Section A (multiple choice)

	Correct Answer	Reject	Mark
Number			
1(a)	С		1
(b)	Α		1

Question Number	Correct Answer	Reject	Mark
2	В		1

Question Number	Correct Answer	Reject	Mark
3	С		1

Question Number	Correct Answer	Reject	Mark
4(a)	В		1
(b)	D		1

Question Number	Correct Answer	Reject	Mark
5(a)	В		1
(b)	С		1
(c)	В		1

Question Number	Correct Answer	Reject	Mark
6	A		1

Question Number	Correct Answer	Reject	Mark
7	A		1

Question Number	Correct Answer	Reject	Mark
8	С		1

Question Number	Correct Answer	Reject	Mark
9	Α		1

Question Number	Correct Answer	Reject	Mark
10	Α		1

Question 11: N/A

Question 11: N/A

- Question 12: N/A
- Question 13: N/A
- Question 14: N/A

Question 15: N/A

Question 16: N/A

Section B

Question Number	Acceptable Answers	Reject	Mark
17(a)	Units are not required in (a) or (c) but if used should be correct. Penalise incorrect units in (a), (b) & (c) once only IGNORE case of J and K order of units First mark: 65.3/130.6 and 69.9 (J mol ⁻¹ K ⁻¹) (1) Second mark: $\Delta S = 69.9 - (130.6 + 102.5)$ (1) Third mark: $\Delta S = -163.2 = -163$ (J mol ⁻¹ K ⁻¹) (1) Correct answer with no working scores 3 Ignore SF except 1 SF TE at each stage If 65.3 used instead of 130.6 penalize once	+163 or any positive answer	3
	order of units First mark: $65.3/130.6$ and $69.9 (J \text{ mol}^{-1} \text{ K}^{-1})$ (1) Second mark: $\Delta S = 69.9 - (130.6 + 102.5)$ (1) Third mark: $\Delta S = -163.2 = -163 (J \text{ mol}^{-1} \text{ K}^{-1})$ (1) Correct answer with no working scores 3 Ignore SF except 1 SF TE at each stage	-	

Question Number	Acceptable Answers	Reject	Mark
17(b)	$\Delta S_{\text{surroundings}} = -\Delta H / \text{T or just numbers (1)}$ = +285800/298 = +959.06 = +959 J mol ⁻¹ K ⁻¹ / +0.959 kJ mol ⁻¹ K ⁻¹		3
	Correct value to 3SF (1)		
	Correct units and positive sign (1)	answer with no sign	
	Correct answer with no working scores 3		

Question Number	Acceptable Answers	Reject	Mark
17(c)	$\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} $ (1) Allow $\Delta S_{\text{reaction}}$ for ΔS_{system} $\Delta S_{\text{total}} = \text{answer (a) + answer (b)}$ = -163.2 + 959 $= (+)795.8 = (+)796 \text{ (J mol}^{-1} \text{ K}^{-1}\text{)}$		2
	If $\Delta S_{\text{surroundings}} = +959.06$ then $\Delta S_{\text{total}} = +795.9$ (1)		
	Correct answer with no working scores 2		
	Ignore SF except 1 SF		
	TE on values in (a) & (b) no TE on incorrect equation		
	If answer to (a) = -97.9 (J mol ⁻¹ K ⁻¹) $\Delta S_{\text{total}} = (+)861.1 (J \text{ mol}^{-1} \text{ K}^{-1})$		

Question Number	Acceptable Answers		Reject	Mark
17(d)	A mixture of hydrogen and oxygen is thermodynamically unstable because ΔS_{total} is positive OR		Reference to the stability of individual elements	2
	Reaction between hydrogen and oxygen thermodynamically feasible because ΔS_{total} is positive	is		
	ALLOW ΔS for ΔS_{total}	(1)		
	No TE on negative ΔS_{total} from (c)			
	The mixture is kinetically inert /stable or reaction is (very) slow because the activation energy is (very) high	(1)		
	Mixture / reaction is kinetically inert / stable but thermodynamically unstable feasible scores 1 mark	e /		
	IGNORE References to spark / flame providing the (activation) energy for reaction	9		

Total for Question 17 = 10 Marks

4

Question Number	Acceptable Answers	Reject	Mark
18(a)(i)	$\begin{array}{l} HC_2O_4^-(aq) + H_2O(I) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		2

Question Number	Acceptable Answers	Reject	Mark
18(a)(ii)	$K_{a} = [C_{2}O_{4}^{2^{-}}] [H_{3}O^{+}] / [HC_{2}O_{4}^{-}]$	K _a =	1
	OR	[H ⁺] ² / [HC ₂ O ₄ ⁻]	
	$K_a = [C_2O_4^{2^-}] [H^+] / [HC_2O_4^-]$ No TE on incorrect equation in (a)(i) Penalise incorrect charges in (i) and (ii) once only	[H ⁺][A ⁻]/ [HA]	

Question Number	Acceptable Answers	Reject	Mark
18 (a) (iii)	No TE on (a)(ii) $K_a = 10^{-4.28}$ OR 5.24807 x 10 ⁻⁵ (mol dm ⁻³) (1) $K_a = [H^+]^2 / [HC_2O_4^-]$ $K_a = [H^+]^2 / 0.050$ $[H^+] = \sqrt{(0.05 \times 10^{-4.28})} = 1.61988 \times 10^{-3} (mol dm^{-3})$ (1)		3
	TE on incorrect K_a value		
	$pH = -\log 1.61988 \times 10^{-3} = 2.7905 = 2.8$ (1)		
	For final mark TE on algebraic / arithmetical errors providing pH ≥ 1.3		
	Correct answer with no working scores 3		
	Ignore SF except 1 SF		

Question Number	Acceptable Answers	Reject	Mark
18(b)(i)	IGNORE explanations First mark: $HC_2O_4^-/hydrogenethanedioate ion ionization negligible ALLOW Acid for HC_2O_4^-Slight / partial / incomplete / does not dissociatefor negligibleOR[HC_2O_4^-]_{equilibrium} = [HC_2O_4^-]_{initial} / 0.050 \text{ (mol dm}^{-3})Second mark:[H^+] due to ionization of water negligibleORauto ionization of water negligibleOR[H^+] only due to ionization of HC_2O_4^-/acidOR[H^+] only due to ionization of HC_2O_4^-/acidOR[C_2O_4^{2-}] = [H^+]IGNORE references to temperature and to HA andA^-$	Use of NaHC ₂ O ₄ for HC ₂ O ₄ ⁻ OR sodium hydrogen- ethanedioate for hydrogen- ethanedioate ion throughout this item	2
	Penalize omission of [] in discussion once only		

Question Number	Acceptable Answers	Reject	Mark
18(b)(ii)	Ethanedioic acid is a (much) stronger acid (than hydrogenethanedioate ion / sodium hydrogenethanedioate) OR Ethanedioic acid has a (much) smaller pK_a (than hydrogenethanedioate) OR Ionization / dissociation of ethanedioic acid is (much) greater (than hydrogenethanedioate) OR	Ethanedioic acid is a strong acid / fully dissociated	2
	Reverse arguments(1)IGNORE NaHC2O4 ionization negligible(1)Approximation of negligible ionization invalid / incorrect OR $[H_2C_2O_4]_{equilibrium}$ not equal to $[H_2C_2O_4]_{initial}$ (1)No TE on 18(a)(iii) IGNORE Second ionization occurs(1)	Just `approximation invalid'	

Question Number	Acceptable Answers	Reject	Mark
18(c)(i)	Start pH at 2.8ALLOW2-4(1)		3
	Vertical section at 25 cm ³ within pH range 6-11 and 2.5-4 units long (1)	deviation from vertical	
	end pH (approaching) value in range 12-13 (asymptotically) (1)	maximum before final pH	

7

Question Number	Acceptable Answers	Reject	Mark
18(c)(ii)	First mark: Methyl yellow range = 2.9-4 and the phenolphthalein range = 8.2-10 ALLOW pK _{in} (methyl yellow) = 3.5 and pK _{in} (phenolphthalein) = 9.3 (1) Second mark: (The volumes are different) because ethanedioic acid is dibasic / diprotic / has two replaceable/acidic replaceable/acidic (therefore there are two stages to the neutralization) OR Methyl yellow range coincides with neutralization of first proton and phenolphthalein range coincides		2
	with neutralization of second proton (1)		

Total for Question 18 = 15 Marks

Question 19: N/A

Section C

Question Number	Acceptable Answers	Reject	Mark
20(a)(i)	(Sodium thiosulfate) (rapidly) reacts with / reduces the iodine (as it is formed) (1)	iodide / I⁻	2
	So prevents the starch-iodine colour appearing until a fixed amount of reaction has occurred		
	ALLOW (for second mark) So prevents the starch-iodine colour appearing until all the thiosulfate has reacted		
	OR		
	Moles of iodine reacted / thiosulfate ÷ time is (approximately) proportional to the (initial) rate of reaction (1)		
	ALLOW Use of `thio' for thiosulfate		

Question Number	Acceptable Answers	Reject	Mark
20(a)(ii)	(From 2 to 1) $[S_2O_8^{2^-}]$ doubles ([I ⁻] unchanged) and rate doubles / time halves so order wrt $S_2O_8^{2^-} = 1$ (1) (From 3 to 1) [I ⁻] doubles ($[S_2O_8^{2^-}]$ unchanged) and rate doubles / time halves so order wrt I ⁻ = 1 OR (if first mark awarded) (From 3 to 2) [I ⁻] doubles ($[S_2O_8^{2^-}]$ halved) and rate unchanged so order wrt I ⁻ = 1 (1) Penalise omission of concentration/square brackets once only		3
	Rate = $k[S_2O_8^{2^-}][I^-]$ (1) Third mark stand alone if no working & TE on incorrect orders IGNORE case of k	Rate equation =	

Question Number	Acceptable Answers	Reject	Mark
20(b)(i)	First mark Colorimetry /Use a colorimeter Second mark	Sampling methods calorimeter	3
	Measure transmittance / absorbance (at various times) (1)		
	Third mark (Use a calibration curve to) convert transmittance / absorbance into concentration. OR transmittance / absorbance proportional to concentration		
	ALLOW Colorimetry may be used because iodine (solution) is coloured (and other reagents are colourless) / to measure intensity of the iodine colour (1) ALLOW (for the same three marks)	pH meter	
	Electrical conductivity Measured at various times / (use a calibration curve to) convert conductivity into concentration.	luch	
	Conductivity reduces as reaction proceeds because 3 mol ions converted to 2 mol ions / fewer ions on right hand side	Just conductivity changes	

Question Number	Acceptable Answers	Reject	Mark
20(b)(ii)	[(NH ₄) ₂ S ₂ O ₈] / [S ₂ O ₈ ²⁻] / [peroxodisulfate] / [persulfate] remains (approximately) unchanged during the reaction. OR [KI] / [I ⁻] is the only variable	$(NH_4)_2S_2O_8$ in excess. $[(NH_4)_2S_2O_8]$ etc does not affect the rate Only [KI] /	1
		[I [−]] affects the rate	

Question Number	Acceptable Answers	Reject	Mark
20(b)(iii)	Plot a graph of concentration (of iodine/ I_2) (on the y axis) against time (1) Measure the initial gradient / gradient at t=0 (1) 'Plot a graph and measure the initial gradient / gradient at t=0' alone scores second mark		2

Question Number	Acceptable Answers		Reject	Mark
20(b)(iv)	appropriate units $8.75 \times 10^{-5} = k \times 2.0 \times 0.025$ $k = 8.75 \times 10^{-5} / (2.0 \times 0.025)$ $= 1.75 \times 10^{-3}$	(1) (1)	1 SF	2

Question Number	Acceptable Answers		Reject	Mark
20(c)(ii)	Gradient = $-(-3.505.27) / (0.00333 - 0.00294)$ = $(-)4538 = (-)4500$ ALLOW			4
	values from $(-)4300$ to $(-)4700$	(1)		
	gradient value negative	(1)		
	$E_a = -\text{gradient x R} =4538 \times 8.31$ = (+)37700 J mol ⁻¹ (= (+)38 kJ mol ⁻¹)	(1)		
	TE on value of gradient even if it is positive			
	-4300 gives 35.7; -4700 gives 39.1			
	Correct units	(1)		
	Correct answer from the gradient calculation with units so final 2 marks	cores		
	BUT correct answer with units but no gradient calculation scores units mark only	1		

Total for Section C = 19 Marks

U U		L
21	A	1
22 a	A	1
b	С	
23	В	1
24	D	1
25a	D	1
b	A	1
26a	A	1
b	С	1
С	D	1
d	В	1

Section B

Question Number	Acceptable Answers	Reject	Mark
27 (a)(i)	$K_a = [CH_3CO_2^-] [H^+]/[CH_3CO_2H]$ OR $K_a = [CH_3CO_2^-] [H_3O^+]/[CH_3CO_2H]$ OR Use of [CH_3COO^-] instead of [CH_3CO_2^-] and [CH_3COOH] instead of [CH_3CO_2H] IGNORE state symbols even if wrong	Numerator as [H ⁺] ² Expressions in terms of HA alone Round/curved brackets `()' Any other carboxylic acid	1

Question Number	Acceptable Answers	Reject	Mark
(a)(ii) 1.	$7 \times 10^{-5} = [H^+]^2 / 0.5$ $[H^+] = \sqrt{1.7 \times 10^{-5} \times 0.5} / 2.915(476) \times 10^{-3}$ 10^{-3} (1) pH = (-log[H^+]) = 2.53529 OR = 2.54	4.77 or 4.8 from using pH = -log Ka loses both marks	2
	OR = 2.5 (1)		
	ALLOW TE for second mark from any hydrogen ion concentration as long as pH less than 7		
	Correct answer alone scores (2)		
	ALLOW pH = 2.53 if $[H^+]$ is rounded to 2.92 x 10^{-3}		
	IGNORE sf except 1		

Question Number	Acceptable Answers	Reject	Mark
(a)(iii)	20 (cm ³) IGNORE units		1
	OR 0.02 dm ³		

Question Number	Acceptable Answers		Reject	Mark
(a)(iv)	Moles of excess NaOH = $10/1000 \times C$ = 5 x 10^{-3}).50 (1)		4
	So $[NaOH/OH^{-}] = 5 \times 10^{-3} \times 1000/50$ 0.10 mol dm ⁻³) = (1)		
	EITHER Kw route:			
	$[H^+] \times 0.1 = 1 \times 10^{-14}$	(1)		
	So pH = $-\log 1 \times 10^{-14} / 0.1 = 13$	(1)		
	OR pOH route:			
	pOH = 1 So pH = (14 - 1) = 13	(1) (1)		
	ALLOW TE throughout			
	Correct final answer scores (4)			

Question Number	Acceptable Answers		Reject	Mark
(a)(v)	Starting at pH 2-3 AND finishing at pH between 12 and 13.7 inclusive (1	L)		3
	Vertical section at 20 cm ³ (1	L)		
	S-shaped curve, with gradual rise and vertical section within the pH range 5.5 ar 11.5 and of 3 to 5 units in length (1			
	These are stand alone marks			
	12			
	8- pH 0-			
		1		
	Volume of sodium hydroxide / cm ³	53) 		

Question Number	Acceptable Answers		Reject	Mark
(b)(i) El	THER			4
	[base] = Ka [acid]/[H ⁺] Or			
	$[H+] = (10^{-pH4.70}) = 1.995 \times 10^{-5}$	(1)		
	$[base] = 1.7 \times 10^{-5} \times 1/(1.995 \times 10^{-5}) = 0.3$	852 (1)		
	moles base = $0.852 \times 0.5 = 0.426$ (mol)	(1)		
	mass base = 0.426 x 82 = 34.9 g	(1)		
	IGNORE sf except 1			
	Correct answer, with or without working (4)		
	OR			
	pH = pKa - log[acid]/[base]			
	4.70 = 4.8 - log [1/[base]]			
	Log[1/[base]] = 0.1	(1)		
	[base] = 0.794(328) (mol dm ⁻³)	(1)		
	So in 500 cm ³ Moles = $0.794 \times 0.5 = 0.397$ mol	(1)		
	Mass = 0.397 x 82 = 32.554/32.6 g	(1)		
	(ALLOW using $pKa = 4.77$)			

Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	First mark Buffer has large amount/ excess/ reservoir of CH_3COOH (and CH_3COO^-) (1)Second mark OH^- ions added react with CH_3COOH OR 		3
	OR Equations described in words (1) Third mark Ratio / values of [CH ₃ COOH] to [CH ₃ COO ⁻] remains (almost) unchanged (1) IGNORE concentration of hydrogen ions remains constant (1) ALLOW answers in terms of HA and A ⁻		

Question Number	Correct Answer	Reject	Mark
28	Sodium thiosulfate/Na ₂ S ₂ O ₃		1
(a)(i)	ALLOW $S_2O_3^{2-}$ or thiosulfate ions	Just	
		thiosulfate	

Question Number	Acceptable Answers		Reject	Mark
(a)(ii) Ad	dd (excess) sodium hydrogencarbonate/ NaHCO₃	(1)	NaOH/ sodium hydroxide/ alkali	2
	To neutralize/remove/react with acid (catalyst) Cool in ice (water) with no reference to neutralization – allow 1 mark but ignore either of first two marks awarded	(1) if	just cold water	

Question Number	Acceptable Answers	Reject	Mark
(b)(i)	Suitable graph and scale (1))	3
	Points plotted and line of best fit (1	.)	
	0 order (with respect to iodine) (1)	
	9.9]	
	9.7		
	q.5		
	x 10 ⁻⁴ 9 3 [I ₃ (aq)] / mol dm ⁻³ 9.1		
	8.9		
	8.7		
	8.5 0 5 10 15 20 25 30		
	Time / minutes		

Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	Graph is a straight line/Gradient is constant (1) Rate stays constant (as iodine used up)/ Concentration has no effect on rate (1) Stand alone marks	Half life is constant	2

Question Number	Acceptable Answers	Reject	Mark
(c)	Colorimetry/use of pH meter/conductivity/titrate with AgNO ₃ /titrate with alkali (to monitor change in [H ⁺])	C a lorimetry Use of starch/ Iodine clock reaction	1

Question Number	Correct Answer	Reject	Mark
29(a)	First mark Enthalpy change when 1 mol of gaseous ions (1)	Energy required or energy taken in	2
	ALLOW energy change/heat change/energy evolved/released/ given out/exothermic	Atoms or molecules (0)	
	Second mark Is dissolved/hydrated/solvated such that further dilution causes no further heat change OR Is dissolved to produce an infinitely dilute solution/in excess water (1)	1 mol of water	
	ALLOW Is dissolved to produce a solution of 1.0 mol dm ⁻³		

Question Number	Acceptable Answers	Reject	Mark
29(b)(i)	K ⁺ (aq) (+) F ⁻ (aq)	K ⁺ F ⁻ (aq)	1

Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	$\Delta H_{sol} = -\Delta H_1 + \Delta H_2$ OR $\Delta H_{sol} = \Delta H_2 - \Delta H_1$		1

Question Number	Acceptable Answers	Reject	Mark
(b)(iii)	(Standard) Lattice(enthalpy/energy/ Δ H)	LE/Lat - Lattice	1

Question Number	Acceptable Answers	Reject	Mark
(b)(iv) Fi	rst mark Selection of (-)817 rather than (-)807 (1)		2
	Second mark $\Delta H_{sol} = 817 - 805 = (+)12 \text{ (kJ mol}^{-1})$ (1) Just (+)12 (kJ mol^{-1}) (2)	-12 (max 1)	
	ALLOW TE for second mark e.g. for 807 gives (+) 2 (kJ mol ⁻¹)		
	ALLOW TE from incorrect b(ii)		

Question Number	Acceptable Answers		Reject	Mark
(c)(i) El	THER No change/no measurable change in temperature OR (Very small) decrease in temperature (1)	Any reference to temp increase /exothermic	3
		(1)	Just accuracy +/- 1 °C	
	Amount of energy taken in is small $/\Delta F$ is small/mass of sodium chloride is small/slightly endothermic (7 _{sol} 1)		

Question Number	Acceptable Answers		Reject	Mark
*29(c)(ii)	(The reaction is endothermic so)			4
	Entropy(change) of surroundings decreases OR ΔS _{sur} is negative OR		S _{sur} is negative	
	$-\Delta H/T$ is negative	(1)		
	But entropy (change)of system increases (as there is an increase in disorder) OR ΔS_{sys} is positive) (1)	S _{sys} is positive	
	Increase in entropy of system outweighs/greater than decrease in entropy of surroundings / value for entropy change of system is greate than entropy change of surrounding	r		
	Total entropy (change) is positive	(1)		
	All marks are stand alone			

Question Number	Acceptable Answers	Reject	Mark
*29(d)	Any four from: The difference between Born Haber and theoretical LE is greater for LiI than for LiCl (1)		4
	(845 and 848 =) 3 for LiCl whereas (738 and 759 =) 21 for LiI (1)	Reject values with +	
	Iodide ion is larger than chloride ion/lower charge density on iodide ion (1)	Iodine/Chlorine atoms or molecules	
	The iodide ion is more likely (than the chloride ion) to be polarized (by lithium ion) (1)	Iodine/Chlorine atoms or molecules	
	LiI likely to have more covalent character than LiCl		
	(1)		