AQA

A-level PHYSICS (7408/2)

Paper 2

Specimen 2014

Morning

Time allowed: 2 hours

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data and formulae booklet.

Instructions

- Answer all questions.
- Show all your working.

Information

• The maximum mark for this paper is 85.

Please write clearly, in block capitals, to allow character computer recognition.			
Centre number			
Surname			
Forename(s)			
Candidate signature			

01.2	A potential difference (pd) of 65 kV is applied between the plates.
	Show that when a particle of specific charge $1.2 \times 10^{-6} \text{ C kg}^{-1}$ is between the plates its horizontal acceleration is about 0.2 m s^{-2} .
	[3 marks]
01.3	Calculate the total horizontal deflection of the particle that occurs when falling
	between the plates. [1 mark]
	horizontal deflection =m
01.4	Explain why the time to fall vertically between the plates is independent of the mass of a particle.
	[2 marks]

01.5	State and explain two reasons, why the horizontal acceleration of a par different for each particle.	ticle is
	·	[4 marks]
	Turn to page 6 for the next question	

Γ

Г

02.3	Calculate the energy that is now stored by the capacitor. [2 marks]
02.4	energy stored =µJ Explain why there is an increase in the energy stored by the capacitor when the polythene sheet is pulled out from between the plates. [2 marks]
	Turn over for the next question
	Turn over for the next question

03.1	State two assumptions made about the motion of the molecules in a gas in the derivation of the kinetic theory of gases equation.
	[2 marks]
03.2	Use the kinetic theory of gases to explain why the pressure inside a football increases when the temperature of the air inside it rises. Assume that the volume of the ball remains constant. [3 marks]

03.3	The 'laws of football' require the ball to have a circumference between 680 mm and 700 mm. The pressure of the air in the ball is required to be between 0.60×10^5 Pa and 1.10×10^5 Pa above atmospheric pressure.
	A ball is inflated when the atmospheric pressure is 1.00×10^5 Pa and the temperature is 17 °C. When inflated the mass of air inside the ball is 11.4 g and the circumference of the ball is 690 mm.
	Assume that air behaves as an ideal gas and that the thickness of the material used for the ball is negligible.
	Deduce if the inflated ball satisfies the law of football about the pressure.
	molar mass of air = 29 g mol ^{-1} [6 marks]

0 4	An ancient sealed flask contains a liquid, assumed to be water. An archaeologist asks a scientist to determine the volume of liquid in the flask without opening the flask. The scientist decides to use a radioactive isotope of sodium ($^{24}_{11}$ Na) that decays with a half-life of 14.8 h.
04.1	She first mixes a compound that contains 3.0×10^{-10} g of sodium-24 with 1500 cm ³ of water. She then injects 15 cm ³ of the solution into the flask through the seal.
	Show that initially about 7.5 × 10 ¹⁰ atoms of sodium-24 are injected into the flask. [1 mark]
04.2	Show that the initial activity of the solution that is injected into the flask is about 1×10^{6} Bq.
	[3 marks]
	activity =Bq

0 4 . 3 She waits for 3.5 h to allow the injected solution to mix thoroughly with the liquid in the flask. She then extracts 15 cm^3 of the liquid from the flask and measures its activity which is found to be 3600 Bq. Calculate the total activity of the sodium-24 in the flask after 3.5 h and hence determine the volume of liquid in the flask. [3 marks] The archaeologist obtained an estimate of the volume knowing that similar empty 04. 4 flasks have an average mass of 1.5 kg and that mass of the flask and liquid was 5.2 kg. Compare the estimate that the archaeologist could obtain from these masses with the volume calculated in part 4.3 and account for any difference. [2 marks]

0 5	Figure 3 shows an arrangement for investigating electromagnetic induction.
	Figure 3
	When the switch is closed there is a current in the coil in circuit \mathbf{X} . The current is in a clockwise direction as viewed from position \mathbf{P} .
	Circuit Y is viewed from position P.
0 5 . 1	Explain how Lenz's law predicts the direction of the induced current when the switch is opened and again when it is closed.
	[4 marks]

0 5 . 2	Determine the flux density, $B_{\rm H}$, of the horizontal component of the Earth's magnetic field.
	[3 marks]
	horizontal component of flux density =T
0 6	Read the following passage and answer the questions that follow
	Satellites used for telecommunications are usually in geostationary orbits. Using suitable dishes to transmit the signals, communication over most of the Earth's surface is possible at all times using only 3 satellites.
5	Satellites used for meteorological observations and observations of the Earth's surface are usually in low Earth orbits. Polar orbits, in which the satellite passes over the North and South Poles of the Earth, are often used.
10	One such satellite orbits at a height of about 12 000 km above the Earth's surface circling the Earth at an angular speed of 2.5×10^{-4} rad s ⁻¹ . The microwave signals from the satellite are transmitted using a dish and can only be received within a limited area, as shown in Figure 7 .
	Figure 7
	not to scale
	O And
	The signal of wavelength λ is transmitted in a cone of angular width θ , in radian, given by $\theta = \frac{\lambda}{d}$
	where d is the diameter of the dish.
15	The satellite transmits a signal at a frequency of 1100 MHz using a 1.7 m diameter dish. As this satellite orbits the Earth, the area over which a signal can be received moves. There is a maximum time for which a signal can be picked up by a receiving station on Earth.

06.1	Describe two essential features of the orbit needed for the satellite to appear geostationary. [2 marks]
06.2	Calculate the time taken, in s, for the satellite mentioned in line 7 in the passage to complete one orbit around the Earth. [1 mark]
06.3	time taken =s Show that at a distance of 12 000 km from the satellite the beam has a width of 1900 km. [3 marks]
06.4	The satellite is in a polar orbit and passes directly over a stationary receiver at the South Pole. Show that the receiver can remain in contact with the satellite for no more than about 20 minutes each orbit. radius of the Earth = 6400 km [3 marks]
	maximum time = minute

06.5	The same satellite is moved into a higher orbit.	
	Discuss, with reasons, how this affects the signal strength and contact time for receiver at the South Pole.	
	[4 m	arks]
	END OF SECTION A	

Section B Each of Questions 7 to 31 is followed by four responses, A, B, C, and D. For each question select the best response.					
Only one answ	er per question is	allowed			
-					
For each answer completely fill in the circle alongside the appropriate answer.					
CORRECT METHOD					
If you want to c	hange your answe	er you must cross out your original answer as shown.			
If you wish to re select as show		r previously crossed out, ring the answer you now wish to			
0 7 Whic	h of the following	gives a correct unit for $\left(\frac{g^2}{G}\right)$?			
		[1 mark]			
Α	N O				
В	N kg ⁻¹ N m				
C D	N m \bigcirc N m ⁻² \bigcirc				
ma		is half the Earth's radius and a mass a quarter of the Earth's approximate gravitational field strength on the surface of the			
		[1 mark]			
A	1.6 N kg ⁻¹	0			
В	5.0 Nkg^{-1}	0			
С	10 N kg ⁻¹	0			
D	20 N kg ⁻¹	0			

09	Two stars of mass M and $4M$ are at a distance d between their centres.			
	M 4M			
	The resultant gravitational field strength is zero along the line between th centres at a distance y from the centre of the star of mass M .	eir		
	What is the value of the ratio $\frac{y}{d}$?			
	$\mathbf{A} \frac{1}{2} \qquad \bigcirc$	[1 mark]		
	B $\frac{1}{3}$			
	$C = \frac{2}{3}$			
	$D = \frac{3}{4}$			
1 0	 Which of the following statements about Newton's law of gravitation is correct? Newton's gravitational law explains [1 mark] A the origin of gravitational forces. B why a falling satellite burns up when it enters the Earth's atmosphere. C why projectiles maintain a uniform horizontal speed. 			
	D how various factors affect the gravitational force between two particles	0		

14	The electric potential at a distance r from a positive point charge is 45 V. The potential increases to 50 V when the distance from the point charge decreases by 1.5 m. What is the value of r ? [1 mark]		
	E	A 1.3 m Image: Constraint of the second	
1 5	and on e	e diagram shows two particles at distance d apart. One particle has the other $-2Q$. The two particles exert an electrostatic force of att each other. Each particle is then given an additional charge $+Q$ and aration is increased to distance $2d$.	raction, F,
		+Q -2Q	
	Whi	d ch of the following gives the force that now acts between the two p	oarticles? [1 mark]
	Α	an attractive force of $\frac{F}{4}$	
	в	a repulsive force of $\frac{F}{4}$	
	С	an attractive force of $\frac{F}{2}$	
	D	a repulsive force of $\frac{F}{2}$	
16	Whi	ch of the following statements about a parallel plate capacitor is in	correct? [1 mark]
	Α	The capacitance of the capacitor is the amount of charge stored by the capacitor when the pd across the plates is 1 V.	0
	в	A uniform electric field exists between the plates of the capacitor.	0
	С	The charge stored on the capacitor is inversely proportional to the pd across the plates.	0
	D	The energy stored when the capacitor is fully charged is proportional to the square of the pd across the plates.	0

1 7

A voltage sensor and a datalogger are used to record the discharge of a 10 mF capacitor in series with a 500 Ω resistor from an initial pd of 6.0 V. The datalogger is capable of recording 1000 readings in 10 s.

After a time equal to the time constant of the discharge circuit, which one of the rows gives the pd and the number of readings made?

[1 mark]

	Potential difference / V	Number of readings	
Α	2.2	50	0
в	3.8	50	0
С	3.8	500	0
D	2.2	500	0

1 8

A horizontal straight wire of length 0.30 m carries a current of 2.0 A perpendicular to a horizontal uniform magnetic field of flux density 5.0×10^{-2} T. The wire 'floats' in equilibrium in the field.

2 1

A simple pendulum and a mass-spring system have the same oscillation frequency f at the surface of the Earth. The pendulum and the mass-spring system are taken down a mine where the acceleration due to gravity is less than at the surface. What is the change in the frequency of the simple pendulum and the change in the frequency of the mass-spring system?

[1 mark]

	simple pendulum	mass-spring	
Α	fincreases	f decreases	0
В	fdecreases	f decreases	0
С	fincreases	f stays unchanged	0
D	fdecreases	f stays unchanged	0

2 2

The graph shows how the flux linkage, $N\Phi$, through a coil changes when the coil is moved into a magnetic field.

The emf induced in the coil

D is zero then increases after time t_0 .

[1 mark]

2 3 A liquid flows continuously through a chamber that contains an electric heater. When the steady state is reached, the liquid leaving the chamber is at a higher temperature than the liquid entering the chamber. The difference in temperature is Δt .

Which of the following will increase Δt with no other change?

[1 mark]

 \odot

0

0

 \bigcirc

- A Increasing the volume flow rate of the liquid
- **B** Changing the liquid to one with a lower specific heat capacity
- **C** Using a heating element with a higher resistance
- **D** Changing the liquid to one that has a higher density

Turn over for the next question

28	Which	n of the following	g best describes the decay constant for a ra	adioisotope? [1 mark]
	Α	The reciprocal	of the half-life of the radioisotope.	
	в	-	cay of the radioisotope.	0
	С	The constant of proportionality which links half-life to the rate of decay of nuclei.		
	D		f proportionality which links rate of decay of undecayed nuclei.	0
29	Which	n of the following	g is equal to $\frac{\text{radius of a nucleus of } \frac{125}{51}\text{Sb}}{\text{radius of a nucleus of } \frac{64}{30}\text{Zn}}$?	
	Α	1.19		[1 mark]
	в	1.25 📿		
	С	1.33 🖸		
	D	1.40		
30			vity of a radioactive nuclide has fallen to on alf-life of the radioactive nuclide is	e sixteenth of its [1 mark]
	Α	2 days.	0	
	В	4 days.	0	
	С	8 days.	0	
	D	16 days.	0	

There are no questions printed on this page.

Copyright $\ensuremath{\mathbb{O}}$ 2014 AQA and its licensors. All rights reserved.