Mark Scheme

Annotations

Annotation	Meaning
[-1. $0^{\text {d }}$	Benefit of doubt given
[C ¢ ${ }^{\text {d }}$	Contradiction
3	Incorrect response
[-4]	Error carried forward
\square	Ignore
0	Not answered question
-	Benefit of doubt not given
ए-	Power of 10 error
「K]	Omission mark
\square	Rounding error
\square	Error in number of significant figures
\checkmark	Correct response

Subject-specific Marking Instructions

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

The following questions should be fully annotated with ticks, crosses, ecf etc to show where marks have been awarded in the body of the text:

3(c), 4(e)(iii) and 5(a)

Mark Scheme

Mark Scheme

Question			Answer	Marks	Guidance
1	(b)	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=3.6(0)\left(\mathrm{dm}^{3}\right)$ award 3 marks Amount of $\mathrm{WO}_{3}=(11.59 / 231.8=) 0.05(00)(\mathrm{mol}) \checkmark$ Amount of $\mathrm{H}_{2}=0.0500 \times 3=0.15(0)(\mathrm{mol}) \checkmark$ Volume of $\mathrm{H}_{2}=0.150 \times 24.0=3.6(0)\left(\mathrm{dm}^{3}\right)^{\checkmark}$	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2 if wrong M_{r} produces such numbers throughout. IF answer $=\mathbf{1 . 2 (0)} \mathrm{dm}^{3}$ award 2 marks (not multiplying by 3) ALLOW use of inexact $M_{r}(\operatorname{eg} 232)$ - if it still gives 0.05 ALLOW amount of $\mathrm{WO}_{3} \times 3$ correctly calculated for 2nd mark ALLOW amount of $\mathrm{H}_{2} \times 24.0$ correctly calculated for 3rd mark ALLOW 1 mark for incorrect amount of $\mathrm{WO}_{3} \times 24.0$ (not multiplied by 3 ie scores third mark only)
			Total	8	

Mark Scheme

Question			Answer	Marks	Guidance
2	(a)		A shared pair of electrons \checkmark	1	DO NOT ALLOW ‘shared electrons'
	(b)	(i)	Pairs of (electrons surrounding a central atom) repel \checkmark The shape is determined by the number of bond pairs AND the number of lone pairs (of electrons) \checkmark	2	ALLOW alternative phrases/words to repel eg 'push apart' ALLOW lone pairs repel OR bond(ing) pairs repel ALLOW 'the number of bonding pairs and number of lone pairs decides the orientation of the surrounding atoms' ALLOW 'how many' for 'number of' ALLOW the second mark for a response which has 2 of the following including at least one shape involving lone pairs (of electrons) BUT mark incorrect responses first 2 bonding pairs = linear 3 bonding pairs $=$ trigonal planar 4 bonding pairs = tetrahedral 6 bonding pairs = hexagonal 3 bonding pairs and 1 lone pair = pyramidal 2 bonding pairs and 2 lone pairs = non-linear IGNORE 'number of electron pairs decides shape of molecule' as this is in the question
		(ii)	$\begin{aligned} & \mathrm{O}-\mathrm{B}-\mathrm{O}=120^{\circ} \checkmark \\ & \mathrm{B}-\mathrm{O}-\mathrm{H}=104.5^{\circ} \checkmark \end{aligned}$	2	ALLOW 104-105 ${ }^{\circ}$
	(c)		SF_{6} OR sulfur hexafluoride OR sulfur(VI) fluoride \checkmark	1	ALLOW XeF_{4} DO NOT ALLOW SCl 6 DO NOT ALLOW stated complexes (simple molecule is asked for)
			Total	6	

Mark Scheme

Question			Answer	Marks	Guidance
3	(a)		Energy (needed) to remove an electron \checkmark from each atom in one mole of gaseous atoms	3	ALLOW 'energy to remove one mole of electrons from one mole of gaseous atoms' for three marks IGNORE ‘element' ALLOW 'energy needed to remove an electron from one mole of gaseous atoms to form one mole of gaseous 1+ ions' for two marks For third mark: ALLOW ECF if wrong particle is used in second marking point but is described as being gaseous eg 'molecule' instead of 'atom' IGNORE equations
	(b)	(i)	$\mathrm{O}^{+}(\mathrm{g}) \rightarrow \mathrm{O}^{2+}(\mathrm{g})+\mathrm{e}^{-} \checkmark$	1	$\text { ALLOW } \mathrm{O}^{+}(\mathrm{g})-\mathrm{e}^{-} \quad \rightarrow \mathrm{O}^{2+}(\mathrm{g})$ ALLOW e for electron (ie charge omitted) IGNORE states on the electron
		(ii)	 All eight ionisation energies showing an increase The biggest increase between the sixth and seventh ionisation energy AND 8th ionisation energy is higher than 7th	2	IGNORE the $2 p / 2 s$ true jump IGNORE line if seen IGNORE 0 , if included by candidate IGNORE missing $1^{\text {st }}$ IE point BUT DO NOT ALLOW first ionisation energy higher than second DO NOT ALLOW either mark if ionisations energies 3 to 8 inclusive are not shown Place tick for second mark on the x-axis between 6 and 7

Mark Scheme

	stio	Answer	Marks	Guidance
3	(c)	Nuclear charge mark O has (one) less proton(s) OR O has smaller nuclear charge OR F has (one) more proton(s) OR F has greater nuclear charge \checkmark Atomic radius/shielding mark (Outermost) electrons are in the same shell OR energy level OR (Outermost) electrons experience the same shielding OR Atomic radius of O is larger OR Atomic radius of F is smaller \checkmark Nuclear attraction mark Less nuclear attraction (on outermost electrons) in O OR (outer) electrons are attracted less strongly (to the nucleus) in O OR More nuclear attraction (on outermost electrons) in F OR (outer) electrons are attracted more strongly (to the nucleus) in $F \checkmark$	3	Use annotations ie ticks crosses ECF ^ etc for this part Comparison should be used for each mark. Look for ORA from perspective of F throughout. ALLOW all three marks applied to 'as you go across the period' BUT assume the response refers to 'as you go across the period' if not stated ALLOW O has lower proton number BUT IGNORE O has lower atomic number IGNORE O has a smaller nucleus IGNORE 'O has a smaller charge' ie must be nuclear charge IGNORE 'O has smaller effective nuclear charge' ALLOW sub-shell for shell but IGNORE orbitals ALLOW shielding is similar ALLOW outermost electrons of O are further DO NOT ALLOW 'distance is the same' for second mark ALLOW 'less nuclear pull' for 'less nuclear attraction' DO NOT ALLOW 'less nuclear charge’ instead of 'less nuclear attraction' for the third mark IGNORE 'not pulled as close' for 'pulled less strongly'

Mark Scheme

Question			Answer	Marks	Guidance
3	(d)		$1 s^{2} 2 s^{2} 2 p^{4} \text { AND } 1 s^{2} 2 s^{2} 2 p^{6} \checkmark$ (In the reaction) oxygen has formed a negative ion (by gaining (two) electrons)	2	ALLOW subscripts, capitals ALLOW oxidation number of oxygen has decreased ALLOW non metals form negative ions IGNORE oxygen has gained electrons (this is shown in the electron configurations)
	(e)	(i)	$\begin{aligned} & \mathrm{SO}_{3}{ }^{2-} \downarrow \\ & \mathrm{ClO}_{2}^{-} \downarrow \end{aligned}$	2	
		(ii)	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \checkmark$	1	
		(iii)	Aluminium oxide OR aluminium hydroxide \checkmark $\mathrm{HNO}_{3} \checkmark$	2	IGNORE correct formula (ie $\mathrm{Al}_{2} \mathrm{O}_{3}$ or $\mathrm{Al}(\mathrm{OH})_{3}$) DO NOT ALLOW correct name with incorrect formula IGNORE correct name (ie nitric acid or nitric(V) acid) DO NOT ALLOW correct formula with incorrect name ALLOW one mark for $\mathrm{Al}_{2} \mathrm{O}_{3}$ or $\left.\mathrm{Al}(\mathrm{OH})_{3}\right)$ AND nitric acid or nitric(V) acid (ie name answer and formulae answer has been transposed)
			Total	16	

Mark Scheme

Mark Scheme

Question			Answer	Marks	Guidance
4	(b)	(i)	$\begin{aligned} & \mathrm{Ba}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \\ & \mathrm{Ba}(\mathrm{OH})_{2} \text { as product } \checkmark \text { Rest of equation }+ \text { state symbols } \end{aligned}$	2	ALLOW multiples
		(ii)	Any value or the range $7<\mathrm{pH} \leq 14 \checkmark$	1	DO NOT ALLOW if pH 7 is in a quoted range
		(iii)	$\mathrm{OH}^{-} \mathrm{OR} \mathrm{HO}{ }^{-} \checkmark$	1	DO NOT ALLOW Ba ${ }^{2+}$ DO NOT ALLOW any reference to electrons
	(c)		Magnesium hydroxide OR magnesium oxide \checkmark	1	ALLOW magnesium carbonate ALLOW correct formulae: $\mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{MgO}, \mathrm{MgCO}_{3}$ IGNORE 'milk of magnesia'
	(d)	(i)	Effervescence OR fizzing OR bubbling OR gas produced AND Strontium carbonate OR solid dissolves OR disappears OR a colourless solution is formed \checkmark $\mathrm{SrCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{SrCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \checkmark$	2	DO NOT ALLOW 'carbon dioxide produced' without 'gas' DO NOT ALLOW 'hydrogen gas produced' OR any other named gas ALLOW 'it' for strontium carbonate ALLOW strontium for strontium carbonate if SrCO_{3} seen in equation IGNORE 'reacts' IGNORE references to temperature change IGNORE 'steam produced' IGNORE state symbols

Mark Scheme

	stio		Answer	Marks	Guidance
4	(d)	(ii)	Strontium ion with eight (or no) outermost electrons AND $2 \times$ chloride (ions) with 'dot-and-cross' outermost octet \checkmark correct charges \checkmark	2	For first mark, if eight electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons Circles not essential ALLOW One mark if both electron arrangement and charges are correct but only one Cl is drawn ALLOW $2\left[\mathrm{Cl}^{-}\right] 2\left[\mathrm{Cl}^{-} \quad\left[\mathrm{Cl}^{-}\right]_{2}\right.$ (brackets not required) DO NOT ALLOW $\left[\mathrm{Cl}_{2}\right]^{-}\left[\mathrm{Cl}_{2}\right]^{2-}[2 \mathrm{Cl}]^{2-}[\mathrm{Cl}]_{2}^{-}$
	(e)	(i)	The mixture would turn orange \checkmark	1	ALLOW shades and colours containing (eg dark orange, yellow-orange) ALLOW the following: yellow, yellow-brown, brown, brown-red BUT DO NOT ALLOW red alone IGNORE initial colours DO NOT ALLOW any response that includes 'precipitate' OR solid
		(ii)	$\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-} \checkmark$	1	ALLOW multiples IGNORE state symbols

Mark Scheme

Question			Answer	Marks	Guidance
4	e	(iii)	The electron GAIN mark Chlorine will form a negative ion more easily than bromine OR Chlorine will gain an electron more easily than bromine Atomic size mark (An atom of) chlorine is smaller (than bromine) \checkmark Shielding mark (Outermost shell of) chlorine is less shielded (than bromine) \checkmark Stronger nuclear attraction mark Nuclear attraction (on the electron to be gained) by chlorine is greater (than bromine) OR the electron (to be gained) is attracted more strongly (to the nucleus) in chlorine \checkmark	4	Use annotations ie ticks crosses ECF ^ etc for this part Look for ORA from perspective of Br throughout. ALLOW all four marks applied to 'as you go up OR as you down the group' ALLOW Cl for chlorine AND Br for bromine ALLOW ORA DO NOT ALLOW the use of 'ide' BUT ALLOW use of 'ide' as an ECF ALLOW chlorine is better at electron capture ALLOW chlorine has greater electron affinity IGNORE chlorine is more electronegative IGNORE chlorine has more oxidising power than bromine IGNORE explanations given in terms of displacement ALLOW chlorine has fewer shells ALLOW the electron is added to the (outer) shell closer to the nucleus IGNORE 'easily' for 'greater' or for 'stronger' ALLOW 'chlorine has greater nuclear attraction (on its outermost electrons)' OR '(the outermost) electrons in chlorine are more attracted (to the nucleus)'
			Total	18	

Mark Scheme

	stio	Answer	Marks	Guidance
5	(a)	F_{2} forces mark F_{2} has van der Waals' (forces) OR F_{2} has induced dipole attractions OR interactions OR F_{2} has temporary OR instantaneous dipole(-dipole) attraction OR interactions \checkmark HCl forces mark HCl has permanent dipole(-dipole) attractions OR interactions \checkmark Comparison of strength of forces between molecules mark intermolecular force in HCl is stronger than that in F_{2} OR permanent dipoles are stronger (than induced dipoles) \checkmark Boiling point mark more energy is required to break stronger (intermolecular) forces \checkmark	4	Use annotations ie ticks crosses ECF ^ etc for this part ALLOW vdWs for van der Waals' IGNORE F_{2} has covalent bond for this mark IGNORE F_{2} has 'intermolecular forces' Quality of written communication: 'dipole(s)' spelled correctly and used in context for the second marking point IGNORE HCl has 'intermolecular forces' IGNORE van der Waals' forces in HCl DO NOT ALLOW hydrogen bonding DO NOT ALLOW ionic bonding Look for strength of force comparison anywhere in the answer ALLOW ECF for hydrogen bonding in HCl being stronger than the stated intermolecular forces in F_{2} BUT DO NOT ALLOW this mark if HCl or F_{2} has covalent bonds broken OR if HCl has ionic bonds broken (the question asks for forces between molecules) IGNORE HCl has stronger van der Waals' (forces) than F_{2} (as they both have the same number of electrons) DO NOT ALLOW fourth mark if covalent bonds are broken in HCl or $\mathrm{F}_{2} \mathbf{O R}$ if ionic bonds are broken in HCl IGNORE 'heat' but ALLOW 'heat energy'

Mark Scheme

Question			Answer	Marks	Guidance
5	(b)	(i)	Two dot-and-cross bonding pairs of electrons and one dative covalent bond pair of electrons consisting of either two dots or two crosses \checkmark One non-bonding pair of electrons AND which match the dative covalent bond pair of electrons \checkmark	2	Must be 'dot-and-cross' Must be $\mathrm{H}_{3} \mathrm{O}$ for either mark Circles for shells not needed IGNORE inner shells IGNORE lack of positive charge and square brackets DO NOT ALLOW second marking point if negative charge is shown on the ion Non-bonding electrons do not have to be seen as a pair ALLOW second mark for one non-bonding pair of electrons and three dot-and-cross bonding pairs of electrons

Mark Scheme

	stion		Answer	Marks	Guidance
5	(c)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=7.624$ OR $7.62(\mathrm{~g})$ award 3 marks Molar mass of borax $=381.2\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \checkmark$ Correctly calculates the mass of borax in $1000 \mathrm{~cm}^{3}=$ 0.0800×381.2 $=30.496 \text { g OR } 30.50 \text { g OR } 30.5 \mathrm{~g} \checkmark$ Correctly calculates the mass of borax in $250 \mathrm{~cm}^{3}=$ 30.496/4 $=7.624 \mathrm{~g} \text { OR } 7.62 \mathrm{~g} \checkmark$ OR Molar mass of borax $=381.2\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \checkmark$ Amount of borax in $250 \mathrm{~cm}^{3}$ of solution $=0.0800 \times 250$ $11000=0.02(00) \mathrm{mol}$ Mass of borax $=0.02(00) \times 381.2$ of borax $=7.624 \mathrm{~g} \text { OR } 7.62 \mathrm{~g} \checkmark$	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW 381 DO NOT ALLOW 380 ALLOW $0.0800 \times$ [molar mass of borax] correctly calculated for 2 nd mark (ie mass of borax in $1000 \mathrm{~cm}^{3}$) ALLOW [mass of borax in $1000 \mathrm{~cm}^{3}$] / 4 correctly calculated for 3rd mark ALLOW calculator value or rounding to three significant figures or more IGNORE (if seen) a second rounding error ALLOW 381 DO NOT ALLOW 380 ALLOW [incorrect amount of borax] x 381.2 OR [incorrect amount of borax] x [incorrect molar mass of borax] OR 0.02(00) x [incorrect molar mass of borax] correctly calculated for this mark ALLOW calculator value or rounding to three significant figures or more IGNORE (if seen) a second rounding error

Mark Scheme

Question			Answer	Marks	Guidance
5	(d)	(i)	$\begin{aligned} & \text { Correctly calculates the amount of borax used }=0.0800 \times \\ & 22.5 / 1000 \\ & =1.8(0) \times 10^{-3} \mathrm{~mol} \text { OR } 0.0018(0) \mathrm{mol} \checkmark \end{aligned}$	1	
		(ii)	Correctly calculates the amount of HCl used $=1.8(0) \times$ $10^{-3} \times 2 \mathrm{~mol}$ $=3.6(0) \times 10^{-3} \mathrm{~mol}$ OR $0.0036(0) \mathrm{mol} \checkmark$	1	ALLOW [incorrect amount of borax] x 2 correctly calculated for the 2nd mark. ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2
		(iii)	Correctly calculates the concentration of HCl $=3.6(0) \times 10^{-3} /(25 / 1000)=0.144\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$	1	ALLOW [incorrect amount of HCl] / (25/1000) correctly calculated for the 3rd mark given to 3 SF
			Total	12	

