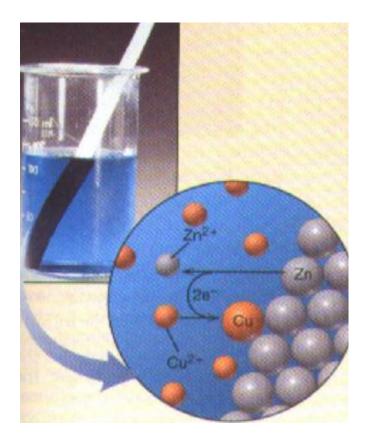
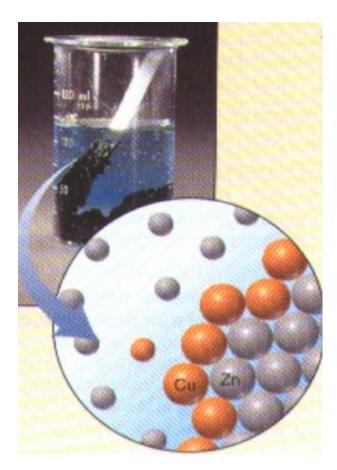

L11


Chemical energy and electrical energy: electrochemistry

Atkins, chapter 13

Cooper is deposited on the surface of the zinc,

which crumbles and goes into solution



 $Zn(s) \rightarrow Zn^{2+}+ 2e^{-}$

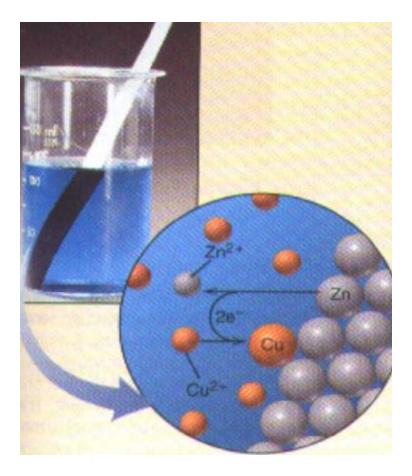
Oxidation is the removal of electrons from a species

 $Cu^{2+} + 2e^- \rightarrow Cu(s)$

Reduction is the donation of electrons to species

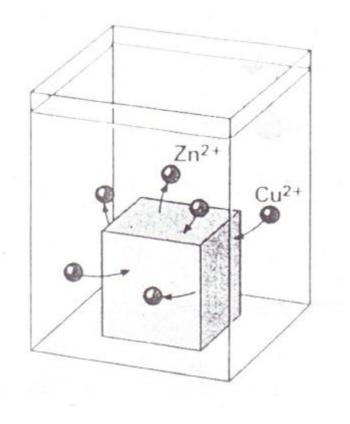
- Zn(s) \rightarrow Zn²⁺ + 2e⁻
- $Cu^{2+} + 2e^{-} \rightarrow Cu(s)$

 $Zn(s) + Cu^{2+} \rightarrow Zn^{2+} + Cu(s)$


Redox reaction is combinations of oxidation and reduction reactions

Oxidizing agent is itself reduced

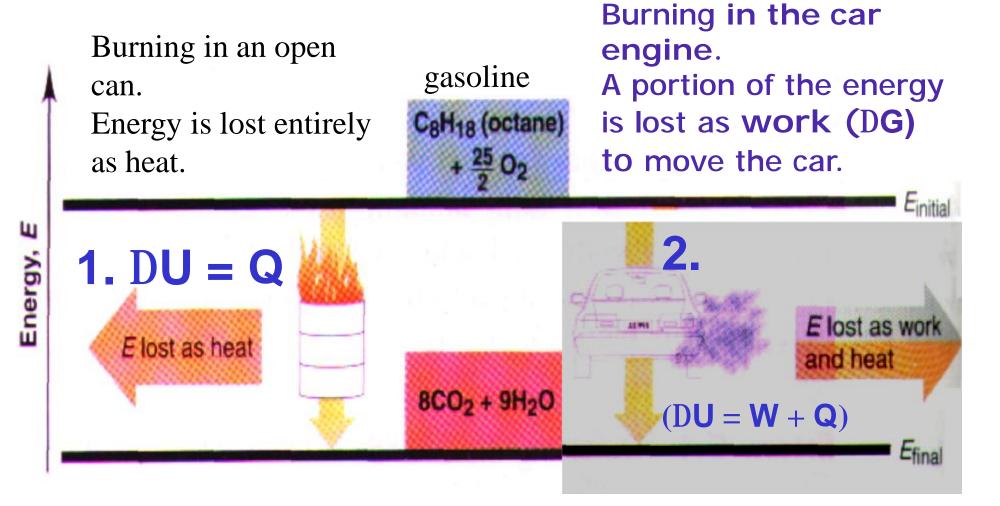
Reducing agent is itself oxidized


- DH = DG + TDS
- Total enthalpy change (DH) in the chemical reaction

is sum of the energy that could be used (DG) and heat (T DS=Q)

Cooper is deposited on the surface of the zinc,

which crumbles and goes into solution

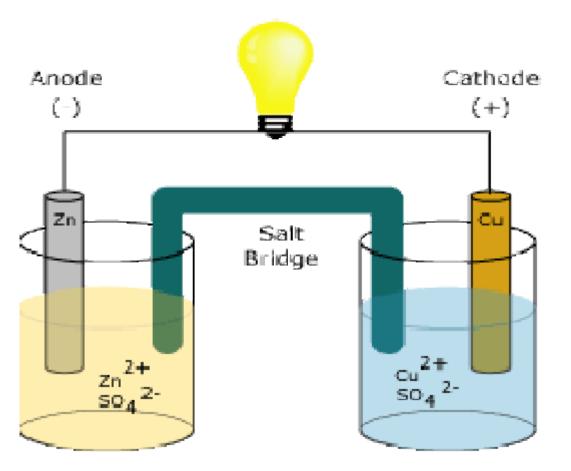

D H = DG + T DS

DG (energy that could be used)

• The change in the Gibbs function is equal to the maximum quantity of electrical work that can be obtained by harnessing the process

DH = Q

 The change in the Gibbs function is equal to the maximum quantity of work that can be obtained by harnessing the process



Electrochemical cell

• consists of two half-cells (electrodes):

- Zn(s) \rightarrow Zn²⁺ + 2e⁻
- $Cu^{2+} + 2e^{-} \rightarrow Cu(s)$

Electrochemical cell captures the electrical driving power of chemical reaction

Daniell Cell

Zinc electrode donates electrones.

Electrones pass throuhg the external circuit (light bulb),

and enter cooper electrode.

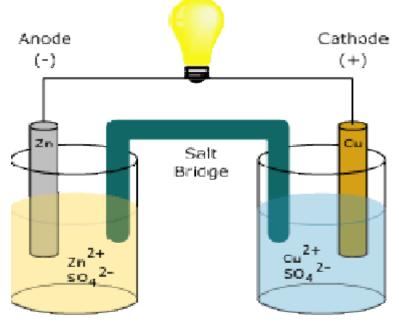
 $\Delta U = W + Q$

 $Zn^{2+} + 2e^{-} \rightarrow Zn \quad E^{o} = -0.763V$

 $Cu^{2+} + 2e^{-} \rightarrow Cu \quad E^{o} = +0.340V$

Electrons flow spontaneously from place with the lower to higher standard reduction potential.

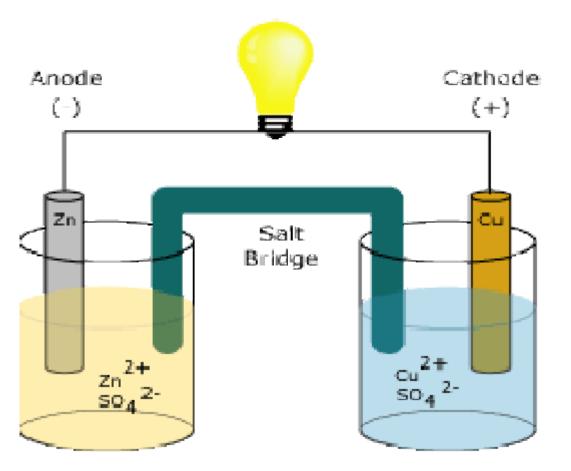
Which of the two reduction equations is spontaneous (which will take place as a reduction) at standard conditions and conversion of 1 mole of substance?


DG = -zFE z=2; F=96482 C mol⁻¹ $\Delta G_{(Zn)} = -zF(-0.763) = +0.763zF$ $\Delta G_{(Cu)} = -zF 0.340 = -0.34zF$

Electrochemical cell

Anode: oxidation
(-) more electrones

 $Zn^{2+} + 2e^{-} \Leftrightarrow Zn \quad E^{o} = -0,763V$

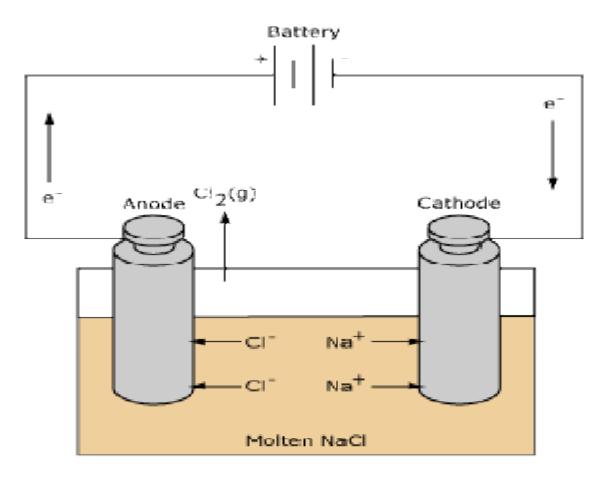

 $Cu^{2+} + 2e^{-} \Leftrightarrow Cu \quad E^{0} = +0,340V$

Cathode reduction
 (+)

Daniell Cell

Electrochemical cell captures the electrical driving power of chemical reaction

Daniell Cell

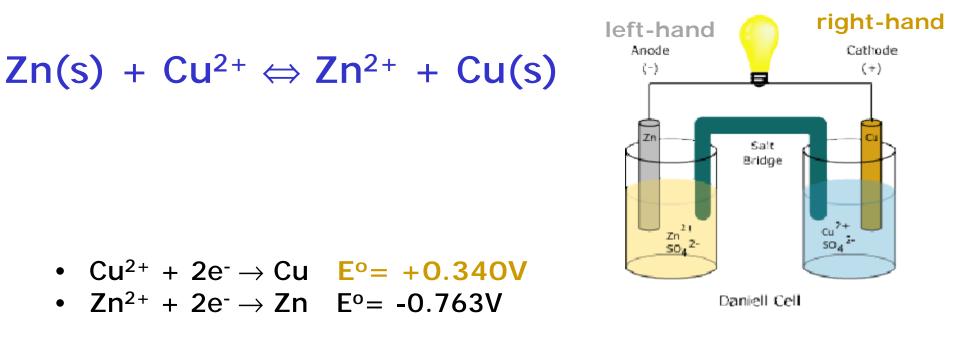

Zinc electrode donates electrones.

Electrones pass throuhg the external circuit (light bulb),

and enter cooper electrode.

 $\Delta U = W + Q$

Electrolytic cell


Electrolytic Cell

• *cathode* (-) **reduction**

 $Na^+ + e^- \rightarrow Na(s)$

• anode (+) oxidation $2Cl^{-} \rightarrow Cl_{2} + 2e^{-}$

more positive

- E^o_{cell} = E^o_{electrode more positive} E^o_{electrode more negative}
- The standard electromotive force (e.m.f.; E^o_{cell}) of a cell is the difference between the *standard electrode potentials* of the two half-cells.

$Zn(s) + Cu^{2+} \Leftrightarrow Zn^{2+} + Cu(s)$

- $Cu^{2+} + 2e^{-} \Leftrightarrow Cu \quad E^{0} = +0.340V$
- $Zn^{2+} + 2e^{-} \Leftrightarrow Zn \quad E^{0} = -0.763V$
- $E'_{cell} = E'_{electrode more positive} E'_{electrode more negative}$
- $E'_{Cu} = E^{o}_{Cu} + RT/2F \ln c(Cu^{2+})$
- $E'_{Zn} = E^{o}_{Zn} + RT/2F \ln c(Zn^{2+})$
- $E'_{cell} = E^{o}_{Cu} E^{o}_{Zn} + RT/2F \ln c(Cu^{2+}) RT/2F \ln c(Zn^{2+})$
- $E'_{cell} = E^{o}_{cell} + RT/2F \ln c(Cu^{2+}) / c(Zn^{2+})$
- $E'_{cell} = E^{o}_{cell} RT/2F \ln c(Zn^{2+}) / c(Cu^{2+})$

When a cell reaction is at *equilibrium* it produces no e.m.f.

 $Zn(s) + Cu^{2+} \Leftrightarrow Zn^{2+} + Cu(s)$ $K_{c} = c(Zn^{2+}) c(Cu_{(s)}) / c(Zn_{(s)}) c(Cu^{2+})$

•
$$E'_{cell} = E^{o}_{cell} - RT/2F \ln c(Zn^{2+}) / c(Cu^{2+})$$

• $O = E_{cell}^{o} - RT/2F \ln c(Zn^{2+}) / c(Cu^{2+})$

When a cell reaction is at *equilibrium* it produces no e.m.f.

- $0 = E_{cell}^{o} RT/2F \ln K_{c}$
- $E^{o}_{cell} = RT/2F \ln K_{c}$
- The relation between equilibrium constant K_c and the standard e.m.f. of a reaction

7,2+ , 2- 7, E°- 0.741	-800
$Zn^{2+} + 2e^{-} Zn E^{0} = -0,763$	-700
$\mathbf{E}_{0}^{0} = \mathbf{E}_{0}^{0} = \mathbf{E}_{0}^{0}$	-600
• $E_{cell}^0 = E_{poz.}^0 - E_{neg.}^0$	-500
• = 0.340 - (- 0.763) = 1.103	-400
• 1.103/2 = 0.5515 zinc electrode potential will become more	
• $-0.763 + 0.5515 = -0.2115 = E_{neg.}^{0}$ - 0.2115	ć
copper electrode	-100 5
• $0.340 - 0.5515 = -0.2115 = E_{neg.}^{0}$ potential will become more negative	tial 0
• ΔE=0	- 100 员
	- 100 - 200 potentia
Cu ²⁺ + 2e ⁻ Cu E°= +0,340	300 -
• $E'^{eq}_{Zn} = E^{0}_{Zn} + RT/2F \ln c Zn^{2+}$	400 00
• $L^{-1}Z_{n} = L^{-1}Z_{n} + K^{-1}Z_{1} + K^{-1}Z_{1}$	Ψ

- -0.2115 = -0.763 10^8
- $E'^{eq}_{Cu} = E^{O}_{Cu.} + RT/2F \ln c Cu^{2+}$
- -0.2115 = 0.340 10^{-10}

When a cell reaction is at *equilibrium* it produces no e.m.f.

• Standard electrode potentials determine the electrochemical series

• $Li^+ + e^- \Leftrightarrow Li$ • $K^+ + e^- \Leftrightarrow K$	<u>25 °C, E°/V</u> -3.045 -2.924	DG = -zFE
• $Ca^{2+} + 2e^{-} \Leftrightarrow Ca$ • $Mg^{2+} + 2e^{-} \Leftrightarrow Mg$	-2. 76 -2.3 7 5	
• $2H^+ + 2e^- \Leftrightarrow H_2$	0	
• $Ag^+ + e^- \Leftrightarrow Ag$ • $Au^{3+} + 3e^- \Leftrightarrow Au$	0.800 1.42	

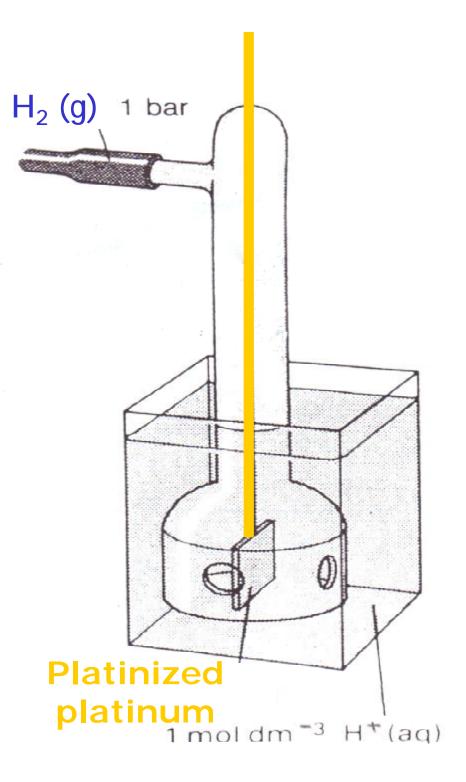
• $K^+ + e^- \Leftrightarrow K$ $E^\circ = -2.924 V$

- DG = -zFE
- DG = -1F(-2.924) = +2.924F = non sponataneous

- $Au^{3+} + 3e^- \Leftrightarrow Au$ $E^\circ = 1.42 V$
- DG = -3F(+1.42)
- DG = -4.26 F = spontaneous

- $Li^+ + e^- \Leftrightarrow Li$ -3.045
- $K^+ + e^- \Leftrightarrow K$ -2.924
- Ca²⁺ + 2e⁻ ⇔ Ca
- $Mg^{2+} + 2e^{-} \Leftrightarrow Mg$

-2.76 -2.375


• $2H^+ + 2e^- \hat{U} H_2$

- $Ag^+ + e^- \Leftrightarrow Ag$
- Au³⁺ + 3e⁻ ⇔ Au

Standard electrode potentials are reported on the basis that potential of the standard hydrogen electrode is zero

0.800 1.42 Standard hydrogen electrode

 $2H^{+} + 2e^{-} \hat{U} H_{2}$ (g)

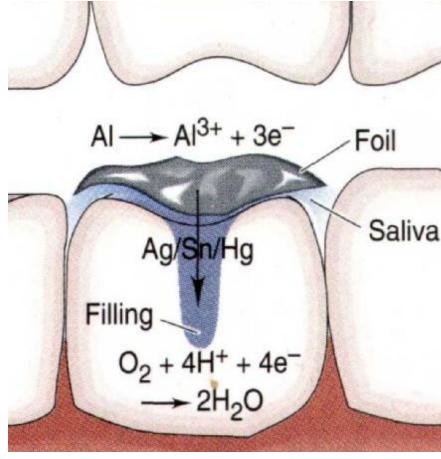
A mixture of gold and amalgam fillings can lead to a persistent metallic taste because tin ions are released from amalgam

(C): $Au^{3+} + 3e^{-}\hat{U}$ Au $E^{\circ} = 1.420V$ Gold inlay

 $O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightarrow 2H_{2}O(l)$ C: $O_{2} + 4H^{+} + 4e^{-} \hat{U} 2H_{2}O E^{\circ} = 1.229V$

A: $Sn^{2+} + 2e^{-}\hat{U}$ Sn $E^{\circ} = -0.136$

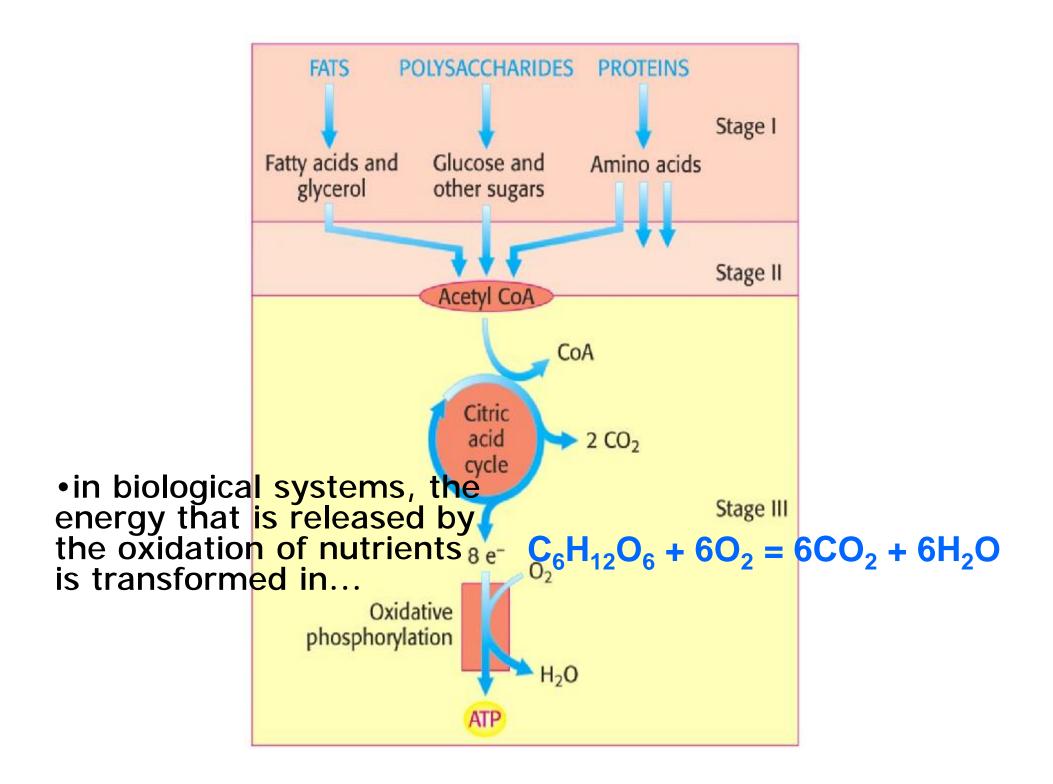
- O₂(g) is reduced with tin
- by the golden surface


E°= - 0.136 SngHg + Sn²⁺ Dental filling Corrosion of a dental filling brought about by contact was a gold inlay. A: $AI^{3+} + 3e^{-} \Leftrightarrow AI = E^{0} = -1.66V$

(C):

$$\begin{array}{rcl} Sn^{2+} + 2e^- \Leftrightarrow Sn & E^\circ = -0.136V \\ Ag^+ + e^- \Leftrightarrow Ag & E^\circ = 0.800V \\ 2Hg^{2+} + 2e^- \Leftrightarrow Hg_2^{2+} & E^\circ = 0.905V & = 1.229 - (-1.66) = 2.889 \end{array}$$

 $O_2 + 4H^+ + 4e^- \Leftrightarrow 2H_2O$


E^o= 1.229V

The Pain of a Dental Voltaic Cell Have you ever

felt a jolt of pain when biting down with a filled tooth on a scrap of foil left on a piece of food? Here's why. The aluminum foil acts as an active anode (E^0 of Al = -1.66 V), Saliva saliva as the electrolyte, and the

filling (usually a silver/tin/mercury alloy) as an inactive cathode. O_2 is reduced to water, and the short circuit between the foil in contact with the filling creates a current that is sensed by the nerve of the tooth.

$C_6H_{12}O_6 + 6O_2 = 6CO_2 + 6H_2O$ $\Delta G^o = -2823 \text{ kJ mol}^{-1}$

Glucose oxidation: $C_6H_{12}O_6 + 6H_2O = 6CO_2 + 24H^+ + 24e^-$ Citrate cycle

Reduction of O_2 : $6O_2 + 24H^+ + 24e^- = 12H_2O$ Respiratory chain

Standard potentials in biological systems

Oxidized form	Reduced form	Z	E ^o (V)			
1. NAD ⁺	$\mathbf{NADH} + \mathbf{H}^+$	2	-0.32			
FAD	FADH ₂	2	-0.22			
Fe ³⁺	Fe ²⁺	1	0.77			
2 . $\frac{1}{2}$ O ₂ + 2 H ⁺	H ₂ O	2	0.82			
Reduction of oxygen:						
$6O_2 + 24H^+ + 24e^- = 12H_2O$						
	Respiratory chain					

Electrons flows spontaneously from place with the lower to higher standard reduction potential

NAD⁺ + H⁺ + 2e⁻ = NADH
$$E^{o'} = -0.315 V$$

 $\frac{1}{2}O_2 + 2H^+ + 2e^- = H_2O$ $E^{o'} = 0.815 V$

DG = -zFE

O₂: oxidizing agent

NADH: reducing agent

- Measurements of the e.m.f. (E^o_{cell}) of a cell are used to obtain *thermodynamic information*, such as the value of DG for the reaction.
- The maximum *electrical work* that can be obtained in the course of chemical reaction is $w_{e max} = DG$
- thermodynamic data can therefore be used to assess the usefulness of chemical reactions as sources of electrical energy.

- 35% of the total Gibbs free energy of NADH+H⁺ oxidation in the respiratory chain is possible to use for ATP synthesis.
- Calculate mol of ATP that can be synthesized using the Gibbs free energy of NADH+H⁺
- ATP + $H_2O \Leftrightarrow ADP + P$ $\Delta_rG^0 = -30.5 \text{ kJ/mol}$
- NAD⁺ + 2H⁺ + 2e \Leftrightarrow NADH + H⁺ E^o= -0.320 V
- $\frac{1}{2} O_2 + 2e \iff O^{2-}$

 $E^{\circ} = 0.815 V$

- $E^{o}_{cell} = E^{o}_{electrode more positive} E^{o}_{electrode more negative}$
- = 0.815 (-0.320) = 1.135V
- $\Delta_r G^0 = -zFE_{r.r.}^0 = -2 \times 96485As/mol \times 1.135V = -219021 J/mol$
- 219021 J x 0.35 = 76657 J
- 76.657 kJ/30.5 kJmol⁻¹ = 2.51 mol

- movie