$\frac{\text { WJEC }}{\text { CBAC }}$

## GCE MARKING SCHEME

## INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2012 examination in GCE BIOLOGY/HUMAN BIOLOGY. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
BIOLOGY BY1 ..... 1
BIOLOGY BY2 ..... 9
HUMAN BIOLOGY HB2 ..... 19
BIOLOGY BY4 ..... 27
HUMAN BIOLOGY HB4 ..... 36
BIOLOGY BY5 ..... 49

## GCE BIOLOGY BY1

(b) (i) Prokaryotic has no nucleus vs eukaryotic has a nucleus / eukaryotic has membrane bound organelles vs prokaryotic no membrane bound organelles (Accept named membrane bound organelle) / prokaryotes smaller ribosomes (70S) vs Eukaryotes larger (80S) / DNA circular v DNA in chromosomes or strands [must refer to both terms];
Reject reference to cell wall;
Reject reference to size;
Reject reference to plasmid;
(ii) Chloroplast contain chlorophyll vs mitochondria have no chlorophyll (accept photosynthetic pigments) / grana vs no grana / stroma vs matrix / cristae vs no cristae / thylakoid vs no thylakoids / cristae vs grana / infolding of membrane in mitochondria not in chloroplasts [must refer to both structures];
Marks
Questions Marking details
Available
2. (a) (i) $\alpha$ glucose OH on C 1 down, H up $+\beta$ glucose OH on C 1 up, H down; ..... 1Allow HO (both for 1 mark).(b) (i) Cellulose -Beta Starch - alpha; (both for 1 mark).1Allow symbols.
(ii) Starch: any 2 ..... 2
correct reference to amylose and/or amylopectin;glycosidic bonds (a 1-4);
molecules coil/branch (in amylopectin); NOT compactNOT: amylopectin - coiled or amylase branchedeasy to add/remove \{glucose / maltose\} units;
Cellulose: any 2 ..... 2alternate units rotate / head up, head down / $180^{\circ}$ rotation;straight chain only / no branches; NOT parallelhydrogen bonds between / reference to cross linking;
gives strength or stability / forming microfibrils;
Marks
Questions Marking details
Available
3. (a) (i) Nucleotide; ..... 1
(ii) Phosphate / phosphoric acid / $\mathrm{PO}_{4} / \mathrm{PO}_{3}{ }^{-}$; ..... 1NOT phosphorus / P
(iii) Deoxyribose in DNA and ribose in RNA (both); ..... 1
(iv) Adenine, Thymine, Cytosine, Guanine (1 if 1 error).(b) Any 44Pairing described A-T and C-G (both needed);Backbone / Chains / polynucleotide formed by alternating sugarphosphate groups;two chains connected / joined by base pairs;hydrogen bonding;two chains (twisted) to form a helix / double helix;NOT alpha helix.Accept labelled diagram.
(c) $\quad$ forming template / code / instructions\} for \{protein synthesis / mRNA ..... 1
/ amino acid sequence / primary structure of protein / transcription\} (accept Replication in dividing cells) /
NOT genetic material alone.
Questions Marking details
Marks
Available
4. (a) 2 chromosomes in female cell;1 chromosome in male cell;Diagrams must match each other.cell if chromosomes drawn in female cell or opposite.
(b) (i) 2 Chromosomes arranged on equator of spindle; (ignore orientation)22 V shaped \{chromosomes / chromatids\} with centrosomes towardseach centriole/pole;Ecf from one diagram to other.
(ii) Labelling: chromatids, centromere, spindle, centrioles, equator, cell
membrane.
2 marks for 4 correct labels on either diagram;
1 mark for 3.2
Accept 'chromatids' in each cell. Do not accept chromatid in male
(iii) To provide \{genetically identical cells / clones\}; ..... 2Repair / replacement \{of cells / tissue\} / regeneration qualified;NOT growth.
(iv) Making gametes / sperm cells / sex cells / produce haploid cells for reproduction;
(v) Meiosis / reduction division; ..... 1Spelling must be correct.
(vi) Genetic variation (in the offspring) / restore diploid number (in ..... 1 zygote) OWTTE;
(c) Fertilised eggs will develop into females, unfertilised eggs into ..... 1males; (both for 1 mark);Accept: fertilised will give genetically varied ants, unfertilised wouldgive clones;IGNORE haploid / diploid.
Questions Marking details
Marks
Available
5. (a) (i) OH and H removal shown on diagram; ..... 3
formation of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ shown;
dipeptide correctly drawn with C joined to N ;
(ii) Condensation; ..... 1
(iii) Peptide; NOT dipeptide; ..... 1
(b) (i) Mosaic: Proteins are scattered (in lipid layer); ..... 2Fluid: molecules / components / (phospho)lipids / proteins are free tomove around;
(ii) B ; ..... 1
(iii) Drawing shows a lipid bilayer with A and B in the correct places, B ..... 1intrinsic (through the middle) A extrinsic (on top or bottom, outsidephosphate heads);
Need not use N and P , but must be clear which is A and B any 1 correct label from phospholipid / hydrophobic / hydrophilic / cholesterol / phosphate (head) / lipid or fatty acid (tails);
(iv) Cell \{recognition / interaction / identification / cell to cell recognition / adhesion / signalling\} / receptor qualified e.g. \{hormone receptor / antigens\};
(c) (i) Secondary;
(ii) Ribosomes / rough endoplasmic reticulum;
Accept nucleus;
NOT golgi body / nucleolus.
(d) (i) Endocytosis (accept phagocytosis / pinocytosis);
NOT exocytosis.
(ii) Any 2:
Diffusion / osmosis;
Facilitated diffusion;
Active transport;
Marks
Questions Marking details
Available
6. (a) (i) 0.4 M ; no units no marks. ..... 1
(ii) -1052 (kPa); ..... 1allow ECF(b) correct reference to osmosis;4bathing solution \{has a lower water potential / is more concentrated /is more negative / hypertonic\} than the water potential of beetrootcells / ORA;water leaves / moved \{out of / from\} cells / into bathing solution;bathing solution became less dense / lighter than original sucrosesolution;REJECT reference to water moving into or out of the drop.(c) $-790=-1100+\Psi_{p}$;$\Psi_{\mathrm{p}=} 310 \mathrm{kPa}$;2 marks for correct answer.
(d) (i) Diagram shows cell plasmolysed (any stage); ..... 1Mark diagram using labels.No labels = 0 marks.
Any 2 correct labels fromcell wall; plasma / cell membrane (part or all of which must be away2
from cell wall); tonoplast or vacuolar membrane; vacuole;
IGNORE incorrect labels.
(ii) Plasmolysed / plasmolysis; ..... 1
Marks
Questions Marking details
7. (a) (A Nucleus; ..... 1
B Contains DNA code for amino acid sequence; ..... 1
NOT genetic information alone;
C Carries out transcription / makes RNA copy; ..... 1
$\begin{cases}D & \text { Nucleolus; } \\ E & \text { Makes ribo }\end{cases}$ ..... 1
Makes ribosomes / organises transcription / makes rRNA; ..... 1
F \{Rough ER / Ribosomes\} \{ translate mRNA / put amino acids ..... 1together / protein synthesis\};
G Endoplasmic reticulum; ..... 1
H Transports protein; ..... 1
$\begin{cases}I & \text { (To) Golgi; } \\ J & \text { Packages protein into vesicle; } \\ \text { K } & \text { Modifies protein or description; }\end{cases}$ ..... 1 ..... 1
L Secretory vesicle; ..... 1M Vesicle migrates towards plasma membrane; (can award M and N if1use vesicle instead of secretory vesicle)
N Vesicle fuses / merges with plasma membrane; ..... 1
O Contents of vesicle emptied by exocytosis; ..... 1
Available
Question total ..... 10
Marks
Questions Marking details
Available
7. (b) A Temperature; ..... 1B description of (exponential) increase to optimum / maximum / certain1temperature then (sudden) decline / sketch graph showing;
C Increasing temperature increases rate because of increased energy / moving molecules faster / kinetic energy / ORA;
D \{Increasing frequency of / more / more likely\} successful collisions / Enzyme Substrate Complexes forming / ORA; nzy
E pH; ..... 1
F description of optimum pH and declining activity further from ..... 1 optimum in both directions / sketch graph / optimum pH and narrow range;
(Award G, H, I, J in context for Temp and/or pH )
( G (3D) shape of active site changes; ..... 1
H Changing away from optimum affects bonds holding tertiary structure / structure of enzyme molecules;
Correct reference to hydrogen / covalent / ionic bonds; NOT ..... 1
1 Correct reference to
J Substrates do not fit into active site / is not complementary (so rate reduced);
Substrate concentration; NOT amount; ..... 1 ..... 1
L Enzyme concentration; NOT amount; ..... 1
(Award M,N, O in context for Enzyme conc and/or Substrate conc)
(M Activity increases up to maximum when it levels off / sketch graph showing / ORA;
N Increasing substrate / enzyme conc. increases number of active sites occupied / Enzyme Substrate complexes / successful collisions / ORA;
O Maximum rate when all active sites occupied / saturated correct ..... 1

## GCE BIOLOGY BY2

Marks
Questions Marking detailsAvailable

1. Fungi;Animalia / animal;Protoctista; Accept Protists;Prokaryotae / Monera; NOT bacteria;
Plantae/plant;
Marks
Questions Marking details
Available
2. (a) (i) A Alveoli/alveolar sacs; ..... 1B Capillary (network);Both for 1 mark.
(ii) C Pulmonary artery; ..... 1
D Pulmonary vein;
Both for 1 mark.
(b) Any 2 ..... 2Thin alveolus (walls) /one cell thick;
NOT membrane or thin alone.
Large surface area / highly folded;
(volume - neutral)
Large number of capillaries (or implied);
(c) Contraction of intercostal muscles and diaphragm OR ribcage
moves up and out and diaphragm flattens / contract;
Increased volume and decreased pressure so air moves in(to lungs);
Marks
Questions Marking details
Available
3. Parasites $\{$ live in / on a $\}$ host and obtain nourishment \{at the ..... 2expense of / do harm to\} the host; NOT feed (can be neutral)Tapeworm / ticks / leeches / fleas / headlice / roundworm /plasmodium / malaria parasite / any parasite;Autotrophs use \{(simple) inorganic molecules / carbon dioxide and2water\} to synthesise \{(complex) organic compounds / named organiccompound / sugars\}; NOT foodPlant / named Plant / Algae / Bacteria must be qualified bychemosynthetic;Saprobionts \{secrete enzymes onto the food outside the body / feedby extracellular digestion\} and absorb (or e.q.) the (soluble)products (by diffusion); NOT ingest
Bacteria / Fungi / or named;
Marks
Questions Marking details
Available
4. (a) A Right atrio-ventricular / tricuspid. ..... 1
B Left AV valve / bicuspid / mitral ..... 1Award one mark for identifying both Atrioventricular Valves but notright and left.
C Semi lunar valves. ..... 1
(b) Coronary; ..... 2Supplies oxygen / blood to the heart muscle / wall / tissue / cells ORcorrect function for vein;
(c) (i) Valve \{exposed to / works at\} a higher pressure (in left ventricle)/ ..... 1
\{Right ventricle pumps blood at / valve A exposed to\} lowerpressures (to lungs);(ii) Blood leaks back (from ventricle) to atrium;1
(iii) Breathlessness / fluid retention / fatigue / rapid or irregular heartbeat / blue lips / oedema / lower bp / faint / heart murmur;1
Marks
Questions Marking details
Available
5. (a) (Gill) lamellae / filaments / plates; ..... 1
(b) Any 3 ..... 3Large surface area (for diffusion); (volume neutral)Thin / short diffusion pathway;
Permeable;
Good blood supply or implied; NOT transport system
NOT moist.(c) Water is forced over the gill by \{ventilation mechanisms / pressure4 differences / continuous swimming\};
Unidirectionally / one way flow;
Countercurrent flow of blood and water / or description of;
\{Diffusion / concentration\} gradient is maintained or description of; over the entire gill surface;
High affinity Hb ;
Marks
Questions Marking details
Available
6. (a) A Capillaries; NOT blood vessels; ..... 1
B Epithelium / epithelial cells; NOT endothelium; ..... 1
C Lacteal; NOT lymph; ..... 1
(b) D Arteriole; ..... 1
E Venule; ..... 1
(c) Microvilli: ..... 1
Increase SA for diffusion / uptake of molecule / digestion (of ..... 1molecules);Mitochondria:1
(Synthesis of) ATP for active transport; ..... 1
(d) Goblet cell / mucus secreting cell; NOT Brunner's gland ..... 1
Secretes / makes mucus; Accept even if named incorrectly above. ..... 1
Question total ..... 11
Marks
Questions Marking details
7. (a) (i) Any 3 ..... 3
Has a reduced surface area / surface area:volume ratio;
Thick cuticle;
Curled / rolled (downwards with the stomata inside);
Hairs (to trap water vapour);
(ii) Any scientifically correct explanation of their chosen feature / cuticle - comment on waterproofing /
curled - trapping water /
SA - less area over which water can be lost /
stomata - trapping water vapour;
(b) Xerophyte;
(c) (i) Xylem; 2
Transports water (and minerals);
(ii) $\begin{aligned} & \text { Phloem; } \\ & \text { Transports carbohydrates / sugars / products of photosynthesis / } \\ & \text { sucrose / amino acids; } \\ & \text { Not glucose/nutrients }\end{aligned}$
(iii) Endodermis / starch sheath. 1
(iv) Decent diagram of endodermis cell; 2
Endodermis - with Casparian strip/band clearly labelled;

## Questions Marking details

## Available

(v) Any 4

Waterproof / Casparian strip / band / suberin;
Blocks the apoplast pathway;
Selective uptake / Active uptake / transport of minerals (by
endodermis cells);
Into symplast pathway;
Active transport of minerals into pericycle;
Water follows by osmosis;
Water and minerals move into xylem vessels;
Marking details
8. (a) A. Reference to Asexual and sexual;
B. Asexual produces offspring that are genetically identical / clones;
C. By mitosis;
D. Allows (rapid) colonisation in favourable / stable conditions OR outcompetes (slower) sexual reproduction;
E. But if conditions / or e.g. such as temp change / unstable or disease occurs;
F. All individuals may die / none may have resistance / species may not be able to adapt;
G. Sexual reproduction produces offspring that are genetically different;
H. (Gametes) produced by meiosis;
I. Genetic variability allows a species to adapt to environmental change /evolution;
J. Slower/needs a partner (usually) / asexual faster;

## 7 Max

K. Relationship with animals / insects for pollination;
L. Relationship with animals / insects for seed dispersal;
M. Pollen can survive dessication / without water;
N. Seed with stored food enables the embryo plant to grow until leaves form / are exposed to sunlight;
O. Seed has a resistant (coat) to withstand adverse conditions;

## Marking details <br> Question Marking details

8. (b) A. Transpiration is the loss/evaporation of water (vapour) from (inside) the leaves (and stem) of a plant;
B. Through stomata;
C. Down a water potential gradient;
D. High TEMPERATURE increases (Rate of) Transpiration / ORA;
E. Correct explanation of effect of temp / increased kinetic energy / rate of movement of water molecules;
F. Increased AIR MOVEMENT / eq which increases (Rate of) Transpiration / ORA;
G. Correct explanation of effect of wind / increasing diffusion gradient;
H. High HUMIDITY which decreases (Rate of) Transpiration / ORA;
I. Plus correct explanation / decreased diffusion gradient;
J. High LIGHT INTENSITY which increases (Rate of) Transpiration / ORA;
K. Because it causes stomatal opening;
L. Set up under water / with a continuous column of water / make sure air cannot get in / it is air tight / equilibration;
M. Any description of how to change one factor / may be apparent on diagram;
N. Volume of water / movement of bubble taken up per unit time is measured;
O. To give a (close) approximation of transpiration rate;

## GCE HUMAN BIOLOGY HB2

| Question | Marking details | Marks |
| :--- | :--- | :---: |
| 1. (a) | Amylase; | Available |

Question Marking details
2. (a) Protein / cell surface marker / polysaccharide;
Stimulates immune response / antibody production;
(b) Recognised / detected by specific B cells / lymphocytes;
Ref. T helper cells;
Antigen / binding receptor sites / immunoglobulins on B cells;
Antigen presentation;
Clonal selection;
B cell clones itself / clonal expansion / proliferation;
Ref plasma cells releasing antibody;
(c) (i) Greater antibody concentration in the blood;
More rapid increase / response;
Less decline in antibody concentration from the peak / remains longer in the blood;
Shorter latent period for second injection;
(ii) Memory cells present from first injection;
Multiply rapidly;
Produce large numbers of plasma / B cells;
Leads to more rapid response / more antibody produced;

## Marks

## Question Marking details

3. (a) (i) $\mathrm{A}=$ alveoli;
$C=\underline{\text { ciliated }}$ epithelium;
(ii) Large surface area; 2

Increases gaseous exchange / uptake of oxygen;
(iii) Pressure changes in bronchioli / lung;

Prevents passageway from closing / collapsing / keep
passageways open;
Which would prevent passage of air;
(b) (i) Breathlessness / wheezing / shortness of breath; 2

Difficulty breathing out;
Inability to move / confined to bed / lack of energy / tiredness;
(ii) Walls broken down / coalesce; 2

Forming large spaces / decrease in surface area / larger alveoli;
Thicker walls;
(iii) Trace showing less tidal volume; 2

Longer exhalation trace;
(iv) Age; 2

Sex;
Weight;
Marks
Question Marking details
4. (a) Causes Bohr \{shift/effect\} / dissociation curve moves to right; ..... Max 4
$\mathrm{CO}_{2}$ combines with water to form carbonic acid / $\mathrm{HCO}_{3}{ }^{-}$;
Dissociation to form $\mathrm{H}^{+}$and $\mathrm{HCO}_{3}$;Hydrogen ions combine with haemoglobin;Haemoglobinic acid formed / haemoglobin reduced;
Decreases affinity for oxygen;More oxygen released / cannot hold as much oxygen;NOT quicker / more easily.
(b) (i) Foetal haemoglobin 54/55\% and normal haemoglobin 35/36\%.Both for one mark;
(ii) Greater affinity for oxygen; ..... 3More saturated than maternal / normal haemoglobin;At all partial pressures of oxygen;Oxygen will (always) pass from maternal to foetal haemoglobin;
(iii) Oxygen store; OWTTE. ..... 1

## Question Marking details

5. (a)

|  | Name of structure | Function in absorption |
| :---: | :---: | :---: |
| B | Capillary; | (Absorption of) glucose / <br> amino acids; |
| C | Lacteal; | (Absorption) glycerol / fatty acids <br> / fats / triglycerides; |
| F | Microvillus; | Large surface area / <br> carrier proteins / <br> increase rate of uptake; |

6

1

Neutralises acid / provides optimum pH for enzymes;
Lubricates / reduces friction from the passage of food;
(c) (i) Lymphatic system;
(ii) Hepatic portal vein;
(d) Blood clotting / colour change difficult to observe;

Question Marking details
6. (a)

| Position | Time from start of wave(s) |
| :--- | :---: |
| SAN |  |
| AVN |  |
| Bundle of his | $0.165 ;$ |
| Base of ventricles | $0.205 ;$ |
| Top of ventricles |  |

(b) Continues beating after removal from body;
(c) Allows atria to complete contraction / completely empty;

Before wave passes to ventricles
/ before ventricles begin to contract;
Otherwise ventricles would not completely fill;
(d) All blood forced out / if contraction was from top some blood would
remain;
Via aorta and pulmonary artery;
All of muscle contracts with greater force
/ pressure from base upwards;
AV valves forced shut;
(e)

| Cardiac control | Action of heart muscle | ECG activity |
| :---: | :---: | :---: |
|  | atria contract / systole; |  |
|  |  | QRS <br> wave/complex; |

```
Question Marking details
7. (a) \(A=\) Caused by a bacterium;
B = Airborne droplets / coughed out;
\(C=\) Breathed into lungs;
D = Easily spread in crowded places / close contact;
\(E=\) Pasteurisation of milk;
F = X-ray screening;
\(G=\) Isolation of patients;
\(\mathrm{H}=\) Use of antibiotics;
I = Range of antibiotic used to prevent resistance;
\(J=B C G / B C Q\) tests / Heaf / skin tests for natural immunity;
\(\mathrm{K}=\mathrm{BCG}\) vaccine given (to non-resistant individuals);
\(\mathrm{L}=\) Vaccine is attenuated form of bacterium;
\(M=\) Health checks at ports / airports OWTTE;
\(\mathrm{N}=\) Disease notifiable;
\(\mathrm{O}=\) Increase in number of cases linked to AIDS/HIV;
```


## Question

Marking details

## Available

7. (b) $\mathrm{A}=$ Prokaryotes are unicellular organisms;

B = No cellulose cell wall / Murein;

C = No membrane bound internal structures / organelles / no nuclear membrane;

D = Protoctista possess membrane bound organelles;
$E=$ No tissue differentiation;

F = Fungi consist of hyphae / mycelium;
$G=$ Cell wall of chitin;
$\mathrm{H}=$ Reproduction is by spores;

I = Plants carry out photosynthesis/ autotrophic;
$\mathrm{J}=$ Possess chloroplasts / membrane bound organelles;
$K=$ Cellulose cell walls;
$\mathrm{L}=$ Animals are heterotrophic;
$\mathrm{M}=$ Show nervous co-ordination;
$\mathrm{N}=$ cells lack a cell wall;
$\mathrm{O}=$ Names of five Kingdoms;

## GCE BIOLOGY BY4

Marks
Questions Marking detailsAvailable

1. (a) (i) 28.0-13.8/13.8 OR 14.2/13.8; ..... 2102.9 / 103\%; (2 marks for correct answer)(1 mark for calculation if answer incorrect)
(ii) Any 2 from: ..... 2Genes switched on;Synthesis of enzymes / protein synthesis;
Replication DNA;Cells increase in size / storage of nutrients;
Digestion / absorption;
Getting used to new medium / OWTTE;
NOT reference to small number
(iii) Population grows at an increasing rate / doubles in unit time /is growing logarithmically;NOT birth rate.
(iv) \{Competition for / Lack of\} nutrient; ..... 2build-up of waste products;oxygen supplied;Accept ref to competition with other species / predation (qualified);
Accept carrying capacity has been exceeded.
Marks
Questions Marking details
Available
(b) Any 3 from ..... 3Suitable / optimum / stated / best / temperature;Suitable optimum / stated / best / pH;Source of carbon / named carbohydrate / sugar / lipids / glycerol;Source of nitrogen / amino acids / nitrates / ammonium;Or nutrients (1 mark alternative if above not named);
Mineral ions;
Absence of Oxygen / anaerobic conditions;
If state oxygen needed $=$ Max 2 marks.
(c) $234 \times 10000$;
2.34 million / 2340 000; (2 marks for correct answer / 1 for calculation if answer incorrect)
(d) Sterile equipment / autoclave equipment; ..... 2
Flame loop;Disinfectant bench;
Flame neck of tube;
Work next to flame / updraft;
Ref to lid of petri dish;
NOT wash hands / wear lab coat / shut windows
Question total ..... 14
Marks
Questions Marking details
Available
2. (a) (i) $A$ Dorsal root ganglion; ..... 4B Central canal / spinal canal / (accept Cerebro Spinal fluid);C Ventral root;D Spinal nerve/ nerve (fibres) / collection of neurones;(ii) White matter made of myelin (sheath) / Schwann cells / lipid2/ phospholipid;NOT fat.
Grey matter made of cell bodies / nuclei;
(b) (i) 1 mark for each neurone correctly labelled and in correct position,3 including position of cell bodies. Sensory neurone - labelled, connecting receptor to grey matter, passing through dorsal root, with correct cell body; Relay nerve - labelled, connecting sensory and motor, inside grey matter;
Motor nerve - labelled, connecting relay to effector, through ventral root on opposite side; Reject continuous line.
(ii) Dendrite conducts \{impulse / electrical signal / action potential\} towards \{cell body / nucleus\}, axon conducts away from \{cell body / nucleus\};
NOT message / information.
Marks
Questions Marking details
Available
3. (a) (i) A Glycolysis;3
B Calvin cycle / light independent reactions;
C Krebs cycle / citric acid cycle / tricarboxylic acid cycle (Accept TCA cycle);
(ii) Different places within cell; NOT different places in the chloroplast;
Different enzymes;
A Cytoplasm / glycolysis takes place in cytoplasm;
B Chloroplast / calvin cycle takes place in chloroplast;
C Mitochondria / krebs cycle takes place in mitochondria;
Reference membrane separation / compartmentalisation;
(iii) Dependent;
Grana / thylakoid (membranes);
$\left.\begin{array}{l}\text { NADPH } H_{2} \text { / reduced NADP / NADPH; } \\ \text { ATP; }\end{array}\right\}$ can be either way round
(b) Oxygen;
Organic materials / compounds / named organic material /
fixing carbon;
NOT nutrients / food / ref to $\mathrm{CO}_{2}$.
(c) (i) DNA; 1
Nucleic acids;
RNA;
chlorophyll;
ATP;
NAD;
FAD;
(ii) Chlorophyll;
NOT chloroplast.
Marks
Questions Marking details
Available4. (a) Response controlled by relative length of the light and dark periods;1
Accept Response controlled by relative length of the \{light / day\} /\{dark / night\} periods;
(b) (i) \{Photoperiod / duration of light / day length\} detected by leaf ..... 2
OR only one leaf needs to be exposed to light for flowering to occur;Makes \{Hormone / plant growth substance / chemical / floragen\};High PFR / P730;(ii) Expose whole plant / leaf to short day periods;1
(c) Hormone same in all species / both plants; ..... 3
Transported from long day to short day plant; In phloem;
Questions Marking details
4. (a) (i) (Stimulation) causes sodium ions to \{move in / diffuse\};
NOT active transport.
Inside becomes less negative / some depolarisation;
Threshold not reached / Ref to 'all or nothing' law;
Sodium voltage gated channels remain closed / no action potential;
(ii) Sodium ions in; NOT pumped / active transport;
Threshold reached;
Sodium (voltage gated) channels open;
Depolarisation;
Inside becomes +ve / (from -60 to) +40 mV ;
Action potential;
Sodium (gated) channels close and Potassium channels open;
$\mathrm{K}^{+}$move (down concentration gradient) / diffuse out;
Repolarised;
Ref hyperpolarisation / refractory period;
sodium potassium pump restores resting potential;
(b) Excitatory 2
Mimic normal transmitter;
Inhibit breakdown of transmitter / cholinesterase;
Blocks uptake back into presynaptic knob;
Increases number of receptors on post synaptic membrane;
Inhibitory
Prevent exocytosis / stop release of transmitter substance;
Bind with receptors on post synaptic membrane and block it;
Prevents $\mathrm{Ca}^{2+}$ entry into presynaptic knob;
Questions Marking details
5. Endocrine; ..... 12Homeostasis;Negative feedback;
Hypothalamus;
\{Water / solute\} potential;
Posterior pituitary;
Blood;
Collecting duct / distal convoluted tubule; NOT DCT;
Receptors / glycoproteins;Osmosis;Tissue fluid;Urine;
Available
Question total ..... 12

## Marking details <br> Questions

7. (a) A Afferent vessel wider than efferent; NOT bigger.

B Increase in blood pressure;
C Gaps / pores between / in endothelial cells;
D Gaps / pores in basement membrane;
E Podocytes feet / filtration slits;
F Ultra filtration \{into Bowman's capsule / from glomerulus\};
G Example of substance which can pass through and one which cannot;

H Proximal convoluted tubule cells have microvilli to give large surface area / Folded base membrane / basal channels;

I Large numbers mitochondria for active transport / ATP synthesis;
$J$ Selective re-absorption in proximal convoluted tubule;
K Ascending limb loop of Henle pump $\mathrm{Na}^{+}$/ out;
L But impermeable to water;
M Decreases water potential in medulla;
N Descending limb permeable to water / water moves out by osmosis;

O Collecting duct walls receptors for ADH;
P Collecting duct / distal convoluted tubule walls variable permeability / OWTTE;

## Questions Marking details

(b) Similarities

A Both involve transport of electrons;
B \{ETC / cytochrome chain / carriers $\}$ in membrane;
$\begin{cases}\text { C } & \text { Energy released used to pump; } \\ \text { D } & \text { Protons; } \\ \text { E } & \text { Creates Proton gradient / pH gradient across }\end{cases}$
$\begin{cases}\text { F } & \text { Protons diffuse down concentration gradient; } \\ \text { G } & \text { Stalked particles / ATP synthetase; } \\ \text { H } & \text { ref to Chemiosmosis in correct context; }\end{cases}$

## Differences

|  | RESPIRATION | PHOTOSYNTHESIS |
| :--- | :--- | :--- |
| I | Substrate level phosphorylation / | No Substrate level <br> phosphorylation; |
| $\mathbf{J}$ | Electrons from hydrogens <br> produced in respiration / reduced <br> carriers / | Electrons come from <br> chlorophyll / water; |
| K | Hydrogen from glucose / fats / <br> amino acids / | OR Production of NADPH <br> increases the proton gradient; |
| $\mathbf{L}$ | Electrons combine / reduce $\mathrm{H}^{+}$ <br> and O to form water / oxygen is <br> final electron acceptor; | Cyclic phosphorylation - <br> electrons back to chlorophyll/ <br> \{Non cyclic to NADP / final <br> electron acceptor is NADP\}; |
| $\mathbf{M}$ | Chemiosmosis occurs - <br> Mitochondria, inner membrane / <br> on the thylakoid membranes <br> (of the chloroplasts); |  |
| $\mathbf{O}$ | Low pH / H <br> + <br> mitochondria inter membrane <br> space / | Chloroplasts thylakoid cavity; |
| $\mathbf{P}$ | 3 types of) proton pump in <br> mitochondria / | 1 (type of) proton pump in <br> chloroplasts; |

## GCE HUMAN BIOLOGY HB4

| Question | Marking details | Marks |
| :--- | :--- | :---: |
| 1. (a) | All correct for 3 marks, | Available |
|  | 3 correct for 2 marks, | 3 |
|  | 2 correct for 1 mark. |  |
|  |  |  |


| Letter | Name |
| :---: | :---: |
| A | Relay / |
| connector neurone |  |
| B | Grey matter |
| C | Dorsal root ganglion |
| D | Central Canal / CSF |

(b) Arrow drawn on sensory neurone away from receptor AND on motor neurone towards effector;
(c) (i) Node of Ranvier;
(ii) Electrical insulation /

Speeds up impulse transmission /
Saltatory conduction;
Question Marking details
Available
2. (a) Thylakoids / thylakoid membrane / Granum; ..... 1
(b) Photophosphorylation; ..... 1
(c) Nucleotide; ..... 1
(d) Any 3 from ..... 3Photolysis/splitting of water;Replaces electrons lost from \{chlorophyll / PSII\};Provides \{protons / $\mathrm{H}^{+}$\};To reduce NADP / ATP synthesis;

## Question Marking details

3. (a) (i) Nitrification;
(ii) Denitrification;
(b) Any 3 from 3

Atmospheric nitrogen turned into \{ammonium ions / ammonia\};
By nitrogen fixation / nitrogen fixing bacteria;
By Rhizobium in root nodules (of leguminous plants);
By Azotobacter (free living) in soil;
Lightning;
(c) Ploughing produces aerobic conditions / aerates the soil; 3

Favours \{nitrification / conversion of ammonia to nitrates\};
Inhibits \{denitrification / conversion of nitrates to atmospheric nitrogen\};

## Question Marking details

4. (a) One $Z$ line correctly labelled;

M line correctly labelled;
One 1 band correctly labelled;
One sarcomere correctly labelled;
( -1 for each incorrect label).
e.g.

(b) Actin and myosin correctly labelled;;

Diagram to show shorter sarcomere;
e.g.


Any 2 from
(c)

| Slow twitch | Fast twitch |
| :---: | :---: |
| Have more <br> mitochondria; <br> (Adapted for) <br> aerobic respiration; | Have fewer <br> mitochondria; <br> anaerobic <br> respiration; |
| High resistance to | Lower resistance to <br> fatigue; |
| fatigue; | Generate short <br> extennous <br> bursts of strength / <br> speed; |

Comparison needed.

## Question Marking details

(d) Description (1) explanation (1), e.g.

| Description | Explanation |
| :---: | :---: |
| Capillary network increases; | More blood allows more oxygen, so more aerobic respiration / more <br> ATP produced; |
| Increase in number / <br> size of mitochondria; | More aerobic respiration / more <br> ATP produced; |
| Increase in amount of myoglobin; | More aerobic respiration / more <br> ATP produced; |
| Increase tolerance to lactate; | Less fatigue caused by lactate; |

## Question Marking details

Available
5. (a) Wash hands / disinfect bench;
use sterile / autoclave pipette;
Flame neck of culture bottle / loop;
(b) (i) Gram positive; 2

Cocci;
(ii) Differences in cell wall structure; 3
\{Purple / gram positive\} bacteria have thicker cell wall / ORA;
Made of peptidoglycan / murein;
Which takes up \{gram / purple\} stain / crystal violet;
\{Pink / Gram negative\} bacteria have lipopolysaccharide layer;
Do not retain stain;

## Question <br> Marking details

6. (a)

| Statement | Glycolysis | Link |  |  |
| :--- | :---: | :---: | :---: | :---: |
| reaction | Krebs <br> Cycle | Electron <br> Transport <br> Chain |  |  |
| Occurs in the <br> mitochondrial matrix | x | $\checkmark$ | $\checkmark$ | $\mathrm{x} ;$ |
| ATP produced by |  |  |  |  |
| substrate level |  |  |  |  |
| phosphorylation | $\checkmark$ | x | $\checkmark$ | $\mathrm{x} ;$ |
| FAD reduced | x | x | $\checkmark$ | $\mathrm{x} ;$ |
| NADH 2 oxidised | x | x | x | $\checkmark ;$ |

4

1 mark per row
(b) ATP phosphorylates glucose;

Max 3
Producing \{glucose / hexose\} (bi)phosphate;
Makes molecule more reactive / easier to split;
Into triose phosphate;
(c) Reduction of pyruvate to lactate / transfer of hydrogen from
$\mathrm{NADH}_{2}$ to pyruvate;
Regenerates NAD / oxidises $\mathrm{NADH}_{2}$;
Allowing glycolysis to continue;
Lactate can be oxidised later / build up of oxygen debt;

## Question Marking details

7. (a) Potential difference between inside and outside when \{a nerve

Some $\mathrm{K}^{+}$gates are open (allows $\mathrm{K}^{+}$to pass out);
$\mathrm{Na}^{+}$gates are closed (prevents $\mathrm{Na}^{+}$entering);
( $\mathrm{Na}^{+} / \mathrm{K}^{+}$pump) \{actively transports / pumps\} $\mathrm{K}^{+}$in, $\mathrm{Na}^{+}$out;
$3 \mathrm{~K}^{+}$in for every $2 \mathrm{Na}^{+}$out;
Ref. to organic anions;
(c) (i) $\underline{549-443} \times 100$

443
= $23.9 \%$ acc. $24 \%$;
(ii) Answer can refer to healthy OR MS sufferer but must be clear.

Healthy person
Myelin sheath prevents action potential / action potential only forms at nodes;

Action potential 'jumps' from node to node / saltatory conduction;

Greatly increasing nerve conductance speed / impulses travel faster;

## M.S. sufferers

Depolarisation occurs along whole length of neurone; Lack of myelination prevents saltatory conduction;
\{nerve conductance / speed of impulse\} in motor neurones is slower;

Note reaction time is slower;
(d) $\{$ Sensory neurones / optic nerve\} affected / lose myelin.

## Question Marking details

8. (a) Cortex;
(b) $\quad \begin{aligned} \mathrm{J} & =\text { Bowmans Capsule } \\ \mathrm{K} & =(\text { Proximal or distal }) \text { convoluted tubules } \\ \mathrm{L} & =\text { Glomerulus }\end{aligned}$
(-1 for each error)
(c) (i) Many mitochondria;

Provide ATP for active transport;
Have microvilli / basal channels;
Increasing / larger surface area for \{diffusion / absorption\};
Increased number of carrier proteins for facilitated diffusion / active transport.
(ii) Water is (re)absorbed by osmosis;

Urea is not (re)absorbed (allow references to limited reabsorption);
Reference to same mass of urea in less water;
(iii) I \{Growth/repair\} of muscles, so \{reduced excess amino acids / reduced deamination\};

OR Increased water in diet, so \{more water in urine / more dilute urine\}.

II Increased protein in diet, so \{more excess amino acids / more deamination\};

OR \{Dehydration / increased sweating\} resulting in less water in urine.

## Question Marking details

(d) (Due to high blood glucose) not all glucose can be reabsorbed in
Proximal Convoluted Tubule;
Some glucose remains in filtrate in region S ;
Water potential of filtrate lowered;
Water leaves cell by osmosis;
Not references to higher blood pressure.

| Question | Marking details | Marks |
| :--- | :--- | :---: |
| 9. (a) | Kidney failure essay: | Available |

A Main treatment is by dialysis;

B Haemodialysis;

C Blood passes into a machine with \{semi / partially \} permeable membrane;

D And dialysis \{fluid / solution\} flows in opposite direction / counter current flow;

E Dialysis fluid has same \{water potential / glucose\} concentration as normal blood;

F (Urea / excess water / salt) diffuse out into dialysis fluid;

G Peritoneal dialysis;

H Peritoneum acts as a filter;

I (Catheter used to) fill abdominal cavity with dialysis fluid;

J Fluid drained off after a time, removing waste e.g. urea;

K Kidney transplant;

L Involves surgically transplanting a kidney from a donor;

M Donor must be close \{tissue type / blood group\} match to recipient;

N Use of immuno-suppressant drugs to reduce chance of rejection;

O AVP e.g. advantage / disadvantage e.g. haemodialysis is more efficient than peritoneal OR peritoneal can be carried out at home;

## Marking details <br> Question Marking details

9. (b) Synapse essay:
A Calcium channels open;
B Calcium ions rush / influx into synaptic knob;
C (Synaptic) vesicles migrate to pre synaptic membrane;
D Fusing with it / discharge contents into cleft / exocytosis;
E Neurotransmitter / acetylcholine (released);
F Diffuses across cleft / synapse;
G Bind to receptors on;
H Sodium channels / Post-synaptic membrane;
I Causing sodium channels to open;
J Sodium ions rush in;
K Depolarising post synaptic membrane;
L Death of brain cells;
M (Results in) dopamine no longer produced / deficient;
N Tremor / repetitive shaking / difficulty in controlling \{movement / walking / co-ordination\};
O AVP e.g. Treatment includes use of levodopa / synthetic drug that is converted into dopamine in the brain;

## GCE BIOLOGY BY5

Marks
Question Marking details
Available

1. (a) A ..... 1
(b) I ..... 1
(c) $\quad \mathrm{H} / \mathrm{C}$ ..... 1
(d) F ..... 1
(e) G ..... 1
Question total ..... 5

## Question Marking details

2. (a) The transfer of pollen from the anther to the stigma.
(b) (i) Embryo sac.
(ii) Through stigma, style, ovary wall, micropyle. (Must travel through ovary wall to bottom before going into micropyle)
(c) (i) Oviduct / fallopian tube;
(ii) - (Acrosome / Y) contains enzymes; Not Y is an enzyme

- which \{hydrolyse / dissolve / breakdown / digest / softens\} the \{zona pellucida / jellycoat\};
(d) - Formation / growth of tube;
- nucleus travels along a \{tube / channel / pathway\} (into the egg / ovule);
- enzymes are produced which \{allow a tube to grow / which digests a path\};
- both are chemotropic;
- membranes burst to release male gametes;


## Available

Marks
Question Marking details
Available
3. (a) 1. Smooth, coloured; ..... 22. Wrinkled, colourless; Accept non- coloured;(b) Linked / on same chromosome / (genes) are inherited together;1NOT sex linked;
(c) (i) Smooth, colourless AND wrinkled, coloured; ..... 1
(ii) Crossing over / exchange of alleles; Not independent assortment / ..... 1recombinants / chiasmata alone.
(d) F1 SsCc ..... 1
F2 Sscc or SScc or ssCc or ssCC ..... 1
Question total ..... 7

## Question Marking details

Marks
Available
4.

| Part | Correct | Ignore | Reject |
| :---: | :---: | :---: | :---: |
| (a) | 4 and 5 | 3 | 1,2 |
| (b) | 2 |  | $1,3,4,5$ |
| (c) | 1 and 3 | 5 | 2,4 |
| (d) | 1 and 3 | 5 | 2,4 |
| (e) | 2 |  | $1,3,4,5$ |
| (f) | 3 | 5 | $1,2,4$ |


| Question | Marking details |
| :--- | :--- |
| 5. (a) (i) $\quad$Inserting a \{normal / correct $\}$ <br> \{gene / DNA sequence\} / Replacing |  |
|  | defective / faulty $\}$ genes with \{copies of a new DNA sequence / |
|  | normal allele / normal gene\} / (owte); |

Marks

## Available

1

2

4
Not active transport alone

- Blocks \{transport / movement\} of chloride ions out of cells (into mucus) / ORA;
- Water retained in cell / water prevented from leaving / no osmosis;
- Unable to remove mucus in lungs;
- $\{$ Infection/ more susceptible to disease / coughing \{more likely / increased\};
- \{Narrowing / blocking\} of air passages (so reduced air flow);
- \{Increased diffusion distance / reduced surface area\} for gas exchange / insufficient oxygen received / not enough oxygen absorbed;
(ii) - (Modified / normal / correct) genes are inserted;
- into liposomes / virus (as vector);
- Liposomes fuse with cell membrane / virus infects cell / ref to endocytosis;
- (Modified) gene passes through membranes / into cell;
- Applied by aerosol / spray / inhaler;
(Any 3 points)


## Question Marking details

## Marks

(c) (i) Each new DNA molecule consists of one \{original / parent / old /
template\} strand and one new strand of DNA;
(ii) I To (break bonds between DNA strands or bases to) separate original DNA into two single strands;

II Triggers / Allows \{primers / short pieces of RNA / single-strand DNA / free nucleotides\} to \{bind / attach / join\} (to single stranded DNA);

III TAQ / DNA polymerase \{makes nucleotides join / makes a strand of DNA / catalyses the synthesis of a complementary strand\};
(iii) • (Percentage) risk is too high (for human application) / Incorrect base sequence;

- Incorrect mRNA;
- Different tRNA / brings incorrect amino acid;
- Structure of protein synthesised unknown /
folding of protein is different / sequence of amino acid altered;
- Protein \{non-functional / function altered\} / chloride ions not transported / thick mucus still produced / gene therapy not effective;
Marks
Question Marking details
Available

6. (a) RNA polymerase; ..... 1
(b) (i) CGT TAC CAA; ..... 1
(ii) CGU UAC CAA; ..... 1
(c) (i) Alanine; ..... 1
(ii) - Mutation 1 - no change to sequence of amino acids; ..... 2

- Codon for alanine / degenerate codon / same amino acid coded for;
Neutral mutation;
- Mutation 2 - valine replaced by alanine / codon for alanine;
- (Tertiary) \{structure / shape of protein\} may change / position of bonds may change / sequence of amino acids changing / structure of protein changing / protein non functional;
(d) - Translation prevented;
- Tetracycline \{binds to / blocks / inhibits\} \{mRNA triplet / codon / CGC / second attachment site\};
- \{Anticodon / tRNA triplet\} cannot pair with \{mRNA triplet / codon\} / cannot form codon-anticodon complex;
- Amino acid not added to polypeptide chain / peptide bonds not formed;
(Any 3 points)
Marks
Question Marking details

7. (a) (i) C and D;(ii) Fragments 64 and $36(\mathrm{~kb})$;1
(b) (i) 1, 2, 3 \& 6 AND 1 and 3; ..... 1
(ii) - Colonies \{1, 2, 3 \& 6 / shown / present $\}$ have taken up \{plasmid ..... 2 / ampicillin resistant gene\};
Reject taken up human gene; Ignore recombinant plasmid;

- Because they are resistant to ampicillin / able to grow on ampicillin;
- 4 and 5 have not taken up the \{plasmid / ampicillin resistant gene\};
- And so are not resistant to ampicillin;
(iii) - Colonies 1 and 3 do not have the gene / recombinant plasmid;
- As they (remain) resistant to tetracycline / gene for tetracycline resistance has not been \{disrupted / destroyed\};
- Colonies 2 and 6 do have the gene / recombinant plasmid;
- Tetracycline resistance destroyed / prevents gene from being expressed;


## Question Marking details

8. (a) (i) - Change in structure in a community over time;

- Change in \{composition of species / species present\} (in a community) over time;
- Either due to change in environmental / (named) abiotic factors;
(ii) A stable community which \{undergoes no further change / reached equilibrium / no further succession;
(b) - (Increased) interspecific competition / other plant species compete with heather / heather outcompetes other plant species;
- For light / nutrients / minerals / named nutrient / water (linked to competition);

Reject resources unqualified.
(c) - More energy used in respiration;

- Higher respiration relative to \{photosynthesis / GPP\} / NPP decreases;
- \{Fewer leaves / less surface area\} for photosynthesis;
- Less energy / glucose to \{produce new biomass / for growth / synthesis of protein or named compound\};
- (Heather increases in size / ages / more competition from other species) soil fertility decreases / less minerals or nutrients available / greater competition for named resources;
- Growth rate decreases / fewer leaves produced;
- (As heather increases in size) less light penetrates the centre of the plant;
- Loss of central leaves, (therefore woody parts increase);
(Any 3 points)


## Question total

| Question | Marking details |  | Marks |
| :---: | :---: | :---: | :---: |
| 9 (a) | A | Extinction is the loss of species; | 1 |
|  | B | Conservation is the planned preservation of wildlife / the \{enhancement / maintenance\} of biodiversity; | 1 |
|  | C | To ensure the survival of the species; | 1 |
|  | D | Conservation of existing gene pools; | 1 |
|  | E | To conserve potentially useful \{genes / genetic sources\} (for future generations); | 1 |
|  | F | Qualification / Example of E-resistance to disease or other; | 1 |
|  | G | Use of plants / animals as a gene bank to cross with highly cultivated varieties; | 1 |
|  | H | Conservation of plants with medicinal properties; | 1 |
|  | 1 | (Planned) preservation of habitat, with example - wetlands, coral reef, sand dune; | 1 |
|  | J | Seed / sperm banks; | 1 |
|  | K | Re-introduction programmes, e.g. Red Kite; | 1 |
|  | L | Protection / breeding of endangered species in specialised zoos / captive breeding programmes / rare breeds; | 1 |
|  | M | Trade restrictions on endangered species / reference to CITES / ivory / whaling; | 1 |
|  | N | Relevant reference to NGOs \{e.g. WWFN / government agency / CCW / SSSI / National Parks / nature reserves\} / ecotourism / education; | 1 |
|  | 0 | Correct reference to relevant legislation e.g. to prevent overgrazing / over-fishing / hunting / poaching in context / collecting birds eggs / picking wild flowers / collecting plants; | 1 |

Question Marking details
Marks
Available111 drugs
(Any 8 from 13)
M Embryos have to be destroyed to provide the stem cells/ Prolife issues -embryos have the potential for independent life (in the future);
$\mathrm{N} \quad$ Unknown long term side effects of stem cells;
O Genetic modification of humans for non-medical reasons / eugenics issues related to selection of embryos;
(Any 2 from 13)

Question total

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

