Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (a)}$	C		$\mathbf{1}$
(b)	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
4(a)	B		$\mathbf{1}$
(b)	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{5 (a)}$	B		$\mathbf{1}$
(b)	C		$\mathbf{1}$
(c)	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	A		$\mathbf{1}$

Question 11: N/A

Question 11: N/A

Question 12: N/A

Question 13: N/A

Question 14: N/A

Question 15: N/A

Question 16: N/A

Section B

Question Number	Acceptable Answers	Reject	Mark
17(a)	Units are not required in (a) or (c) but if used should be correct. Penalise incorrect units in (a), (b) \& (c) once only IGNORE case of J and K order of units First mark: $\begin{equation*} 65.3 / 130.6 \text { and } 69.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{equation*}$ Second mark: $\begin{equation*} \Delta \mathrm{S}=69.9-(130.6+102.5) \tag{1} \end{equation*}$ Third mark: $\begin{equation*} \Delta \mathrm{S}=-163.2=-163\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{equation*}$ Correct answer with no working scores 3 Ignore SF except 1 SF TE at each stage If 65.3 used instead of 130.6 penalize once (answer is then $\Delta \mathrm{S}=-97.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$	+163 or any positive answer	3

Question Number	Acceptable Answers	Reject	Mark
17(b)	$\begin{aligned} & \Delta \mathrm{S}_{\text {surroundings }}=-\Delta \mathrm{H} / \mathrm{T} \text { or just numbers } \\ &=+285800 / 298 \\ &=+959.06=+959 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} / \\ &+0.959 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ Correct value to 3SF Correct units and positive sign Correct answer with no working scores 3	answer with no sign	3

Question Number	Acceptable Answers	Reject	Mark
17(c)	$\begin{align*} & \Delta \mathrm{S}_{\text {total }} \tag{1} \end{align*}=\Delta \mathrm{S}_{\text {system }}+\Delta \mathrm{S}_{\text {surroundings }}$ If $\Delta \mathrm{S}_{\text {surroundings }}=+959.06$ then $\Delta \mathrm{S}_{\text {total }}=+795.9$ Correct answer with no working scores 2 Ignore SF except 1 SF TE on values in (a) \& (b) no TE on incorrect equation If answer to (a) $=-97.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ $\Delta \mathrm{S}_{\text {total }}=(+) 861.1\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$		2

Question Number	Acceptable Answers	Reject	Mark
17(d)	A mixture of hydrogen and oxygen is thermodynamically unstable because $\Delta \mathrm{S}_{\text {total }}$ is positive OR Reaction between hydrogen and oxygen is thermodynamically feasible because $\Delta \mathrm{S}_{\text {total }}$ is positive ALLOW $\Delta \mathrm{S}$ for $\Delta \mathrm{S}_{\text {total }}$ No TE on negative $\Delta \mathrm{S}_{\text {total }}$ from (c) The mixture is kinetically inert /stable or reaction is (very) slow because the activation energy is (very) high Mixture / reaction is kinetically inert / stable but thermodynamically unstable / feasible scores 1 mark IGNORE References to spark / flame providing the (activation) energy for reaction	Reference to the stability of individual elements	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a) (i)}$	$\mathrm{HC}_{2} \mathrm{O}_{4}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ $(\mathrm{or} \rightarrow)$ ALLOW $\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$ Equation (1) states (1) ALLOW for 1 mark $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$ States mark is not stand alone but can be awarded if the equation has a minor error e.g. an incorrect charge	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a) (i i)}$	$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]$	$\mathrm{K}_{\mathrm{a}}=$	$\mathbf{1}$
	OR	$\left[\mathrm{H}^{+}\right]^{2} /$	
	$\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]$		
	$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]$	$\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /$	
	No TE on incorrect equation in (a)(i)		
	Penalise incorrect charges in (i) and (ii) once only	$[\mathrm{HA}]$	

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 18 \\ & \text { (a) (iii) } \end{aligned}$	No TE on (a)(ii) $\begin{align*} & \mathrm{K}_{\mathrm{a}}=10^{-4.28} \text { OR } 5.24807 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1}\\ & \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right] \\ & \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} / 0.050 \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(0.05 \times 10^{-4.28}\right)=1.61988 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \tag{1} \end{align*}$ TE on incorrect K_{a} value $\begin{equation*} \mathrm{pH}=-\log 1.61988 \times 10^{-3}=2.7905=2.8 \tag{1} \end{equation*}$ For final mark TE on algebraic / arithmetical errors providing $\mathrm{pH} \geq 1.3$ Correct answer with no working scores 3 Ignore SF except 1 SF		3

Question Number	Acceptable Answers	Reject	Mark
18(b)(i)	IGNORE explanations First mark: $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$/hydrogenethanedioate ion ionization negligible ALLOW Acid for $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$ Slight / partial / incomplete / does not dissociate for negligible OR $\begin{equation*} \left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]_{\text {equilibrium }}=\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]_{\text {initial }} / 0.050\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ Second mark: [H^{+}] due to ionization of water negligible OR auto ionization of water negligible OR [H^{+}] only due to ionization of $\mathrm{HC}_{2} \mathrm{O}_{4}^{-} /$acid OR $\begin{equation*} \left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=\left[\mathrm{H}^{+}\right] \tag{1} \end{equation*}$ IGNORE references to temperature and to HA and A^{-} Penalize omission of [] in discussion once only	Use of $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ for $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$ OR sodium hydrogenethanedioate for hydrogenethanedioate ion throughout this item	2

Question Number	Acceptable Answers	Reject	Mark
18(b)(ii)	Ethanedioic acid is a (much) stronger acid (than hydrogenethanedioate ion / sodium hydrogenethanedioate) OR Ethanedioic acid has a (much) smaller pK_{a} (than hydrogenethanedioate) OR Ionization / dissociation of ethanedioic acid is (much) greater (than hydrogenethanedioate) OR Reverse arguments IGNORE $\mathrm{NaHC}_{2} \mathrm{O}_{4}$ ionization negligible Approximation of negligible ionization invalid / incorrect OR $\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]_{\text {equilibrium }}$ not equal to $\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]_{\text {jinitial }}$ No TE on 18(a)(iii) IGNORE Second ionization occurs	Ethanedioic acid is a strong acid / fully dissociated Just 'approximation invalid'	2

Question Number	Acceptable Answers	Reject	Mark
18(c)(i)	Start pH at 2.8 ALLOW $\begin{equation*} 2-4 \tag{1} \end{equation*}$ Vertical section at $25 \mathrm{~cm}^{3}$ within pH range 6-11 and 2.5-4 units long end pH (approaching) value in range 12-13 (asymptotically)	deviation from vertical maximum before final pH	3

Question Number	Acceptable Answers	Reject	Mark
18(c)(ii)	First mark: Methyl yellow range $=2.9-4$ and the phenolphthalein range $=8.2-10$ ALLOW $\mathrm{pK}_{\text {in }}($ methyl yellow $)=3.5$ and $\mathrm{pK}_{\text {in }}(\mathrm{phenolphthalein})=9.3$ Second mark: (The volumes are different) because ethanedioic acid is dibasic / diprotic / has two replaceable/acidic hydrogen atoms ALLOW dicarboxylic (acid) (therefore there are two stages to the neutralization) OR Methyl yellow range coincides with neutralization of first proton and phenolphthalein range coincides with neutralization of second proton		2

Question 19: N/A

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (\mathbf { i) }}$	(Sodium thiosulfate) (rapidly) reacts with / reduces the iodine (as it is formed) (1)	iodide / I ${ }^{-}$	$\mathbf{2}$
So prevents the starch-iodine colour appearing until a fixed amount of reaction has occurred ALLOW (for second mark) So prevents the starch-iodine colour appearing until all the thiosulfate has reacted	OR Moles of iodine reacted / thiosulfate \div time is (approximately) proportional to the (initial) rate of reaction ALLOW Use of 'thio' for thiosulfate		

Question Number	Acceptable Answers	Reject	Mark
20(a)(ii)	(From 2 to 1) $\left[\mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{8}}{ }^{\mathbf{2 -}}\right]$ doubles ([$\left.\mathrm{I}^{-}\right]$unchanged) and rate doubles / time halves so order wrt $\begin{equation*} \mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{8}}{ }^{2-}=1 \tag{1} \end{equation*}$ (From 3 to 1) [\mathbf{I}^{-}] doubles ($\left[\mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{8}}{ }^{\mathbf{2 -}}\right.$] unchanged) and rate doubles / time halves so order wrt $\mathbf{I}^{-}=1$ OR (if first mark awarded) (From 3 to 2) [$\left.\mathbf{I}^{-}\right]$doubles ($\left[\mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{8}}{ }^{\mathbf{2 -}}\right.$] halved) and rate unchanged so order wrt $\mathbf{I}^{-}=1$ Penalise omission of concentration/square brackets once only $\begin{equation*} \text { Rate }=\mathrm{k}\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{I}^{-}\right] \tag{1} \end{equation*}$ Third mark stand alone if no working \& TE on incorrect orders IGNORE case of k	Rate equation $=$	3

Question	Acceptable Answers	Reject	Mark
20(b)(i)	First mark	Sampling	3
	Colorimetry /Use a colorimeter (1)	methods calorimeter	
	Second mark Measure transmittance / absorbance (at various times)		
	Third mark (Use a calibration curve to) convert transmittance / absorbance into concentration. OR transmittance / absorbance proportional to concentration		
	ALLOW Colorimetry may be used because iodine (solution) is coloured (and other reagents are colourless) / to measure intensity of the iodine colour (1)	pH meter	
	ALLOW (for the same three marks) Electrical conductivity		
	Measured at various times / (use a calibration curve to) convert conductivity into concentration.		
	Conductivity reduces as reaction proceeds because 3 mol ions converted to 2 mol ions / fewer ions on right hand side	Just conductivity changes	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i i)}$	$\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right] /\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right] /$ [peroxodisulfate] $/$ [persulfate] remains (approximately) unchanged during the reaction.	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ in excess. $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right]$ etc does not affect the rate	$\mathbf{1}$
	OR	Only $[\mathrm{KI}] /$ $\left[\mathrm{I}^{-}\right]$affects the rate	
KI$] /\left[\mathrm{I}^{-}\right]$is the only variable			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i i i)}$	Plot a graph of concentration (of iodine/ I_{2}) (on the y axis) against time (1) Measure the initial gradient / gradient at $\mathrm{t}=0 \quad$ (1)	$\mathbf{2}$	
'Plot a graph and measure the initial gradient / gradient at $\mathrm{t}=0^{\prime}$ alone scores second mark			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i v) ~}$	TE on 20(a)(ii) on numerical answer and appropriate units	$8.75 \times 10^{-5}=\mathrm{k} \times 2.0 \times 0.025$ $\mathrm{k}=8.75 \times 10^{-5} /(2.0 \times 0.025)$ $=1.75 \times 10^{-3}$ $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ ALLOW units in any order Correct answer including units with no working scores 2	(1)

Question Number	Acceptable Answers	Reject	Mark
20(c)(ii)	$\begin{align*} \text { Gradient } & =-(-3.50--5.27) /(0.00333-0.00294) \\ & =(-) 4538=(-) 4500 \tag{1} \end{align*}$ ALLOW values from (-)4300 to (-)4700 gradient value negative $\begin{align*} E_{\mathrm{a}} & =- \text { gradient } \times \mathrm{R}=-4538 \times 8.31 \tag{1}\\ & =(+) 37700 \mathrm{~J} \mathrm{~mol}^{-1}\left(=(+) 38 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ TE on value of gradient even if it is positive -4300 gives 35.7; -4700 gives 39.1 Correct units Correct answer from the gradient calculation with units scores final 2 marks BUT correct answer with units but no gradient calculation scores units mark only		4

$\mathbf{u} \mathbf{~} \mathbf{~}$			$\mathbf{1}$
$\mathbf{2 1}$	A		$\mathbf{1}$
$\mathbf{2 2} \mathbf{a}$	A		$\mathbf{1}$
\mathbf{b}	C		$\mathbf{1}$
$\mathbf{2 3}$	B		$\mathbf{1}$
$\mathbf{2 4}$	D		$\mathbf{1}$
$\mathbf{2 5 a}$	D		$\mathbf{1}$
\mathbf{b}	A		$\mathbf{1}$
$\mathbf{2 6 a}$	A		$\mathbf{1}$
\mathbf{b}	C	$\mathbf{1}$	
\mathbf{c}	D	$\mathbf{1}$	
\mathbf{d}	B		

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 7}$	$\mathrm{Ka}=\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$	Numerator as $\left[\mathrm{H}^{+}\right]^{2}$	$\mathbf{1}$
$\mathbf{(a) (i)}$	OR	$\mathrm{Ka}=\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$	Expressions in terms of
	OR		
	Use of $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$instead of $\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]$ and $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ instead of $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$	RA ane Round/curved brackets '($)^{\prime}$	
	IGNORE state symbols even if wrong	Any other carboxylic acid	

Question Number	Acceptable Answers	Reject	Mark
(a)(ii) 1	$\begin{align*} & 1.7 \times 10^{-5}=\left[\mathrm{H}^{+}\right]^{2} / 0.5 \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ } 1.7 \times 10^{-5} \times 0.5 / 2.915(476) \times} \\ & \\ & \mathrm{pH}=\left(-\log \left[\mathrm{H}^{+}\right]\right)=2.53529 \\ & \mathrm{OR} \\ & \quad=2.54 \\ & \mathrm{OR} \\ & \quad=2.5 \tag{1} \end{align*}$ ALLOW TE for second mark from any hydrogen ion concentration as long as pH less than 7 Correct answer alone scores ALLOW $\mathrm{pH}=2.53$ if $\left[\mathrm{H}^{+}\right]$is rounded to 2.92×10^{-3} IGNORE sf except 1	4.77 or 4.8 from using $\mathrm{pH}=-\log \mathrm{Ka}$ loses both marks	2

Question Number	Acceptable Answers	Reject	Mark
(a)(iii)	$20\left(\mathrm{~cm}^{3}\right)$ IGNORE units OR $0.02 \mathrm{dm}^{3}$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(a)(iv)	Moles of excess $\mathrm{NaOH}=10 / 1000 \times 0.50$ $\begin{equation*} =5 \times 10^{-3} \tag{1} \end{equation*}$ So $\left[\mathrm{NaOH} / \mathrm{OH}^{-}\right]=5 \times 10^{-3} \times 1000 / 50=$ $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ EITHER Kw route: $\begin{equation*} \left[\mathrm{H}^{+}\right] \times 0.1=1 \times 10^{-14} \tag{1} \end{equation*}$ So $\mathrm{pH}=-\log 1 \times 10^{-14} / 0.1=13$ OR pOH route: $\mathrm{pOH}=1$ So $\mathrm{pH}=(14-1)=13$ ALLOW TE throughout Correct final answer scores (4)		4

Question Number	Acceptable Answers	Reject	Mark
(a)(v)	Starting at pH 2-3 AND finishing at pH between 12 and 13.7 inclusive Vertical section at $20 \mathrm{~cm}^{3}$ S-shaped curve, with gradual rise and vertical section within the pH range 5.5 and 11.5 and of 3 to 5 units in length These are stand alone marks		3

Question Number	Acceptable Answers	Reject	Mark
(b)(i) E	THER [base] $=\mathrm{Ka}$ [acid] $/\left[\mathrm{H}^{+}\right]$ Or $\begin{align*} & {[\mathrm{H}+]=\left(10^{-\mathrm{pH} 4.70}\right)=1.995 \times 10^{-5}} \tag{1}\\ & {[\text { base }]=1.7 \times 10^{-5} \times 1 /\left(1.995 \times 10^{-5}\right)=0.852} \tag{1} \end{align*}$ moles base $=0.852 \times 0.5=0.426(\mathrm{~mol})$ mass base $=0.426 \times 82=34.9 \mathrm{~g}$ IGNORE sf except 1 Correct answer, with or without working (4) OR $\mathrm{pH}=\mathrm{pKa}-\log [$ acid $] /[$ base $]$ $4.70=4.8-\log [1 /[$ base $]]$ $\log [1 /[$ base $]]=0.1$ [base] $=0.794(328)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ So in $500 \mathrm{~cm}^{3}$ Moles $=0.794 \times 0.5=0.397 \mathrm{~mol}$ Mass $=0.397 \times 82=32.554 / 32.6 \mathrm{~g}$ (ALLOW using $\mathrm{pKa}=4.77$)		4

Question	Acceptable Answers	Reject	Mark
(b)(ii)	First mark Buffer has large amount/ excess/ reservoir of $\mathrm{CH}_{3} \mathrm{COOH}$ (and $\mathrm{CH}_{3} \mathrm{COO}^{-}$) Second mark OH^{-}ions added react with $\mathrm{CH}_{3} \mathrm{COOH}$ OR $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{OH}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}$ $+\mathrm{H}^{+}$ OR Equations described in words Third mark Ratio / values of [$\mathrm{CH}_{3} \mathrm{COOH}$] to $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$ remains (almost) unchanged IGNORE concentration of hydrogen ions remains constant ALLOW answers in terms of HA and A^{-}		3

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 8}$ $\mathbf{(a) (i)}$	Sodium thiosulfate/ $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ ALLOW $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ or thiosulfate ions	Just thiosulfate	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark	
(a)(ii) Add (excess) sodium hydrogencarbonate/ NaHCO	NaOH/ sodium hydroxide/ alkali	2		
	To neutralize/remove/react with acid (catalyst) Cool in ice (water) with no reference to neutralization - allow 1 mark but ignore if either of first two marks awarded	just cold water		

Question Number	Acceptable Answers	Reject	Mark
(b)(i)	Suitable graph and scale Points plotted and line of best fit 0 order (with respect to iodine)		3

Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	Graph is a straight line/Gradient is constant	Rate stays constant (as iodine used up)/ (1) Concentration has no effect on rate (1) Stand alone marks	Half life is constant

Question Number	Acceptable Answers	Reject	Mark
(c)	Colorimetry/use of pH meter/conductivity/titrate with $\mathrm{AgNO}_{3} /$ titrate with alkali (to monitor change in $\left[\mathrm{H}^{+}\right]$)	Calorimetry Use of starch/ Iodine clock reaction	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
29(a)	First mark Enthalpy change when 1 mol of gaseous ions ALLOW energy change/heat change/energy evolved/released/ given out/exothermic Second mark Is dissolved/hydrated/solvated such that further dilution causes no further heat change OR Is dissolved to produce an infinitely dilute solution/in excess water ALLOW Is dissolved to produce a solution of 1.0 $\mathrm{mol} \mathrm{dm}^{-3}$	Energy required or energy taken in Atoms or molecules (0) 1 mol of water	2
Question Number	Acceptable Answers	Reject	Mark
29(b)(i)	$\mathrm{K}^{+}(\mathrm{aq})(+) \mathrm{F}^{-}(\mathrm{aq})$	$\mathrm{K}^{+} \mathrm{F}^{-}(\mathrm{aq})$	1
Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	$\begin{aligned} & \Delta \mathrm{H} \quad \text { sol }=-\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2} \\ & \mathrm{OR} \\ & \Delta \mathrm{H}_{\text {sol }}=\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1} \end{aligned}$		1
Question Number	Acceptable Answers	Reject	Mark
(b)(iii)	(Standard) Lattice(enthalpy/energy/ $\Delta \mathrm{H}$)	LE/Lat - Lattice	1

Question Number	Acceptable Answers	Reject	Mark
(b)(iv)	First mark Selection of (-)817 rather than (-)807 Second mark $\Delta \mathrm{H}_{\text {sol }}=817-805=(+) 12\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Just (+)12 (kJ mol ${ }^{-1}$) ALLOW TE for second mark e.g. for 807 gives (+) $2\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ ALLOW TE from incorrect b (ii)	-12 (max 1)	2
Question Number	Acceptable Answers	Reject	Mark
(c)(i)	THER No change/no measurable change in temperature OR (Very small) decrease in temperature (1) Thermometer not sensitive/precise enough/precision of thermometer is + or $-0.5^{\circ} \mathrm{C} /$ graduations too large Amount of energy taken in is small $/ \Delta \mathrm{H}_{\text {sol }}$ is small/mass of sodium chloride is small/slightly endothermic (1)	Any reference to temp increase /exothermic Just accuracy $+/-1^{\circ} \mathrm{C}$	3

Question Number	Acceptable Answers	Reject	Mark
*29(c)(ii)	(The reaction is endothermic so)		4
	Entropy(change) of surroundings decreases OR $\Delta \mathrm{S}$ sur is negative OR $-\Delta H / T$ is negative	$\mathrm{S}_{\text {sur }}$ is negative	
	But entropy (change)of system increases (as there is an increase in disorder) OR $\Delta S_{\text {sys }}$ is positive	$S_{\text {sys }}$ is positive	
	Increase in entropy of system outweighs/greater than decrease in entropy of surroundings / value for entropy change of system is greater than entropy change of surroundings		
	Total entropy (change) is positive All marks are stand alone		

Question Number	Acceptable Answers	Reject	Mark
*29(d)	Any four from: The difference between Born Haber and theoretical LE is greater for LiI than for LiCl (845 and $848=$) 3 for LiCl whereas (738 and 759 =) 21 for LiI Iodide ion is larger than chloride ion/lower charge density on iodide ion The iodide ion is more likely (than the chloride ion) to be polarized (by lithium ion) LiI likely to have more covalent character than LiCl	Reject values with + Iodine/Chlorine atoms or molecules Iodine/Chlorine atoms or molecules	4

