

A Level Chemistry B (Salters)

H433/01 Fundamentals of Chemistry

Tuesday 5 June 2018 – Afternoon

Time allowed: 2 hours 15 minutes

You must have:

 the Data Sheet for Chemistry B (Salters) (sent with general stationery)

You may use:

· a scientific or graphical calculator

First name	
Last name	
Centre number	Candidate number

INSTRUCTIONS

- Use black ink. You may use an HB pencil for graphs and diagrams.
- Complete the boxes above with your name, centre number and candidate number.
- · Answer all the questions.
- Write your answer to each question in the space provided. If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.
- · Do **not** write in the barcodes.

INFORMATION

- The total mark for this paper is 110.
- The marks for each question are shown in brackets [].
- Quality of extended responses will be assessed in questions marked with an asterisk (*).
- · This document consists of 36 pages.

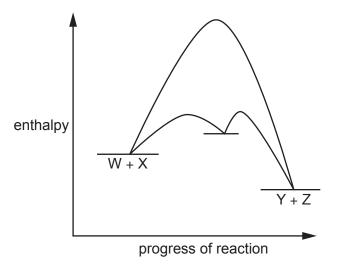
SECTION A

You should spend a maximum of 40 minutes on this section.

Write your answer to each question in the box provided.

Answer all the questions.

1	Wh	ich equation represents a possible fusion reaction?	
	Α	$_{1}H + _{1}H \rightarrow _{2}H$	
	В	$_{1}H + _{3}H \rightarrow _{4}He$	
	С	$_{1}H + _{1}H \rightarrow _{2}He$	
	D	$_{1}$ H + $_{2}$ He \rightarrow $_{3}$ Na	
	You	ır answer	[1]
2	Wh	ich solutions when mixed would give a solution of a salt?	
	Α	barium hydroxide and sulfuric acid	
	В	lead nitrate and sulfuric acid	
	С	silver nitrate and hydrochloric acid	
	D	lithium hydroxide and hydrochloric acid	
	You	ır answer	[1]
3	Wh	ich statement about an atomic emission spectrum is correct?	
	Α	It occurs when electrons absorb energy.	
	В	The wavelength of a line is proportional to the energy lost by electrons.	
	С	The wavelengths of the lines are the same as in an absorption spectrum of the same elem	ıent.
	D	The lines in the emission spectrum of lithium give a yellow colour to a lithium flame.	
	You	ır answer	[1]


4	Whi	ich statement about NO _x pollution is correct?	
	Α	It is only produced in petrol engines.	
	В	It can cause acid rain.	
	С	It is not removed at all by catalytic converters.	
	D	It consists mainly of NO ₃ gas.	
	You	ir answer	[1]
5	Whi	ich statement about a by-product of an industrial reaction is correct?	
	Α	It is formed in the same reaction as the product.	
	В	It is formed when the reactants react in a different way.	
	С	It is in the equation for the reaction.	
	D	It is a minor reactant in the reaction.	
	You	ir answer	[1]
6	Wha	at is the volume of ${ m CO}_2$ (in ${ m dm}^3$) measured at RTP when ${ m 20g}$ ${ m CaCO}_3$ completely decompos	e?
	Α	0.20	
	В	2.4	
	С	4.8	
	D	24	
	You	ir answer	[1]

7		Chlorine reacts with bromide ions in sea water, producing bromine. Which statement about this process is not correct?				
	Α	Bromide ions are oxidised.				
	B The chlorine is obtained from sea water.					
	С	Bromine forms because it is more reactive than chlorine.				
	D	Chlorine molecules are reduced.				
	You	er answer	[1]			
8	Whi	ich formula has the correct systematic name?				

	Formula	Systematic name
Α	Na ₂ SO ₃	sodium sulfate(VI)
В	NaC <i>l</i> O ₃	sodium chlorate(III)
С	Cu ₂ S	copper(I) sulfide
D	Pb(NO ₃) ₂	lead(II) nitrate(III)

Your answer		[1]
Your answer		

9 The enthalpy profiles for the reaction W + X ⇌ Y + Z are shown below, with and without a catalyst.

Which statement is correct?

- A The catalyst increases the yield of Y.
- **B** Increasing the temperature shifts the position of equilibrium to the products side.
- **C** The catalyst does not take part in the reaction.
- **D** The reverse reaction is speeded up by the catalyst.

Your answer		[1]
-------------	--	-----

10 The reaction below produces a chloroalkane.

$$\text{R-OH + HC}l \rightarrow \text{R-C}l + \text{H}_2\text{O}$$

Which row shows the steps to purify the liquid product in the correct order?

Α	Use a separating funnel	Distil	Dry	Remove unreacted HC1
В	Remove unreacted HC1	Use a separating funnel	Dry	Distil
С	Remove unreacted HC1	Use a separating funnel	Distil	Dry
D	Use a separating funnel	Remove unreacted HC1	Distil	Dry

	You	ur answer	[1]
11	Wh	at is not correct for the reaction between aqueous OH ⁻ ions and bromoethane?	
	Α	OH ⁻ ions behave as nucleophiles.	
	В	An alcohol is produced.	
	С	The reaction is faster if chloroethane is used.	
	D	The reaction occurs because of a polar C–Br bond.	
	Υοι	ır answer	[1]

12	Colorimetry is used to find the concentration of an orange solution of iodine. Which statement is correct?			
	Α	The more concentrated the solution the more light is transmitted.		
	В	A yellow coloured filter should be used.		
	С	The absorbance of solutions of known concentration should be measured to get a calibra curve.	tion	
	D	Orange light is absorbed.		
	You	ır answer	[1]	
13	Wh	at is correct for the complex $[Fe(C_2O_4)_3]^{3-}$?		
	Α	The charge on each ligand is 2–.		
	В	The co-ordination number of the metal ion is 3.		
	С	The oxidation state of the iron is +2.		
	D	The ligand is monodentate.		
	You	ır answer	[1]	
14	Wh	ich statement about p-orbitals is correct?		
	Α	A p-orbital is spherical in shape.		
	В	A p-orbital can contain two electrons.		
	С	There are six p-orbitals in a p-subshell.		
	D	An element with outer configuration p ² has both electrons in the same p-orbital.		
	You	ır answer	[1]	

Which row is correct?

	Species	Protons	Neutrons in isotope	Electrons
Α	F-	9	10	11
В	Ne	10	10	10
С	Na ⁺	11	10	11
D	Mg ²⁺	14	10	12

	You	ır answer	[1]	
16	Wh	ich statement about the rate determining step of a reaction is correct?		
	A	It is the fast step.		
	В	It cannot involve a catalyst.		
	С	It does not involve zero order reagents.		
	D	It is always between two first-order reagents.		
	You	ır answer	[1]	
17	An unsaturated carboxylic acid has an M_r of 280. 70 g of the acid is saturated by 1.0 g of hydrogen.			
	Hov	w many C=C bonds are there in one molecule of the acid?		
	A	1		
	В	2		
	С	4		
	D	8		
	You	ır answer	[1]	

18 So	odium	carbonate	reacts	with r	nydroch	loric	acid a	s shown	in the	equation.
--------------	-------	-----------	--------	--------	---------	-------	--------	---------	--------	-----------

$$\mathrm{Na_2CO_3} \, + \, \mathrm{2HC}l \, \longrightarrow \, \mathrm{2NaC}l \, + \, \mathrm{CO_2} \, + \, \mathrm{H_2O}$$

What mass (in grams) of $\mathrm{Na_2CO_3}$ will react exactly with $50\,\mathrm{cm^3}$ of $2.0\,\mathrm{mol\,dm^{-3}}$ HCl?

- **A** 0.05
- **B** 5.3
- **C** 10.6
- **D** 21.2

Your answer		[1]
-------------	--	-----

- 19 Which compound will react with acidified potassium dichromate(VI)?
 - A CH₃CH(OH)COOH
 - **B** $(CH_3)_3COH$
 - C CH₃COOH
 - D CH₃COCH₃

Your answer		[1]
-------------	--	-----

- **20** Which statement is **not** correct about amines?
 - **A** The lone pair on the nitrogen allows them to act as nucleophiles.
 - **B** They react with carboxylic acids to form amides.
 - **C** They form hydrogen bonds with water.
 - **D** They accept protons from water molecules.

Your answer [1]

21 The methane concentration in the atmosphere has increased from 0.722 ppm in pre-industrial

23	A B C	[Fe(H ₂ O) ₆] ³⁺ (aq) and sodium hydroxide solution Green precipitate Orange precipitate Orange precipitate Orange solution	[Cu(H ₂ O) ₆] ²⁺ (aq) and excess conc. ammonia solution Green solution Blue/violet solution Green precipitate Yellow solution								
23	A B C	[Fe(H ₂ O) ₆] ³⁺ (aq) and sodium hydroxide solution Green precipitate Orange precipitate Orange precipitate	[Cu(H ₂ O) ₆] ²⁺ (aq) and excess conc. ammonia solution Green solution Blue/violet solution Green precipitate								
23	Α	[Fe(H ₂ O) ₆] ³⁺ (aq) and sodium hydroxide solution Green precipitate	[Cu(H ₂ O) ₆] ²⁺ (aq) and excess conc. ammonia solution								
23		[Fe(H ₂ O) ₆] ³⁺ (aq) and sodium hydroxide solution	[Cu(H ₂ O) ₆] ²⁺ (aq) and excess conc. ammonia solution								
23	Whi	[Fe(H ₂ O) ₆] ³⁺ (aq) and sodium	[Cu(H ₂ O) ₆] ²⁺ (aq) and excess								
		Which row gives the correct appearances of the products of the reactions? [Fe(H ₂ O) ₆] ³⁺ (aq) and sodium [Cu(H ₂ O) ₆] ²⁺ (aq) and excess conc. ammonia solution									
	Your answer [1]										
	D	Steamy fumes of hydrogen bromide are formed as the only gas when concentrated sulfuric acid is warmed with sodium bromide.									
	С	When iodobutane and chlorobutane are separately refluxed with aqueous silver nitrate, a precipitate forms faster with iodobutane.									
	В	Aqueous silver nitrate forms a yello	w precipitate when added to sodiu	m bromide solution.							
	Α	A solution of bromine water forms a	a purple layer when hexane is adde	d.							
22	Whi	ch observation is correct?									
	You	r answer		[1]							
	D	D 150%									
	С	67%									
	В	60%									
	Α										
	Wha	at is the % increase in methane cond	centration?								
	times to $1.80 \times 10^{-4} \%$ now.										

24	Whi	Which statement about the Arrhenius equation is correct?							
	Α	A plot of ln k against T gives a straight line.							
	В	When T is very large ln k almost equals ln A.							
	С	$E_{\rm a}$ is the gradient of a plot of ln k against $1/T$.							
	D	A plot of k against $1/T$ gives a straight line.							
	You	er answer	[1]						
25	Whi	ich molecule will not be made when water is eliminated from CH ₃ CH ₂ C(CH ₃)(OH)CH ₂ CH ₂ CH	1 ₃ ?						
	Α	$CH_3C(CH_3)=CHCH_2CH_2CH_3$							
	В	$CH_3CH \!=\! C(CH_3) CH_2CH_2CH_3$							
	С	$CH_2 \!\!=\!\! C(CH_2CH_3) CH_2CH_2CH_3$							
	D	$CH_3CH_2C(CH_3) \mathtt{=} CHCH_2CH_3$							
	You	ir answer	[1]						
26	Whi	ich statement about a strong base at 298k is correct?							
	Α	It is partially ionised.							
	В	Its pH is given by pH = 14 + log[OH ⁻].							
	С	It will not react with weak acids.							
	D	It has the same pH as a weak base of the same concentration.							
	You	r answer	[1]						

27 Which row correctly shows the main products in electrolysis using graphite electrodes?

	Electrolyte	Product at the anode	Product at the cathode			
Α	MgBr ₂ (I)	bromine	magnesium			
В	CuSO ₄ (aq)	oxygen	hydrogen			
С	NaCl (aq)	chlorine	sodium			
D	PbS(I)	hydrogen sulfide	lead			

	You	ır ans	swer	[1]				
28			statement/s is/are correct about solutions of amino acids with the general form H_2)COOH?	านla				
		1	They contain zwitterions.					
		2	They react with sodium hydroxide.					
		3	They react with hydrochloric acid.					
	Α	A 1, 2 and 3						
	В	Onl	y 1 and 2					
	С	Onl	y 2 and 3					
	D	Onl	y 1					
	You	ır ans	swer	[1]				

29	Which statement/s is/are a result of delocalisation in benzene?									
		1	Benzene undergoes substitution reactions.							
		2	Benzene reacts faster with bromine than alkenes do.							
		3	The enthalpy change of hydrogenation of benzene is three times that of cyclohexene).						
	A 1, 2 and 3									
	B Only 1 and 2									
	C Only 2 and 3									
	D Only 1									
	Your answer									
30	Kek	ulé r	epresented benzene as:							
	Whi	ich s	tatement/s follow/s from this structure?							
		1	All the carbon-carbon bonds are of equal length in benzene.							
		2	The C–C–C bond angle in benzene is 120°.							
		3	Benzene has a planar structure.							
	A	1, 2	and 3							
	В	Onl	y 1 and 2							
	С	Onl	y 2 and 3							
	D Only 1									
	You	ır ans	swer	[1]						

14

SECTION B

Answer all the questions.

31	Long chain alkanes can be cracked to provide better fuels and raw materials for the chemical
	industry. One such cracking reaction is shown in equation 31.1 .

$$C_{12}H_{26} \rightarrow 2C_3H_6 + C_6H_{14}$$
 Equation 31.1

(a) In a cracking reaction 1.50 tonnes of dodecane ($C_{12}H_{26}$) produce 478 kg of hexane (C_6H_{14}).

Calculate the percentage yield of the reaction in equation 31.1.

percentage yield =% [:
Some students want to investigate the usefulness of hexane as a fuel.
(i) Describe an experiment they could use to determine the enthalpy change of combustic of liquid hexane in the laboratory.
[
(ii) Show how the result would be calculated from the measurements made when carryin out the experiment in part (b)(i).
[

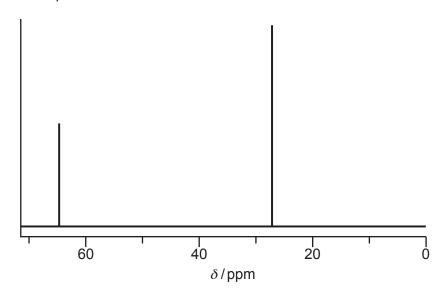
(iii)	Describe accurate.	two	ways	in	which	the	students	could	make	the	basic	experiment	more
	1												
													2

(c) The students are given some enthalpy changes of formation and use them to check the accuracy of their answer.

Calculate the standard enthalpy change of combustion of hexane from the data given.

Substance	Δ _f H ^Θ /kJ mol ^{−1}				
CO ₂ (g)	-393				
H ₂ O(I)	-286				
C ₆ H ₁₄ (I)	-199				

 $\Delta_{\rm c} H^{\Theta}$ hexane =kJ mol⁻¹ [2]


(d) The propene produced in equation 31.1 has many uses in the chemical industry.

$$C_{12}H_{26} \rightarrow 2C_3H_6 + C_6H_{14}$$

Equation 31.1

One of the substances produced from propene is an alcohol used as a cleaner and de-icer.

The ¹³C NMR spectrum of this alcohol is shown below.

Draw the **full** structural formula of the alcohol in the box below, giving your reasoning.

П	

(e) The alcohol from (d) can be oxidised to a carbonyl compound.

Give the reagents and conditions to carry out this oxidation.

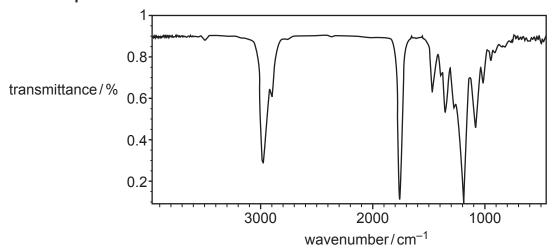
Reagents

Conditions

(f) The carbonyl compound from **(e)** can be reacted further to produce other raw materials. For example, it reacts with HCN.

The formula of a carbonyl compound is shown below.

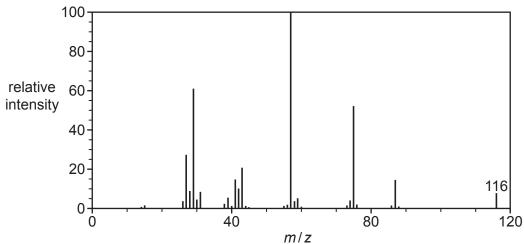
Give the mechanism for the reaction of this compound with cyanide ions followed by H⁺. Show curly arrows, relevant dipoles and charges and give the formula of the product.


Name the type of reaction.

type of reaction[4]

(g)* Compound A has six carbon atoms and can be made from propene using several steps.

The infrared, proton NMR and mass spectra for compound A are shown.


Infrared spectrum

Proton NMR spectrum

Mass spectrum

Working shown on this page will not be marked.

Use the information on page 18 to work out the structure of compound A .
Explain your reasoning, using evidence from each spectrum.
Structure of compound A

- **32** Enzymes catalyse the breakdown of protein molecules in the digestive system. The tertiary structure of enzymes enables the substrate to bind to them.
 - (a) State the meaning of the term tertiary structure of a protein.

 	 [1]

(b) Give two ways a substrate can bind to an enzyme.

1	
2	
	[1]

- (c) Some students hydrolyse a protein in the laboratory by refluxing it with moderately concentrated hydrochloric acid.
 - (i) Circle all the chiral centres in the section of protein shown below. [1]

$$-NH - CH - C - NH - CH_{2} -$$

(ii) Give the organic products of the complete hydrolysis of this protein section with hydrochloric acid.

(d)*	The students use paper chromatography to confirm that the products of hydrolysis are those in part (c)(ii).
	Describe how the students would develop and analyse the chromatogram to identify the products of hydrolysis.
	You may include a diagram in your answer.
	[6]

33 Procaine has been used as an anaesthetic in dentistry.

Procaine

Some students reacted procaine with various reagents to see if they could make other useful substances from it.

They hydrolysed procaine, producing a solution containing compound ${\bf B}$ and the ${\bf sodium\ salt}$ of compound ${\bf C}$.

State at room temperature: liquid

(i)	Suggest the reagent and conditions the students used for the hydrolysis.
	[1
(ii)	Suggest how the students could obtain a sample of compound C from the solution the obtained.
	[2

(a)

(iii) The students reacted procaine with ethanoyl chloride.

Give the formula of the organic product formed.

[1]

(b) Compounds ${\bf B}$ and ${\bf C}$ can be turned into monomers for polymerisation reactions.

OH
$$CH_2CHN(C_2H_5)_2$$
 polymer D compound B

Give the structural formula for the repeat units of polymers ${\bf D}$ and ${\bf E}$ and give the ${\bf type}$ of polymerisation occurring in each case.

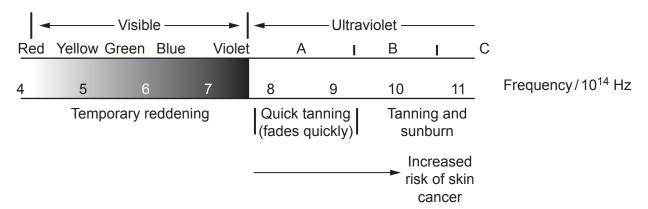
Monomer	Repeat unit of the polymer	Type of polymerisation
CH ₂ CHN(C ₂ H ₅) ₂	Polymer D	
Cl	Polymer E	

[2]

		24	
34		e use of cars can affect the concentration of ozone in the troposphere. T ses respiratory problems and photochemical smog.	ropospheric ozone
		pospheric ozone is formed in a series of reactions involving carbon mongen and volatile organic compounds, all of which are present in exhaust er	
	(a)	NO is a radical.	
		Draw a 'dot-and-cross' diagram of NO and explain why it is called a radical Show outer electron shells only.	I.
			[1]
	(b)	A series of reactions producing ozone from carbon monoxide, hydroxyl ra	
	(- /	shown in equations 34.1 – 34.5 below.	
		$OH + CO \rightarrow HOCO$	Equation 34.1
		$\mathrm{HOCO} + \mathrm{O_2} \rightarrow \mathrm{HO_2} + \mathrm{CO_2}$	Equation 34.2
		$\mathrm{HO_2}$ + NO \longrightarrow OH + $\mathrm{NO_2}$	Equation 34.3
		$NO_2 + hv \rightarrow NO + O$	Equation 34.4
		$O + O_2 \rightarrow O_3$	Equation 34.5
		(i) Explain why the reaction in equation 34.3 is classed as a propagation	n step.

(ii) Write in the box the overall equation for the reaction sequence in equations 34.1 - 34.5.

.....[1]


[1]

(c) Years ago, the air conditioning in cars used CFC-12, CCl_2F_2 .

CFC-12 absorbs some UV radiation when it breaks down.

The most harmful UV radiation from the Sun that causes damage to cells is in the range 10.1×10^{14} to 14.0×10^{14} Hz. Ozone in the stratosphere absorbs radiation in this range.

The diagram below shows the effects of different frequencies of UV on human skin.

Carry out some calculations, using the bond enthalpies below, and comment on the ability of CFC-12 to remove harmful UV when it breaks down.

Bond	Bond enthalpy/kJmol ⁻¹
C-C1	+346
C–F	+467

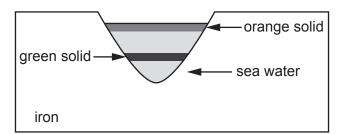
35	A company v	was investigating the	corrosion of metal	narts used in oil	rias in the 1	North Sea
33	A Company v	was investigating the	corrosion of metal	parts used in on	1145 111 1116 1	voi ili Sea.

Chemists took two identical bolts. One was unused and the other had been exposed to the seawater for several weeks. They reacted each bolt with dilute sulfuric acid. All the unreacted iron was converted to Fe²⁺(aq) ions and the rust reacted to form Fe³⁺(aq).

(a)	Describe how the chemists would dissolve one bolt and make the solution up to 1.00 dm ³ .
	[2]
	[2]

(b) The chemists then titrated 10.0 cm³ portions of their solutions with a solution of 0.200 mol dm⁻³ potassium manganate(VII).

The ${\rm MnO_4}^-$ ions oxidise the Fe²⁺ to Fe³⁺ and the Fe³⁺ ions do not react. The equation for the reaction is given below.


$$\mathrm{MnO_4^-}$$
 + 5Fe²⁺ + 8H⁺ \longrightarrow $\mathrm{Mn^{2+}}$ + 5Fe³⁺ + 4H₂O

Use the titration results below to find the mass of the bolt that had rusted away.

Type of bolt	Average volume of 0.200 mol dm ⁻³ KMnO ₄ used in the titration/cm ³
Unused bolt	17.92
Rusted bolt	9.75

mass of bolt that had rusted away = g [3]

(c) The iron rusted in small dips in the surface. The chemists noticed a green solid that turned orange at the surface of the water.

(i) Give the half-equations for the processes occurring during the rusting.

	(ii)	What are the formulae of the green and orange solids?	
		Green solid	
		Orange solid	[1]
	(iii)	Suggest why rusting takes place faster in seawater than in rainwater.	
(d)	Give	e the electron configuration of the Fe ²⁺ ion.	
			. [1]

[2]

The chemists investigated making the bolts from a nickel-copper alloy that has high strength and resistance to corrosion.

They reacted the alloy with sulfuric acid and filtered off the unreacted solid, which they found was copper.

(e) Use the electrode potentials in the table below to explain why only the nickel reacts.

Half reaction	E [⊖] /V
$Ni^{2+}(aq) + 2e^- \rightleftharpoons Ni(s)$	- 0.25
2H ⁺ (aq) + 2e ⁻ ⇌ H ₂ (g)	0.00
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+ 0.34

		[2]
(f)	The solu	solution they obtained was green due to $[{\rm Ni(H_2O)_6}]^{2+}$. The chemists added some EDTA ⁴⁻ ition and the colour changed to blue. EDTA ⁴⁻ is a polydentate ligand.
	(i)	Suggest why the colour changes as the EDTA ⁴⁻ is added and name the type of reaction taking place.
		[1]
	(ii)	In a separate experiment, $25.0\mathrm{cm^3}$ of a $0.250\mathrm{moldm^{-3}}$ [Ni(H ₂ O) ₆] ²⁺ solution is found to react exactly with $41.7\mathrm{cm^3}$ of $0.150\mathrm{moldm^{-3}}$ EDTA ⁴⁻ solution.
		Calculate the formula of the complex ion that nickel forms with EDTA ^{4–} .

29 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

36	Plants need nitrogen to synthesise proteins, but most plants cannot use atmospheric nitrogen.			
	Ammonium nitrate is often used as a fertiliser as it contains nitrogen in a form that plants can			
	absorb.			

	Explain this in terms of the bonding in nitrogen.
	This synthesis reaction has a very high activation enthalpy.
	atmospheric nitrogen.
(a)	The first step in the process of making ammonium nitrate is the synthesis of ammonia fro

(b) The hydrogen needed to manufacture ammonia can be produced from steam and methane as shown in **equation 36.1** below.

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g) \Delta H = +206 \text{ kJ mol}^{-1}$$
 Equation 36.1

(i) Use the entropy values in the table below to calculate $\Delta_{\rm sys} S$ for the forward reaction in equation 36.1.

Substance	Entropy S/JK ⁻¹ mol ⁻¹
CH ₄ (g)	186.2
H ₂ O(g)	189.0
CO(g)	197.6
H ₂ (g)	130.6

	$\Delta_{sys} S = \dots J K^{-1} mol^{-1} [1]$
(ii)	Explain how the sign of your answer to (i) is predicted by equation 36.1.
	[1]

(c)	Calculate the minimum temperature requifeasible.	ired for the forward reaction in equation 36.1	to be
	Give your answer to an appropriate number	ber of significant figures.	
	tem	perature =	K [2]
(d)	$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$	$\Delta H = +206 \mathrm{kJ}\mathrm{mol}^{-1}$ Equation	36.1
	Another source of hydrogen is from the re	eaction shown in equation 36.2 .	
	$CH_4(g) + CO_2(g) \rightleftharpoons 2CO(g) + 2H_2(g)$	$\Delta H = +247 \mathrm{kJ} \mathrm{mol}^{-1}$ Equation	36.2
	This is claimed to be a much greener production	cess than that in equation 36.1 .	
	Comment on the validity of this statement	t, considering:	
	the raw materials used		
	the operating conditions		
	the mole ratios.		
			[3]

(e) The Haber process for the manufacture of ammonia is shown in equation 36.3.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \quad \Delta H = -92 \text{ kJ mol}^{-1}$$
 Equation 36.3

At a certain temperature, a mixture of nitrogen and hydrogen was allowed to reach equilibrium in a container of fixed volume. Chemists found the concentrations shown in the table.

Substance	Concentration at the start/moldm ⁻³	Concentration at equilibrium/moldm ⁻³
N ₂	1.00	0.90
H ₂	1.00	
NH ₃	0.00	

Calculate the equilibrium concentrations of H₂ and NH₃.

Use these values to calculate a value for K_c at the temperature of the experiment and give the units.

(f) In order to make the ammonium nitrate fertiliser, some of the ammonia is oxidised to nitric acid in several stages shown by equations 36.4–36.6.

.....NH
$$_3$$
 +.....O $_2$ \rightarrow NO +H $_2$ O Equation 36.4

$$4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$$
 Equation 36.6

The nitric acid formed is reacted with more ammonia.

$$NH_3 + HNO_3 \rightarrow NH_4NO_3$$
 Equation 36.7

(i) Use oxidation states or some other method to balance equation 36.4. [1]

(ii)	The overall yield of the reactions in equations 36.4 – 36.6 is 77%. The yield of ammonium nitrate in equation 36.7 can be taken as 100%.
	What mass (in tonnes) of ammonia is needed to make 25 tonnes of ammonium nitrate?
	mass of ammonia needed =tonnes [4]
(iii)	Describe a test that would identify nitrate ions.
	[2]

END OF QUESTION PAPER

34

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).		

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

 $For queries \ or \ further \ information \ please \ contact \ the \ Copyright \ Team, \ First \ Floor, 9 \ Hills \ Road, \ Cambridge \ CB2 \ 1GE.$

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.