                                             |
|      | Question 7 continues on the next page                                                                                       |
|      |                                                                                                                             |
|      |                                                                                                                             |
|      |                                                                                                                             |
|      |                                                                                                                             |
|      |                                                                                                                             |

| <b>0 7 . 5</b> The vanadium in 50.0 cm <sup>3</sup> of a 0.800 mol dm <sup><math>-3</math></sup> solution of NH <sub>4</sub> VO <sub>3</sub> reacts with 506 cm <sup>3</sup> of sulfur(IV) oxide gas measured at 20.0 °C and 98.0 kPa. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use this information to calculate the oxidation state of the vanadium in the solution after the reduction reaction with sulfur(IV) oxide.<br>Explain your working.                                                                     |
| The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ . [6 marks]                                                                                                                                                              |
|                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                        |
| Oxidation state =                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                        |

| 08.1 | A co-ordinate bond is formed when a transition metal ion reacts with a ligand.                                                            |           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|      | Explain how this co-ordinate bond is formed.                                                                                              | 0         |
|      |                                                                                                                                           | [2 marks] |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
| 08.2 | Describe what you would observe when dilute aqueous ammonia is added dro<br>to excess, to an aqueous solution containing copper(II) ions. | opwise,   |
|      | Write equations for the reactions that occur.                                                                                             | [4 marks] |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |
|      |                                                                                                                                           |           |

| mark]  |
|--------|
| -      |
|        |
| ely    |
| marks] |
|        |
|        |
|        |
|        |
| nge    |
| marks] |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |

| 9    | A 5.00 g sample of potassium chloride was added to 50.0 g of water initially at 20.0 °C. The mixture was stirred and as the potassium chloride dissolved, the temperature of the solution decreased.                                         |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09.1 | Describe the steps you would take to determine an accurate minimum temperature that is <b>not</b> influenced by heat from the surroundings. [4 marks]                                                                                        |
| 09.2 | The temperature of the water decreased to 14.6 °C.<br>Calculate a value, in kJ mol <sup>-1</sup> , for the enthalpy of solution of potassium chloride.                                                                                       |
|      | You should assume that only the 50.0 g of water changes in temperature and that the specific heat capacity of water is 4.18 J K <sup>-1</sup> g <sup>-1</sup> . Give your answer to the appropriate number of significant figures. [4 marks] |
|      | Enthalpy of solution =kJ mol <sup>-1</sup>                                                                                                                                                                                                   |

| arks]             |
|-------------------|
| mol <sup>-1</sup> |
| arks]             |
|                   |
|                   |
|                   |
|                   |

10 Table 5 shows observations of changes from some test-tube reactions of aqueous solutions of compounds Q, R and S with five different aqueous reagents. The initial colours of the solutions are not given. Table 5 BaCl<sub>2</sub> + AgNO<sub>3</sub> + HCI (conc) NaOH Na<sub>2</sub>CO<sub>3</sub> HCI HNO<sub>3</sub> no change pale cream white no change white Q observed precipitate precipitate observed precipitate white white precipitate. no change white precipitate, no change R dissolves in bubbles of observed precipitate observed excess of a gas NaOH brown white no change brown precipitate, yellow S bubbles of solution precipitate observed precipitate a gas **1 0** . **1** Identify each of compounds **Q**, **R** and **S**. You are **not** required to explain your answers. [6 marks] Identity of Q Identity of R Identity of S

| 10.2 | Write ionic equations for each of the positive observations with <b>S</b> . | [4 marks] |
|------|-----------------------------------------------------------------------------|-----------|
|      |                                                                             |           |
|      |                                                                             |           |
|      |                                                                             |           |
|      |                                                                             |           |
|      |                                                                             |           |
|      |                                                                             |           |
|      | END OF QUESTIONS                                                            |           |
|      |                                                                             |           |
|      |                                                                             |           |
|      |                                                                             |           |
|      |                                                                             |           |
|      |                                                                             |           |
|      |                                                                             |           |