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Abstract 
This paper uses the bivariate framework introduced by Robinson (2008) to analyse the long 

run relationship between the monthly inflation rates in the US and Canada. For two stationary 

long memory time series driven by a common stochastic trend, there may exist a linear 

combination of the two series with smaller memory parameter. The bivariate model 

introduces four unknown parameters (two memory parameters, a phase parameter and a 

cointegration parameter) to be jointly estimated by optimising a local Whittle function. The 

results indicate the existence of a linear combination between the US and Canada inflation 

rates that has a long memory less than the two individual series. 
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1 Introduction 

 

In the analysis of a multivariate framework of long memory time series, two main features 

emerge: the possibility of cointegration and a phase shift that does not need to be zero. This 

paper concerns with the joint estimation of the memory parameters along with the 

cointegrating and phase parameters in the bivariate framework developed by Robinson 

(2008). This procedure is applied to monthly US and Canada inflation rates to examine the 

long-run equilibrium relationship which consequently has its implications on the 

interdependence of their monetary policies. The local Whittle estimation is employed where 

four unknown parameters (two memory parameters, a phase parameter and a cointegration 

parameter) are introduced. Robinson (2008) introduces an additional parameter to model the 

phase (�) between the linear combination between the two series �� and ��, (�� − ���), and �� flexibly. Moreover, Robinson (2008) derived the consistency and established the joint 

asymptotic normality of the estimates under the assumption that the memory parameters lie 

between zero and �
	 and indicated how his results to be applied in statistical inference. 

 

Stationarity of time series was usually associated with the Box-Jenkins modelling 

methodology with inherent short-memory properties of a series; while lack of statistical 

evidence for existence of long memory in economic time series made research restricted to 

the intuitively conventional 
(1)/
(0) case. However, recent research in long memory time 

series modelling has provided enough tools to explore the idea of fractional cointegration 

empirically. In addition, the term long memory time series includes both stationary and 

nonstationary series. Since 1990, the mainstream econometric time series literature shows 

considerable interest in long memory by focusing on unit roots time series. Unit roots series 

can be perceived as special cases of nonstationary fractional series. The analysis in this paper 

only covers stationary long memory series. Stationary long memory time series displays a 

statistically significant dependence between distant observations. This dependence can be 

formalised by assuming that the autocorrelations decay very slowly, hyperbolically, to zero as 

a function of the time lag or spectral density displaying a pole at zero frequency. In addition, 

this dependence structure across time played a vital role in the modelling of macroeconomic 

and financial data. 

 

As in economic literature, relationships between variables comes in pairs; and hence it is a 

natural starting point to focus on analysing bivariate relations between stationary long 

memory time series. One of the first estimation methods in the bivariate framework was the 

semiparameter narrow-band ordinary least squares (NBLS) regression in the frequency 

domain, developed in a series of papers by Robinson (1994) and Robinson and Marinucci 

(2001). The NBLS estimator is an OLS estimator in a spectral regression with a degenerating 

frequency band around the origin. Robinson (1994) proved the consistency of this estimator 

in the stationary case. The NBLS estimator reduces the bias in comparison to the OLS 

estimator, by reducing the effect of correlation between cointegration errors, while the 

convergence rate of the NBLS estimator depends on the values of the long memory and the 

bandwidth used in estimation. On the other hand, Lobato (1999) derived a semiparametric 

two-step estimator of parameters that characterise long memory for a time series vector in the 

frequency domain. Asymptotic normality of his estimator was established, but did not include 

Gaussianity condition. The two main methods described above were combined by Marinucci 

and Robinson (2001) and Christensen and Nielsen (2004), who suggested conducting a 

fractional cointegration analysis in several steps. First, the memory parameters of the original 
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series are seperately estimated by local Whittle QMLE. Secondly, the narrow band FDLS 

estimator for the cointegrating vector is calculated, and finally the persistence of the residuals 

is estimated assuming that the approach is equally valid for residuals. In addition, Velasco 

(2003) and Hassler et al. (2006) sought to estimate the memory parameter of the equilibrium 

error by applying semiparametric estimators to the residuals from cointegrating regressions. 

Nielsen (2007) considered joint estimation of the memory parameters and the cointegrating 

vector for stationary long memory series in a multivariate framework, but derived its 

asymptotic distribution only under the long-run exogeneity between the stochastic trend and 

equilibrium error. Nielsen and Frederiksen (2008) considered a fully modified narrowband 

least squares estimator that corrects the endogeneity bias of the NBLS, and analysed the 

estimation of the memory parameters from modified NBLS regression. Shimotsu (2007) also 

developed a semiparametric estimator for the multivariate stationary framework. He used a 

more general local form of the spectral density. In general, a joint estimation method for the 

memory parameters and the cointegrating vector is more preferable. The estimators for the 

cointegrating parameter considered above are mostly direct in the sense that they do not 

require estimation of memory parameters. An alternative approach, first introduced by 

Robinson (2008) in a context of stationary bivariate system, jointly estimate the cointegrating 

parameters along with the memory parameters or other nuisance parameters which is adopted 

in this paper. 

 

Many previous empirical studies in economic literature have examined the characteristics of 

aggregate US and Canada inflation rates. Klein (1976) and Nelson and Schwert (1977) 

imposed a unit root on the inflation process; while Ball and Cecchetti (1990) and Kim (1993) 

modelled inflation as a transitory and a permanent component, which is represented as a 

random walk. On the other hand, Barsky (1987) and Brunner and Hess (1993) argued that 

inflation was covariance stationary. Hassler and Wolters (1995) found evidence in favour of 

long memory properties. Furthermore, Doornik and Ooms (2004) used ARFIMA models with 

different estimation methods in order to model and forecast the long memory characteristics 

in inflation. This question, regarding the examination and modelling the long memory 

features in inflation rate series, should take on a new investigation of whether inflation rates 

are related across countries. Examining such relation has very important implications on the 

interdependence of domestic monetary policies and the validity of purchasing power parity. 

As a result, the purpose of this paper is to examine and investigate the interdependence 

between the inflation rates in US and Canada by studying their long memory properties in a 

bivariate framework which avoids mathematical complexity of any general multivariate 

structure. However, unlike the conventional classical approaches discussed in literature, this 

model allows for the possibility of cointegration and phase shifts. 

 

The rest of the paper is structured as follows. The next section describes the methodology 

used by presenting Robinson’s (2008) bivariate system and demonstrates the local Whittle (or 

Narrow-Band) estimation. Section 3 reports some simulation results. Section 4 offers an 

empirical application to analyse the long run equilibrium between the inflation rates in the US 

and Canada, and finally section 5 concludes. 

 

2 Methodology 

 

Suppose a bivariate jointly covariance stationary process �� = (���, ���)′ has a spectral 

density matrix, 

��(�)~ ����� 00 ���	���� !(")# $%�� %��%�� %��& ����� 00 ���	�����' !(")# as � → 0 (2.1) 
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For simplicity, this can be written as, 

��(�)~Λ
��

ΩΛ)��
 as � → 0  

 

The parameters *�, *� and � are unknown real valued and will be collected in vector + =(*�, *�, �)′, where *� and *� are the memory parameters and lay in the interval [0, �
	) and � is 

the phase parameter between ��� and ��� at zero frequency and lies in the interval � ∈(−., .]. The term sign(�) = 1 if � ≥ 0. The symbol “~” means that for each element, the 

ratio of real/imaginary parts of the left and right sides tend to 1. In (2.2.2), the over bar 

denotes the complex conjugate and the parameters and Ω is a 2 × 2 positive definite matrix. 

 

The spectral density matrix in (2.1) can be written as, 

��(�)~ 7 %��|�|���� %��������	�����' !(")
%��������	����' !(") %��|�|���	 9 . 

From the main diagonal element, it can be deduced that the bivariate series has the memory 

parameter *� and *� respectively. On the other hand, the off diagonal elements represent the 

cross spectrum between the bivariate series. It takes a real value only if %��, %�� and/or  � =0. 

 

For any two time series to be cointegrated and shape a long run equilibrium relationship, they 

need to share a common stochastic trend with a specific memory parameter. The long run 

equilibrium relationship is represented in the linear combination that becomes less persistent. 

Intuitively, most studies focused on the conventional 
(1)/
(0) where persistence is reduced 

from 1 to zero. However, this model is developed where persistence takes values between 0 

and 
�
�. Now consider the model that includes the bivariate series (��, ��)′, 

$1 −�0 1 & $����& = $������& . 

When *� ≠ *� and � = 0, then �� and �� have unequal memories *� and *� respectively. 

When *� < *� and � ≠ 0, the bivariate series are said to be cointegrated and the 

unobservable linear combination  ��� = �� − ��� has a memory of *� which is less than the 

memory for the bivariate series. Robinson’s (2008) local Whittle (or narrow-band) estimate < = (*�, *�, �, �)′ is considered in this paper where 0 ≤ *� < *� < �
	 and � ≠ 0. 

 

A local Whittle estimation is considered which employs Fourier frequencies in the 

neighbourhood of the origin. To begin with, the discrete Fourier transform (dFt) and the 

periodogram of a time series >� are defined and evaluated at frequency � as 

?@(�) = �
√�BC ∑ >�����"EC�F�  


G(�) = ?@(�)?@∗(�) = I��(∑ >�����"C�F� )(∑ >�����"C�F� )′ 

 

where ?@∗(�) is the conjugate transpose of ?@(�). The Whittle function, J(<, K), is 

approximated to the (negative) log-likelihood function is 

J(<, K) =  �
L ∑ (log OΛ��

ΩΛ)��OL@F� + QR[Ω��S�TΛ
T�@UΛ)U]) 

To find the local Whittle estimator, function (2.7) is minimised with respect to the unknown 

parameters < and K. The first step is to concentrate (2.7) with respect to the parameter K 

solving the resulting first order condition for K and then substituting the result back into 

(2.7). The solution of the first order condition with respect to K gives 

KV(<) = �
L ∑ W@S�(
T�@UW@̅L@F�   

(2.4) 

(2.3) 

(2.2) 

(2.7) 

(2.6) 

(2.5) 
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By substituting KV(<) into J(<, K), this yields the concentrated likelihood function S(<) in 

terms of the four parameters, 

S(<) = log det \KV(<)] − 2(∑ *^�̂F� ) �
L ∑ logL@F� _�@_ 

The local Whittle estimator of the parameter of interest, <, can then be defined in terms of the 

concentrated likelihood 

<V = arg minc∈Θ
S(<) 

The space of the true parameter < is the compact set Θ ∈ ℝe. The consistency and asymptotic 

properties of the local Whittle estimator <V was also established in Robinson (2008). 

 

3 Finite sample simulations 

 

In this section, the finite sample behaviour of LW estimator is investigated by conducting a 

Monte Carlo study. The following four generating mechanisms for ��� and ��� are 

considered.  

Model A: ��� = (1 − f)���g�� ��� = (1 − f)��	g�� 

Model B: ��� = (1 − f)���h�� ��� = (1 − f)��	g�� 

h�� = 0.5h�,��� + g��  

Model C: ��� = (1 − f)���g�� ��� = (1 − f)��	h�� 

h�� = 0.5h�,��� + g��  

Model D:  

*klmn(1 − f)�� , (1 − f)�	o(1 − 0.5f)�� = √Sg� 

where g� = (g��, g��)′ is bivariate independently and identically distributed with mean zero 

and unit variance, p is the correlation between g�� and g��, and 

S = � 1 2p2p 4 #. 

 

Based on the above generating mechanisms, the process �� in (2.4) is generated with � = 1. 

The data is generated (for all simulations) with two sets of memory parameters. Firstly the 

memory parameters used are (*�, *�) = (0.05, 0.4) which is close to many practical 

situations and supported by the empirical application reported in the next section, and then (*�, *�) = (0.2, 0.3) which indicates a weaker form of fractional cointegration where the two 

memory parameters are very close. Model A has no short-run dynamics, unlike Models B and 

C where short-run dynamics are introduced to ��� and ��� respectively. Model D satisfies the 

spectral density function adopted in this paper in (2.1) to (2.3). The elements of the main 

diagonal for S are 1 and 4, while the off-diagonal elements is 2p, thus the phase parameter is 

set as � = (*� − *�) B
�. For the Monte Carlo study, 10000 replications for sample sizes I are 

used where I = 128 and I = 512 are chosen. The former sample size is chosen to be close 

to the application in the next section. The bandwidth parameters chosen are t = Iu.v 

and t = Iu.e to examine the robustness of the LW estimator due to changes in the 

bandwidth. The Monte Carlo bias and root mean squared error (RMSE) results of the local 

Whittle estimator for all above models are reported in Tables 1 and 2. Simulations are 

performed using Ox 6.0 and TSM 4.35. 

(2.9) 

(2.8) 
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Table 1: Simulation Results for bias and RMSE where p = 0 

  Model A Model B Model C Model D 

  Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

  *� *� � *� *� � *� *� � *� *� � *� *� � *� *� � *� *� � *� *� � 

*� = 0.05, *� = 0.4                        

        I = 128       

 t = Iu.e 0.19 0.13 0.22 0.26 0.23 0.31 0.34 0.27 0.43 0.39 0.35 0.44 0.15 0.12 0.17 0.14 0.11 0.16 0.06 0.04 0.09 0.18 0.12 0.15 

 t = Iu.v 0.14 0.09 0.17 0.24 0.18 0.25 0.26 0.24 0.31 0.28 0.31 0.42 0.11 0.10 0.14 0.16 0.10 0.10 0.03 0.02 0.07 0.09 0.07 0.12 

       I = 512       

 t = Iu.e 0.16 0.11 0.18 0.14 0.11 0.25 0.28 0.21 0.33 0.36 0.35 0.38 0.10 0.09 0.12 0.11 0.09 0.12 0.04 0.03 0.05 0.13 0.09 0.08 

 t = Iu.v 0.12 0.08 0.15 0.15 0.14 0.21 0.25 0.20 0.27 0.32 0.25 0.34 0.08 0.08 0.10 0.07 0.06 0.09 0.00 0.00 0.02 0.06 0.05 0.03 

*� = 0.2, *� = 0.3                        

       I = 128       

 t = Iu.e 
0.65 0.42 0.35 0.74 0.55 0.49 0.86 0.81 0.76 0.84 0.78 0.59 0.44 0.35 0.40 0.33 0.25 0.31 0.18 0.15 0.23 0.31 0.27 0.29 

 t = Iu.v 
0.61 0.43 0.31 0.67 0.50 0.45 0.83 0.84 0.73 0.79 0.77 0.54 0.41 0.30 0.36 0.32 0.27 0.35 0.16 0.13 0.25 0.28 0.25 0.20 

       I = 512       

 t = Iu.e 0.53 0.36 0.27 0.63 0.51 046 0.77 0.69 0.71 0.80 0.73 0.52 0.39 0.32 0.37 0.35 0.24 0.25 0.17 0.16 0.19 0.25 0.21 0.25 

 t = Iu.v 0.49 0.33 0.24 0.61 0.42 0.40 0.70 0.67 0.65 0.73 0.76 0.48 0.46 0.34 0.39 0.28 0.20 0.22 0.10 0.11 0.21 0.24 0.19 0.15 
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Table 2: Simulation Results for bias and RMSE where p = 0.5 

  Model A Model B Model C Model D 

  Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

  *� *� � *� *� � *� *� � *� *� � *� *� � *� *� � *� *� � *� *� � 

*� = 0.05, *� = 0.4                        

        I = 128       

 t = Iu.e -0.25 -0.19 0.27 0.34 0.26 0.33 -056 -034 0.46 0.43 0.38 0.46 0.20 0.15 0.21 0.16 0.17 0.24 0.14 0.06 0.15 0.21 0.15 0.16 

 t = Iu.v -0.17 -0.12 0.24 0.28 0.16 0.29 -0.43 -0.31 0.37 0.35 0.37 0.43 0.15 0.10 0.15 0.22 0.13 0.18 0.09 0.05 0.09 0.14 0.09 0.11 

       I = 512       

 t = Iu.e -0.21 -0.17 0.25 0.18 0.17 0.29 -0.35 -0.26 0.37 0.41 0.32 0.34 0.16 0.11 0.19 0.15 0.14 0.16 0.06 0.04 0.11 0.15 0.07 0.09 

 t = Iu.v -0.17 -0.13 0.19 0.18 0.20 0.28 -0.29 -0.29 0.32 0.36 0.27 0.32 0.16 0.13 0.15 0.11 0.08 0.12 0.02 0.01 0.05 0.08 0.09 0.08 

*� = 0.2, *� = 0.3                        

       I = 128       

 t = Iu.e 
-0.60 -0.46 0.42 0.68 0.57 0.54 -0.74 0.78 0.81 0.81 0.80 0.68 0.36 0.43 0.41 0.54 0.46 0.38 0.31 0.26 0.20 0.25 0.26 0.32 

 t = Iu.v 
-0.44 -0.51 0.37 0.62 0.52 0.47 -0.65 0.73 0.76 0.84 0.75 0.65 0.44 0.25 0.28 0.41 0.43 0.42 0.27 0.17 0.21 0.15 0.29 0.24 

       I = 512       

 t = Iu.e -0.47 -0.52 0.31 0.57 0.46 0.47 -0.68 0.75 0.74 0.76 0.75 0.67 0.42 0.35 0.35 0.45 0.40 0.35 0.19 0.15 0.14 0.18 0.16 0.21 

 t = Iu.v -0.56 -0.45 0.29 0.55 0.45 0.48 -0.59 0.66 0.66 0.70 0.71 0.70 0.39 0.29 0.22 0.38 0.36 0.39 0.15 0.16 0.15 0.21 0.16 0.23 
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Table 3: Simulation Results for median bias and MAD where p = 0 

  Model A Model B Model C Model D 

  Bias MAD Bias MAD Bias MAD Bias MAD 

  *� *� � *� *� � *� *� � *� *� � *� *� � *� *� � *� *� � *� *� � 

*� = 0.05, *� = 0.4                        

        I = 128       

 t = Iu.e 0.048 0.046 0.050 0.05 0.046 0.06 0.067 0.054 0.07 0.061 0.051 0.08 0.042 0.043 0.03 0.041 0.044 0.04 0.029 0.032 0.03 0.045 0.044 0.04 

 t = Iu.v 0.041 0.027 0.041 0.06 0.037 0.05 0.053 0.049 0.07 0.049 0.054 0.07 0.036 0.041 0.05 0.045 0.038 0.04 0.024 0.034 0.03 0.048 0.036 0.03 

       I = 512       

 t = Iu.e 0.045 0.042 0.043 0.04 0.045 0.05 0.057 0.049 0.06 0.066 0.061 0.06 0.042 0.029 0.04 0.042 0.036 0.04 0.034 0.061 0.03 0.049 0.028 0.03 

 t = Iu.v 0.040 0.037 0.045 0.04 0.043 0.04 0.055 0.051 0.05 0.064 0,057 0.06 0.037 0.031 0.04 0.035 0.035 0.03 0.026 0.019 0.02 0.034 0.024 0.04 

*� = 0.2, *� = 0.3                        

       I = 128       

 t = Iu.e 
0.092 0.074 0.065 0.10 0.083 0.07 0.102 0.103 0.09 0.107 0.103 0.08 0.073 0.068 0.07 0.065 0.053 0.06 0.046 0.041 0.03 0.062 0.058 0.06 

 t = Iu.v 
0.090 0.076 0.060 0.09 0.081 0.08 0.105 0.102 0.09 0.093 0.112 0.09 0.072 0.064 0.07 0.063 0.052 0.07 0.049 0.047 0.05 0.055 0.057 0.05 

       I = 512       

 t = Iu.e 0.086 0.065 0.054 0.09 0.073 0.07 0.095 0.086 0.09 0.109 0.094 0.07 0.069 0.057 0.06 0.064 0.051 0.04 0.038 0.045 0.03 0.056 0.051 0.06 

 t = Iu.v 0.082 0.062 0.047 0.09 0.075 0.08 0.094 0.095 0.08 0.098 0.097 0.06 0.075 0.066 0.07 0.054 0.054 0.05 0.041 0.042 0.05 0.054 0.047 0.04 
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Table 4: Simulation Results for median bias and MAD where p = 0.5 

  Model A Model B Model C Model D 

  Bias MAD Bias MAD Bias MAD Bias MAD 

  *� *� � *� *� � *� *� � *� *� � *� *� � *� *� � *� *� � *� *� � 

*� = 0.05, *� = 0.4                        

        I = 128       

 t = Iu.e -0.051 -0.04 0.057 0.06 0.056 0.06 -0.08 -0.065 0.07 0.064 0.071 0.07 0.053 0.042 0.05 0.045 0.048 0.05 0.045 0.003 0.04 0.055 0.042 0.04 

 t = Iu.v -0.046 -0.04 0.054 0.05 0.048 0.05 -0.07 -0.063 0.05 0.075 0.068 0.07 0.042 0.041 0.04 0.051 0.045 0.05 0.038 0.008 0.04 0.043 0.038 0.03 

       I = 512       

 t = Iu.e -0.053 -0.03 0.057 0.04 0.046 0.05 -0.07 -0.26 0.06 0.071 0.062 0.06 0.047 0.040 0.05 0.045 0.044 0.04 0.037 0.012 0.05 0.063 0.046 0.03 

 t = Iu.v -0.046 -0.04 0.048 0.04 0.052 0.05 -0.06 -0.29 0.06 0.067 0.052 0.07 0.049 0.038 0.04 0.041 0.037 0.04 0.032 0.004 0.08 0.019 0.014 0.02 

*� = 0.2, *� = 0.3                        

       I = 128       

 t = Iu.e 
-0.093 0.07 0.074 0.09 0.086 0.08 -0.09 0.101 0.08 0.121 0.095 0.08 0.064 0.074 0.07 0.085 0.073 0.06 0.061 0.055 0.05 0.054 0.046 0.06 

 t = Iu.v 
-0.075 0.07 0.066 0.09 0.083 0.07 -0.08 0.098 0.09 0.104 0.099 0.08 0.072 0.053 0.05 0.082 0.075 0.07 0.059 0.049 0.04 0.052 0.052 0.05 

       I = 512       

 t = Iu.e -0.078 -0.08 0.063 0.08 0.074 0.08 -0.06 0.093 0.09 0.091 0.097 0.09 0.073 0.063 0.06 0.078 0.073 0.07 0.048 0.045 0.04 0.046 0.047 0.05 

 t = Iu.v -0.087 -0.09 0.057 0.08 0.075 0.06 -0.07 0.089 0.11 0.090 0.092 0.09 0.068 0.059 0.06 0.079 0.065 0.07 0.043 0.042 0.05 0.042 0.050 0.05 
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For Model A, the values of the bias are high for almost all the specifications. The RMSE 

decreases for all the parameters for a larger bandwidth. The bias and RMSE of *� are higher 

than those of *�. In Model B, the biases and RMSE are found to be larger when there is no 

short run dynamics. However, both bias and RMSE decreases for larger bandwidth and 

sample size chosen. For Model C, the LW estimator appears to perform better than Model A, 

as the bias and RMSE are lower. Finally, the simulation for Model D works very well and 

produces unbiased estimates with very low bias and RMSE compared to the other models. In 

general, for all models, when the memory parameters are closer (*�, *�) = (0.2, 0.3), even 

for larger I, the bias is more severe; however matters improve for larger bandwidth. On the 

other hand, for (*�, *�) = (0.05, 0.4) the sizes of bias and RMSE are better on average.  

 

In tables 1 and 2, the values of the mean bias are very high, which might indicate that the first 

moment of the estimator does not exist. As a result, the median bias and the median absolute 

deviation (MAD) are reported in tables 3 and 4 instead of the mean bias and the root mean 

square error (RMSE). The median bias for Model A is very low. In Model B, the biases and 

RMSE are found to be larger when there is no short run dynamics. In addition, the LW 

estimator appears to perform better in Model C than in Model A, as the median bias and 

MAD are lower over the different bandwidths. Finally, the simulation for Model D works 

very well and produces unbiased estimates with very low bias and RMSE compared to the 

other models. In general, both median bias and MAD decreases for all the parameters as the 

bandwidth increases. The median bias and MAD of *� are higher than those of *�.  

 

Overall, it seems difficult to draw exact conclusions about the effect of p, as it only causes 

the bias to change sign but does not change the size of bias or RMSE and it has no significant 

effect on the performance of the LW estimator. On the other hand, relatively larger 

bandwidth appears to be preferable as the LWE works best. 

 

4 Application to the US and Canada inflation rates 

 

Consumer price indices of the United States and Canada are originally examined. Monthly 

inflation rates (116 observations) are calculated based on the CPI measure of the US and 

Canada. This data measures the inflation rate for each month as the percentage increase from 

the same month of the previous year. The empirical analysis has been carried out using the 

monthly US and Canada inflation rates for the time period of January 2001 to August 2010. 

The series was obtained from the USA Federal Reserve Bank and the Bank of Canada 

respectively.  

 

Figure 1 provides graphs of the inflation rates, correlograms and periodograms respectively. 

The inflation rates in United States and Canada show the same trend movements which 

increased steadily with some oscillations to mid 2008 where the trend sharply declined. This 

similarity in the patterns between the US and Canada inflation rates, though not the levels, 

can lead to a potential cointegration relation between the two series. The corresponding 

correlograms exhibit the typical hyperbolic decline associated with long memory processes, 

while the periodograms in figure 1 confirm the presence of long memory features in the 

inflation series. 
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Figure 1: The inflation rate, the correlogram (ACF) and the periodogram of USA and 

Canada respectively 

 
 

Table 5: Descriptive Statistics and Unit Root Tests 

USA      

 Obs. Mean S.D. Min. Max. 

 116 0.024371 0.014422 -0.021 0.056 

      

 Skewness Kurtosis J.B. ADF KPSS 

 -0.76105 4.0196 16.223* -3.817 0.483 

      

Canada      

 Obs. Mean S.D. Min. Max. 

 116 0.020147 0.010036 -0.009 0.047 

      

 Skewness Kurtosis J.B. ADF KPSS 

 0.23046 4.1825 7.7850** -5.912 0.365 

      
Note: * and ** denote statistical significance of J.B. at the 1% and 5% levels respectively. The critical values of 

ADF unit root tests are -2.54, -1.94, -1.61 at 1%, 5%, 10% levels of significance. The critical values for KPSS 

test are 0.784, 0.521 and 0.437 at 1%, 5%, 10% levels of significance. 
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Table 6: The estimates of the LM parameters 

 USA Canada 

t = Iu.ev     

 *wxyz *w{| *wxyz *w{| 
 0.473 0.488 0.318 0.274 

 (0.147) (0.112) (0.098) (0.073) 

     t = Iu.v     

 *wxyz *w{| *wxyz *w{| 
 0.448 0.426 0.291 0.236 

 (0.172) (0.124) (0.109) (0.080) 

     
Note: The numbers in the parenthesis are standard errors. 

 

Table 5 reports several descriptive statistics along with two unit root tests, including mean, 

standard deviation, skewness, kurtosis, Jarque-Bera statistic, ADF and KPSS. The US 

inflation rate averaged 2.4%, while the Canada inflation rate averaged 2%
1
. The values in the 

table give some information about the distribution of the US and Canada inflation rates. Both 

skewness and kurtosis statistics indicate that distributions are not normal. According to JB 

statistic, it is very clear that there are significant departures from normality.  

 

The next step of the analysis is to examine the unit root properties of the inflation rates using 

Augmented Dickey-Fuller (ADF) and Kwiatkowski, Phillips, Schmidt and Shin (KPSS) unit 

root tests. The results are presented in table 5 and suggest that both series can be represented 

by stationary long memory processes. However, these unit root tests, especially the ADF, do 

not take account of the possible long memory properties of the series. Therefore, two 

semiparametric methods are employed to examine the long memory properties of the data.  

 

The GPH and LW estimators for long memory parameters are reported in table 6 for different 

bandwidths t = Iu.ev and Iu.v where all the estimates can be seen to be statistically 

significant. The results show that the memory estimates are not sensitive to the bandwidth 

choice, although they decrease as the bandwidth increases (the memory estimates vary from 

0.42 to 0.48 and 0.23 to 0.31 for US and Canada respectively) and that inflation rates exhibits 

stationary long memory properties. Consequently, if there exists a stable relationship between 

the inflation rates, a stationary fractional cointegration would be expected. 

 

Now, consider the bivariate model in (2.4), .}~�,� − �.���,� = ��� .���,� = ��� 

 

when � ≠ 0, the two series .}~�,� and .���,� are said to be cointegrated where the linear 

combination ��� has a memory of *� which less than the memory of the original two series. 

 

 

 

 

                                                           
1
 The Bank of Canada aims to keep inflation rate at the 2% midpoint of an inflation-control target range of 1-3 

%. 
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Table 7: Application to the US and Canada inflation rates 

t = Iu.ev     

 *w� *w� �w  �� 

 0.072 0.356 1.165 0.206 

 (0.033) (0.1138) (0.298) (0.081) 

     t = Iu.v     

 *w� *w� �w  �� 

 0.056 0.328 1.149 0.281 

 (0.029) (0.156) (0.352) (0.110) 

     
Note: Standard errors are reported in the parentheses. 

 

Table 7 reports the joint local Whittle estimation including the estimates of the four unknown 

(two memory, phase and cointegration) parameters, while the standard errors are represented 

in parentheses. The results indicate that all the coefficients are statistically significant for both 

bandwidths t = Iu.ev and Iu.v, respectively. The estimate of memory parameter *� indicates 

that the inflation rates can be described as stationary long memory series confirming the 

results in table 12. In addition, the estimate of *� for the unknown linear combination appears 

to have less memory than *�. Moreover, the estimate of the cointegrating parameter � is 

close to unity reflecting a cointegration relationship between the US and Canada inflation 

rates. In particular, the LW estimates of the cointegration coefficient are significantly higher 

than unity for bandwidths t = Iu.ev and Iu.v, implying that the long-run rate of inflation in 

the US is higher than that in Canada. 

 

5 Conclusion 

 

One contribution of this paper is to apply the theoretical framework in Robinson (2008) to 

inflation rates which allows for a new parameter, the phase shift, to the bivariate model. The 

possibility of existence of long memory features in the inflation rates was initially examined, 

then the relationship between the monthly US and Canada inflation rates was analysed using 

the analysis in Robinson (2008). This approach is preferable to other conventional methods as 

it allows for the possibility of phase shifts along with cointegration. The four unknown 

parameters were jointly estimated using local Whittle estimation.  

 

The main finding is that the monthly US and Canada inflation rates exhibit the properties of 

stationary long memory series confirming the presence of long memory in macroeconomic 

time series which is consistent with the results reported in Hassler and Wolters (1995) and 

Doornik and Oooms (2004). The local Whittle estimate gives evidence to a fractional 

cointegration relationship between the US and Canada inflation rates, with the estimate of the 

cointegrating parameter, �, is higher than unity. This implies that the long-run rate of 

inflation in the US is higher than that in Canada. Furthermore, this link between inflation 

rates in the US and Canada has its vital implications on the interdependence of monetary 

policies in both countries and the validity of purchasing power parity. As the US and Canada 

have differing rates of inflation, and the relative price of goods is linked to the exchange rate 

through the purchasing power parity theory. The relative prices of goods should change and 

the value of US dollar may decline against the Canadian dollar. 
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