1 (a)	В	1
	-	-
Question	Correct Answer	Mark
Number		
1 (b)	D	1
0	10	I was
Question	Correct Answer	Mark
Number 2	D	1
Question	Correct Answer	Mark
Number	COTTect Allswei	Matik
3	A	1
I		<u>'</u>
Question	Correct Answer	Mark
Number		
4 (a)	В	1
		T
Question	Correct Answer	Mark
Number		1
4(b)	D	1
Question	Correct Answer	Mark
Number	COTTOCK AIDMON	Mark
4 (c)	С	1
- (-)		1
Question	Correct Answer	Mark
Number		
4 (d)	A	1
		1
Question	Correct Answer	Mark
Number 5	В	1
J	D	1

6)

Correct Answer	Mark
В	1

7)

Correct Answer	Mark
C	1

uestion umber	Correct Answer	Mark
(a)	В	1

uestion umber	Correct Answer	Mark
(b)	A	1

CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 2 MARK SCHEME

9)

Correct Answer	Mark
C	1

10)

Cor	rrect Answer	Mark
В		1

11)

11)			
IIIDEI			
(a) (i)	$H_2O + CO_2 \rightarrow H_2CO_3$	1	
	(Allow atoms in H ₂ CO ₃ in any order)		
	Or $H_2O + CO_2 \rightarrow H^* + HCO_3^-$		
	Or $H_2O + CO_2 \rightarrow 2H^+ + CO_3^{-2}$		
	Or H ₃ O* in place of H*		
	IGNORE STATE SYMBOLS EVEN IF INCORRECT		

estion mber	Acceptable Answers	Reject	Mark
(a) (ii)	$2H^* + CO_3^{2-} \rightarrow H_2O + CO_2$ LHS (1) RHS (1) OR $2H_3O^* + CO_3^{2-} \rightarrow 3H_2O + CO_2$	H_2CO_3 as a product $H^+ + CO_3^{2-} \rightarrow HCO_3^-$	2
	LHS (1) RHS (1) IGNORE STATE SYMBOLS, EVEN IF INCORRECT IGNORE = arrows	Any other ions including spectator ions (e.g. Ca ²⁺ , Cl ⁻) in the equation scores zero	

12)

Correct Answer	Mark
С	1

13)

an index		
(a)	D	1

uestion umber	Correct Answer	Mark
(b)	A	1

uestion umber	Correct Answer	Mark
(c)	C	1

CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 2 MARK SCHEME

(a)	Average/mean mass of an atom/isotopes (1) (1/12 mass of an atom of) carbon-12 (1)	"weight" instead of mass	2
	First mark: mention of mean or average mass of either an atom/isotopes IGNORE "weighted" before average or mean IGNORE any mention of "moles" in definition	mean or average mass of an element without prior mention of either an atom or isotopes	
	Second mark: any mention of carbon-12		
	IGNORE any reference to "moles" or "1 mole" at any stage		
	IGNORE 12 g with reference to carbon-12		
	Mark the two points independently		
estion mber	Acceptable Answers	Reject	Mark
(b) (i)	(Rubidium/it has) two isotopes		1
	ALLOW (Rubidium/it has) "different isotopes"		
	ALLOW abbreviations such as formulae of rubidium atoms or cations with isotopic masses		
estion mber	Acceptable Answers	Reject	Mark
(b) (ii)	85 x 72 + 87 x 28 (1) 100 = 85.56 or 85.6 (1) Correct answer with no working (2) NOTE: Rounding error giving answer 85.5 scores (1) IGNORE any units (for example, g/g mol ⁻¹ /%)	Calculation of simple arithmetic mean of 85 + 87 = 86 scores zero	2
	NOTE: If 71% abundance used for ⁸⁵ Rb and 29% for ⁸⁷ Rb, answer = 85.58 or 85.6 scores (1)		
	Second mark awarded if answer CQ correct on wrong abundances and /or wrong isotopic masses.		
15)			
(a)	(1s² 2s²) 2p6 3s² 3p5 (ignore repetition of 1s² 2s²)	287	1
	ALLOW subscripts, correct use of p_x , p_y and p_z orbitals or normal font for electrons		

HIDGI			
(b) (i)	CI' XX	Covalent bonding (0)	2
	Correct number of outer electrons (ignore whether dots and / or crosses) drawn and also ratio of magnesium: chloride ions is 1:2 (1)	Incorrect numbers of electrons in inner shells if drawn for first mark	
	Correct formulae and charges of the ions shown somewhere (1)	"MG ^{2*} " and/or "CL ⁻ " for second mark	
	NOTE: Diagram for Mg ²⁺ showing the outermost shell with 8e ⁻ (dots and/or crosses) and/or Cl ⁻ shown with a 2 in front or 2 as a subscript would also score both marks		

1.32.			
(a)	First mark The energy (allow enthalpy / heat) required (allow change) per mole (1)	Energy / enthalpy produced	3
	Second mark to form (gaseous) singly charged positive ions Or to remove (1 mole of) electrons (1)		
	Third mark from gaseous atoms (of the element) (1)	Just gaseous element	
	X(g) → X ⁺ (g) + e ⁽⁻⁾ scores last 2 marks		
	Ignore standard conditions Per mole scores at any point		

- 12		s · .	
estion mber	Acceptable Answers	Reject	Mark
(b)	Nuclear charge / effective nuclear charge / number of protons / atomic number increases (1)	charge density	3
	(Outer) electrons in the same (quantum) shell / same number of electron shells (1) Shielding (of nucleus)(about) the same (1) Distance from nucleus/atomic radius	orbitals, sub- shell	
	less (1)		
	1	1	
(c)	Route 1 Electrons (in the p sub-shell) are paired (for the first time) (in S) / two electrons occupy the same (p) orbital / full orbital / electrons-in- boxes diagram (1)		2
	repulsion between the (paired) electrons (reduces IE) (1)		
	Route 2 P has a half-filled p sub-shell / half-filled p orbitals which is stable (1) (on ionization) S gains a half-filled p sub-shell / half-filled p orbitals (1)		

estion mber	Acceptable Answers	Reject	Mark
(d)	200 - 490 (kJ mol ⁻¹)	Negative values	1

17)			
(a)	(i) Structure Lattice /close-packed (1)	layers protons 'free' electrons	4
	(or a diagram with at least 3 rows)	Tree ciections	
	positive ions or cations (allow metal ions) (1)		
	delocalized electrons / sea of electrons (1)		
	(ii) Bonding		
	(Electrostatic) attraction		
	between positive ions / cations (allow		
	metal ions) and delocalized electrons		
	/ sea of electrons (1)		

estion mber	Acceptable Answers	Reject	Mark
(b)	Any three from		3
	 Magnesium ion / Mg²⁺ (allow magnesium) has a larger charge (density) than the sodium ion (allow sodium) / Na⁺ some comparison of the ions is required (1) 	Just Mg ²⁺ and Na ⁺	
	 magnesium ions / Mg²⁺ smaller than sodium ions (1) 		
	 Magnesium / Mg²⁺ contributes two / more electrons (per atom) to the "sea" of electrons (1) 		
	 magnesium ions / Mg²⁺ have greater attraction for the delocalized "sea" of electrons (1) 	More bonds	
	Ignore reference to number of outer electrons in Mg / Na Any references to the bonding being ionic, covalent or intermolecular (max 2)		
	Reverse argument can gain full marks		
(c)	The delocalized electrons / sea of electrons (1)	'free' electrons	2
	Flow (allow move / free to move) (1) (When a potential difference/voltage is applied)		
	'Carry the current' is not sufficient for the mark		

mine or			
3(a)	ALLOW reverse arguments in each case		3
	Any three from:-		
	sodium atoms/sodium ions are larger (than magnesium atoms/ions) NOTE: Allow symbols (eg Na or Na*) (1)		
	sodium ions are Na ⁺ whereas magnesium ions are Mg ²⁺ OR Na ⁺ /sodium ions have smaller charge (density) than Mg ²⁺ / magnesium ions (1)		
	[NOTE: It follows that the statement that "Na* ions are larger than Mg ²⁺ ions" would score the first two scoring points above)]		
	sodium has fewer delocalized electrons (than magnesium) (1)	Attraction between nucleus and (delocalized) electrons	
	attraction between the positive ions and (delocalized) electrons is weaker in sodium (than magnesium) (1)	electrons	
	 sodium is not close-packed (but magnesium is close-packed) (1) 		
	less energy needed (to break bonds) (1)	Mention of intermolecular forces/molecules negates the energy mark	
		NOTE: Arguments based on ionization energies OR suggestion of removal of outer shell electrons as part of the melting process scores (0) overall	

3(b)	First mark: Idea of (breaking) covalent bonds in silicon (1) Second and third marks: ANY TWO FROM Silicon is giant covalent / giant atomic/giant molecular/ macromolecular/giant structure/giant lattice IGNORE just "giant" (1) Phosphorus made up of simple	Intermolecular forces broken in silicon/ covalent bonds broken in phosphorus "silicon giant ionic"/"silicon giant metallic"	3
	Phosphorus made up of simple molecules / small molecules / P4 molecular / phosphorus is molecular covalent / molecular simple covalent IGNORE just "simple "/"simple structure" Between phosphorus molecules: weak forces/weak intermolecular forces/weak London forces/weak van der Waals' forces/weak induced-dipole forces [ALLOW "weak bonds" if implies between phosphorus molecules]	Weak bonds between phosphorus atoms	
	More energy needed (to break bonds in silicon) (1)		
(c)	IGNORE any references to "energy" in this part of the question		1
	Argon monatomic/argon (composed of) single atoms NOTE: This must be stated in words, not just by use of its symbol Ar IGNORE any comments about argon atoms having a full outer shell or argon being a noble gas IGNORE any comment about forces/bonds between argon particles	Any suggestion that argon is molecular Argon having a giant structure (of atoms)	

IDCI			
(d)	First mark:		2
	Mg has mobile electrons/delocalized electrons/free electrons/sea of electrons (to carry the charge)	Mg has free ions/Mg has mobile ions	
	ALLOW Mg ²⁺ instead of Mg or magnesium (1)		
	Second mark:		
	Sulfur's electrons are fixed (in covalent bonds)/sulfur's electrons are involved in bonding/sulfur's electrons are not free (to move)/no delocalized electrons in sulfur/no mobile electrons in sulfur (1)	Sulfur has 'no free ions'/sulfur has delocalized electrons/just "sulfur has covalent bonds"/ just "sulfur is not a metal"	