Answer all the questions.

1 Abiraterone, C₂₄H₃₁NO, is a new drug under trial as a treatment for cancer of the prostate gland. The structure of abiraterone is shown below.

abiraterone

R is a ring structure with the molecular formula $\mathrm{C}_5\mathrm{H}_4\mathrm{N}$

a)		ne two functional groups present in the part of the abiraterone molecule shown.
		[2]
b)	A m	nolecule of abiraterone is chiral because it has a number of asymmetric carbon atoms.
	(i)	On the structural formula shown above, circle three of these asymmetric carbon atoms [2]
	(ii)	A molecule with an asymmetric carbon atom exists as two enantiomers. Explain why these are different compounds.
c)	_	h-resolution mass spectrometry can be used to determine the molecular formula of a spound by measuring the mass:charge ratio of the M ⁺ peak.
	(i)	Explain how the molecular formula of abiraterone can be determined from an accurate mass:charge ratio for the M ⁺ peak in its mass spectrum.

(ii)	The M_r value of	abi	iraterone is 3	349 to	the r	neares	st whole	nı	ımber.	In the	low-res	olut	ion
	mass spectrum	of	abiraterone	there	are	also	peaks	at	mass:	charge	ratios	of	15
	and 332.												

Give the formulae of the species

- lost from the molecular ion to form a fragment which causes the peak at 332.

- (d) In treating cancers, abiraterone is used as its **ethanoate** ester.
 - (i) On the diagram below, draw the **full** structural formula of the *ethanoate* group in the correct position.

[1]

(ii) Name the two substances that must be heated under reflux with abiraterone to make its ethanoate ester.

 	• • •
F ¹	21
 ······ [-1

(e) Complete the equation below for the reaction of abiraterone with **excess** bromine. Assume that the 'R group' in the structural formula of abiraterone does not react with bromine.

$$C_{24}H_{31}NO + \longrightarrow$$

[1]

(f)	Abiraterone ethanoate is a white solid which can be purified by recrystallisation. Recrystallisation removes both soluble and insoluble impurities.	
^	Describe how a student would carry out this procedure using a suitable solvent.	
	In your answer you should make it clear how the removal of impurities is linked procedural steps.	to the
		[5]
(g)	Clinical trials are carried out to determine the suitability of abiraterone as a drug.	
	Give three questions that clinical trials are designed to answer.	
		[3]
	[Tot:	al· 21

Iron(II) ethanoate is used for coating fabrics before they are dyed. It is made by treating scrap

2

uired.							
	<u>→</u>	[2]					
Complete the	ne electronic configurations for the following iron species.						
Fe atom:	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶						
Fe(II) ion:	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶						
Fe(III) ion:	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	[2]					
Use your ans	nswers in (i) to explain why Fe ³⁺ ions are more stable than F	e ²⁺ ions.					
		[1]					
		ate. He observed					
i) Give an ionic equation for the formation of the green precipitate. Include state sym							
	\rightarrow						
		[2]					
The student red-brown.	t left the green precipitate to stand. At the surface the p	orecipitate turnec					
	ed-brown precipitate and explain what caused the red-browr	n precipitate to be					
formed.							
iormed.							
	Fe atom: Fe(II) ion: Fe(III) ion: Use your and the student added formation of the student added formation added	Fe(III) ion: 1s² 2s² 2p6 3s² 3p6 Fe(III) ion: 1s² 2s² 2p6 3s² 3p6 Use your answers in (i) to explain why Fe³+ ions are more stable than Fermion and the stable and the stab					

Turn over

(d)	The concentration of an iron(II) ethanoate solution can be determined by a redox titratio with cerium(IV) sulfate. A few drops of an indicator are added. The solution turns purple a the end point.							
The equation for the reaction between Ce ⁴⁺ and Fe ²⁺ is given below.								
		$Ce^{4+}(aq) + Fe^{2+}(aq) \longrightarrow Ce^{3+}(aq) + Fe^{3+}(aq)$						
(i) Give the formula of cerium(IV) sulfate.								
		[1]						
	A student found that a $25.0\mathrm{cm^3}$ sample of an iron(II) ethanoate solution required a titre of $18.5\mathrm{cm^3}$ of $0.100\mathrm{moldm^{-3}}$ cerium(IV) sulfate solution.							
		Calculate the concentration of Fe ²⁺ in the iron(II) ethanoate solution.						
		concentration of $Fe^{2+} = \dots mol dm^{-3}$ [2]						

(e)	The indicator solution used in (d) is made by dissolving 0.10 g of a compound A in $0.0050\mathrm{moldm^{-3}}$ NaOH solution to make $100\mathrm{cm^3}$ of indicator solution.									
	$M_{\rm r}$ of compound A , 213									
	(i)	Calculate the concentrat Give your answer to an a								
			concentration of $\mathbf{A} = .$	moldm ⁻³ [2]						
	(ii)	The table below contains data obtained from the infrared spectrum of compound A .								
		Use your Data sheet to o	[2							
		wavenumber/cm ⁻¹	bond	location						
		3150								
		1715								
	(iii)	ılkaline solution.								
	Use this information and the information from (ii) to identify the functional groupound A and so explain why A is soluble in an alkaline solution.									
				[2						

(f) On leaving his titration flask to stand at the end of the titration outlined in (d), the student noticed that the purple colour, caused by another compound, **B**, gradually faded to yellow. The student decided to investigate the kinetics of this reaction of compound **B**.

The student used a colorimeter and was provided with a calibration curve for solutions of compound ${\bf B}$. From the results he could determine the order of the reaction with respect to compound ${\bf B}$.

- Explain how the student would use the colorimeter and the calibration curve to determine the concentrations of compound **B** as the purple colour faded in the titration flask.
- Explain how the student would use the results to show that the reaction taking place is first order with respect to compound **B**.

In your answer you should use appropriate technical terms spelled correctly.	
	[5]

[Total: 24]

3 Skin consists mostly of the protein collagen. Collagen is made mainly from three amino acids, known as **X**, **P** and **G**. In the primary structure of collagen, the amino acid sequence -**X-P-G**- is common.

- (a) The strands of collagen can be broken down into the constituent amino acids by the enzyme, collagenase, which hydrolyses the peptide links.
 - (i) On the diagram above circle a peptide link.

[1]

(ii) Give the structural formula of amino acid G.

[1]

(iii) Suggest the formula of the zwitterion of the amino acid P.

[2]

Amino acid ${\bf X}$ is synthesised from amino acid ${\bf P}$ by the enzyme, proline hydroxylase.

(b)	Pro	ine hydroxylase works best at an optimum temperature and an optimum pH.
	(i)	Explain why the enzyme activity is less when the temperature is higher than the optimum value.
	(ii)	Explain why the enzyme activity is less when the pH is changed slightly from its optimum value.
		[2]
(c)		by concentrations of amino acid ${f P}$, the synthesis reaction is first order with respect to ${f F}$ first order with respect to the enzyme.
	(i)	Give the rate equation for the reaction and state the units of the rate constant.
		rate equation
		units[2]
	(ii)	Explain why, at low concentrations of P , the reaction is first order with respect to P .
	(iii)	At high concentrations of P the reaction is no longer first-order with respect to P .
		Give the new order and explain how it arises.
		[2]

4 Putrescine and spermidine are polyamines that are synthesised in the body. They play an important part in cell replication. The structures of putrescine and spermidine are shown below.

$$H_2N$$
 N NH_2

spermidine

(a) Give the systematic name of putrescine.

.....[2]

(b) Spermidine is believed to be present in cells as a cation and can form ionic bonds with certain enzymes.

Draw the structure of the spermidine cation formed when spermidine is mixed with excess acid.

[2]

(c) Putrescine reacts with monomer C below to form a polymer called Stanyl[®].

(i) Draw in the box the repeating unit of Stanyl[®].

[2]

	(ii)	Name the new functional group present in Stanyl [®] .
		[1]
	(iii)	Identify the other product formed when putrescine and ${\bf C}$ are polymerised and explain why this polymerisation is called a condensation reaction.
		[2]
(d)		lgest and explain an environmental reason why Stanyl $^{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
		[2]
(e)	den	hyl® is a high-performance material used in cars. It has a $T_{\rm m}$ of over 300°C whereas high sity poly(ethene) has a $T_{\rm m}$ of about 120–130°C. Both polymers have a high degree of stallinity.
	(i)	Name the strongest type of intermolecular bond present in Stanyl [®] and in poly(ethene). Stanyl [®]
		poly(ethene)[2]
	(ii)	Explain why poly(ethene) will soften at a much lower temperature than Stanyl [®] .
		[3]
		[Total: 16]

Turn over

- **5** Brass is an alloy of copper and zinc. Brass made by modern methods oxidises more slowly than brass produced by older processes. One reason for this is that brass made before the 1940s contained higher levels of impurities such as silver.
 - (a) The metal impurities in pre-1940s brass allow many small electrochemical cells to be set up on the surface of the brass.

The diagram below shows a water droplet on the surface of a brass plate.

(i) Use the diagram above and data from **Table 5.1** below to explain how the silver impurity next to the copper produces an electric current, stating the direction of the electron flow.

Table 5.1

half-reaction	E [⊕] /V
$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$Cu^{2+} + 2e^{-} \rightarrow Cu$	+0.34
$Ag^+ + e^- \rightarrow Ag$	+0.80

 	 	•••••	
 	 		 [2]

(ii)	Calculate the E_{cell}^{Θ} value for a cell using copper and silver as the electrappropriate standard solutions of ions.	odes with the	
	$E_{\text{cell}}^{\Theta} = \dots$	V [1]	
(iii)	Write an equation for the reaction taking place in the copper and silver cell is producing a current.	n equation for the reaction taking place in the copper and silver cell in (ii), when it ucing a current.	
	\rightarrow		
		[1]	

PLEASE TURN OVER FOR QUESTION 5(b)

Turn over

(b)	read met	tudent added excess dilute hydrochloric acid to a weighed sample of brass. The zince ted forming a solution and leaving the copper metal behind. She then treated the copper all with concentrated sulfuric acid, eventually producing 250 cm ³ of copper(II) sulfate ation.
	(i)	Dilute hydrochloric acid will react with zinc but not copper. Give the formula of the ion acting as the oxidising agent in the reaction.
		Use Table 5.1 to explain why the acid reacts with zinc but not copper.
		oxidising agent
		explanation
		[3]
	(ii)	The student determined the concentration of copper(II) ions in the copper(II) sulfate solution by titrating with a standard solution of EDTA ⁴⁻ . The concentration of the 250 cm ³ copper(II) sulfate solution was found to be 0.150 mol dm ⁻³ . The mass of the brass sample was 3.97 g.
		Calculate the percentage by mass of copper in the brass sample.

(iii) Complete the table below for the complex formed between copper(II) ions and EDTA⁴⁻.

	copper(II) complex ion formed with EDTA ⁴⁻
formula	
shape	
coordination number	

[3]

[Total: 13]

END OF QUESTION PAPER