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Preface

Our goal is to prove there are polynomial equations of degree ≥ 5 that are not
solvable by radicals. This is most easily explained by attempting to derive formulas
for finding the roots of polynomials of degrees 1,2,3 and 4 constructed by the usual
mathematical operations of addition, subtraction, multiplication, division, taking nth

roots or radicals and raising to the nth power. For example we have the quadratic
formula for polynomials of degree 2,

If ax2 + bx + c = 0 then x = −b ±
√
b2 − 4ac

2a

We then prove that it is not possible to find such formulas for polynomials of a
higher degree than 4 so we say they are not solvable by radicals.

The derivation of the formulas for polynomials of degree less than 5 involves only
high school arithmetic and algebra, although the techniques used are very inventive.
The proof that polynomials of degree greater than 4 are not solvable by radicals is
much, much more difficult. It requires many of the tools and concepts of abstract
algebra normally encountered in a demanding undergraduate course or a first year
graduate course.

This book attempts to make this theory understandable by the ordinary reader,
defined as a person interested in mathematics and skilled in introductory arithmetic
and algebra theory to College Algebra level – of course some Calculus would enhance
the reading experience. It is for a reader who wants to know a whole lot more
about mathematics but doesn’t want to spend several years acquiring the background
to understand the proofs involved in the insolvability of polynomial equations of
degree more than 4. The knowledge that reader will acquire is called abstract algebra
covering groups to Galois Theory.

All of this exploration enables us to actually find polynomials of degree 5 that are
not solvable by radicals as we say. An example is f(x) = x5 − 4x + 2.
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Classification of Degree of Difficulty of Theorems

Each Theorem is labelled with one to five stars thus,

Theorem*, Theorem**, ...,Theorem*****

indicating a degree of difficulty from,

*=Easy to *****= Very Hard or Very Long.

End Signals

The end of the proof of a Theorem is signaled with a box, ◻
The end of an Example of more than one line is signaled with a diamond, ◇.

Greek Alphabet Letters used in this Book

Letter Spoken as

α alpha
β beta
γ gamma

∆, δ delta
ε epsilon
ζ zeta
θ theta
µ mu
ξ xi(kigh)

Π, π pi
ρ rho

Σ, σ sigma
τ tau
φ phi

Ψ, ψ psi(sigh)
Ω, ω omega
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Chapter 0

Notation and Definitions

0.1 Notation

Symbol Meaning

A = {x, y, z, ...} A is the set of objects or elements x, y, z, ...
∶ or ∣ such that

∀ for all
∃ there exists

x ∈ A x is an element of set A
x ∉ A x is not an element of set A
A ∪B the union of two sets A and B

A ∪B = {x ∣ x ∈ A or x ∈ B} the union of two sets A and B is the set of x
such that x is in A or x is in B (or both of them)

A ∩B the intersection of two sets A and B
A ∩B = {x ∣ x ∈ A and x ∈ B} the intersection of two sets A and B is the set of

x such that x is in A and x is in B
A ⊂ B A is contained within B or A is a subset of B

that is, every element of A is also in B
A ⊃ B A contains B or B is a subset of A

that is, every element of B is also in A
A = B Sets are equal if A ⊂ B and A ⊃ B

−we say equality is double containment
f ∶ A→ B the function f maps the elements of the set A

onto elements of the set B

∑ni=1 ai = sum of a1 + a2 + . . . + an
∏n
i=1 ai = product of a1a2⋯an
G usually means the group G

11
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a ≡ b(mod n) a is congruent to b mod n
n∣a n divides a, that is, a = kn
Zn {0,1,2,. . . , n-1}, the remainders when integers are divided by n

H ≤ G H is a subgroup of G and may be all of G
H < G H is a proper subgroup of G
< a > the cyclic group generated by a

∣G∣ the order of a group G.
∣a∣ the order of an element a of a group

f ○ g(x) the composition of the two functions f(x) and g(x)
f−1(x) the inverse function of f(x)

Sn the symmetric group of permutations on (1,2, ..., n)
An the alternating group

ker(φ) kernel of a group function φ
G1 ≅ G2 the groups G1 and G2 are isomorphic

aH the coset of a subgroup H determined by a
[G ∶H] the index of H in G or the number of left cosets of H in G

Q×,R×,C× the multiplicative groups Q − {0},R − {0},C − {0}
H ⊲ G H is a normal subgroup of G
H ⊴ G H is a normal subgroup of G and may be all of G
G/N the factor group of G on H
[a]n the set of integers with the same remainder when divided by n

Z/nZ factor group of Z determined by nZ
exp(G) exponent of group G
F [x] the set of polynomials in x with coefficients inF

< g(x) > the set of all polynomials in F [x] divisible by g(x)
p(x)∣f(x) p(x) divides f(x), or f(x) = p(x)q(x)
gcd(n,m) greatest common divisor of integers m and n

gcd(f(x), g(x)) greatest common divisor of polynomials f(x) and g(x)
[a(x)]p(x) the set of all polynomials in F [x] with the same remainder a(x)

when divided by p(x)
F [x]/ < p(x) > the set of possible remainders when a polynomial in F [x]

is divided by p(x)
F /K F is an extension field of K

B basis of a vector field
Rn the set of n − tuples of real numbers

[F ∶K] the dimension of extension field F as a vector space over K
K(u) a field K to which has been added the element u ∉K

Aut(F ) the group of automorphisms of F
Gal(F /K) Galois group ofF /K or of the splitting field F of

a polynomial f(x) ∈K[x]
FG G − fixed subfield of field F

e
2πi k
n an nth root of unity



0.2. Definitions 13

Logic Notation

If P and Q are statements we have,

Symbol Meaning

P ⇒ Q If P then Q or P implies Q
P ⇔ Q P and Q are equivalent statements, or

P implies Q and Q implies P

Number sets

There are six basic number sets: Natural Numbers N, Integers Z, Rationals Q, Irra-
tionals (numbers that can be placed on a number line but are not rationals, e.g.

√
2),

Real Numbers R which are rationals plus irrationals, Complex numbers or numbers
that are not real. They are defined as follows:

N = {1,2,3, . . .}
Z = {0,±1,±2,±3, . . .}
Q = {a

b
∣a, b ∈ Z, b ≠ 0}

Irrationals

R = Q ∪ {Irrationals}
C = {a + bi∣a, b ∈ R, i =

√
−1}

0.2 Definitions

Definition 1. polynomial function and polynomial equation
A polynomial function has the form,

f(x) = anxn + an−1xn−1 + . . . + a1x + a0
A polynomial equation has the form,

f(x) = 0 or anx
n + an−1xn−1 + . . . + a1x + a0 = 0

where in both cases ai ∈ R for i ∶ 0 ≤ i ≤ n and n ∈ N.

Definition 2. coefficient of a polynomial
Each ai,0 ≤ i ≤ n of a polynomial is called a coefficient .

Definition 3. degree of a polynomial
The degree of a polynomial is the highest power of x. Accordingly,

f(x) = anxn + an−1xn−1 + . . . + a1x + a0, an ≠ 0

has degree n.
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Example 1. 2x3 − 4x2 + 11 = 0 is a polynomial equation of degree 3.

Definition 4. monic polynomial
A monic polynomial of degree n has a leading coefficient an = 1 .

Example 2. f(x) = x4 + 2x − 7 is a monic polynomial.
We can always reduce a polynomial equation to its monic form by dividing through by

an to give new a′is as with 2x3 − 3x + 4 = 0⇔ x3 − 2

3
x + 2 = 0 ◇

The values of x for which a polynomial f(x) becomes zero are called the roots or
zeros of the polynomial. Accordingly these values are the solutions of the polynomial
equation f(x) = 0. Our goal is to find algebraic formulas for the roots or zeros of
all polynomials of degree ≤ 4 and to prove no such formula exists for all polynomials
of degree > 4 where the formulas use only the usual algebraic operations and the
application of radicals or roots (square, cube, etc.). We begin with degree 1.



Chapter 1

Solving Polynomials Degree ≤ 4

1.1 Formula I: Solving Linear or degree 1 Equa-

tions

A monic linear equation has the form x + b = 0.
The single zero is x = −b since −b + b = 0.

1.2 Formula II: Solving Quadratic or degree 2 Equa-

tions

A monic quadratic equation has the form x2 + bx + c = 0

Rather than, as we do in a College Algebra course, completing the square on
ax2 + bx + c = 0 to obtain the quadratic formula for the two roots,

x = −b ±
√
b2 − 4ac

2a
,

we will use a technique that generalizes to polynomial equations of degree 2, 3 and 4.

In all of these cases of polynomials degree n = 2,3,4, we eliminate the term in

degree n − 1 by making the substitution x = y − b

n
. For x2 + bx + c = 0 we substitute

x = y − b
2

to eliminate the term in y. We obtain,

(y − b
2
)
2

+ b(y − b
2
) + c = 0

⇒ y2 −��by +
b2

4
+��by −

b2

2
+ c = 0

15
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This eliminates the term of degree 1.

⇒ y2 = b
2

4
− c = b

2 − 4c

4

⇒ y = ±
√
b2 − 4c

2

⇒ x = y − b
2
= −b ±

√
b2 − 4c

2

Of course, if we apply this method to ax2 + bx + c = 0 by substituting x = y − b

2a
we

find,

x = −b ±
√
b2 − 4ac

2a

The nature of the roots depends upon b2 − 4ac which is called the discriminant.

� If b2 − 4ac > 0 there are two real roots

� If b2 − 4ac = 0 there is one real root which is also a rational number since the
polynomial was a perfect square of the form (x − d)2.

� If b2 − 4ac < 0 there are two complex roots

1.3 Formula III: Solving Cubic or degree 3 Equa-

tions

Given x3 + bx2 + cx + d = 0, we substitute x = y − b
3

to obtain,

(y − b
3
)
3

+ b(y − b
3
)
2

+ c(y − b
3
) + d = 0

⇒ y3 −
�
�
�

3y2
b

3
+ 3y

b2

9
− b3

27
+��by2 −

2b2y

3
+ b

3

9
+ cy − bc

3
+ d = 0

⇒ y3 + (c + b
2

3
) y + (d + 2b3

27
− bc

3
) = 0

⇒ y3 + py + q = 0,where p = (c + b
2

3
) and q = (d + 2b3

27
− bc

3
)

This is called a reduced cubic with the term in degree 2 eliminated. We now follow
the “trick” due to Vieta. The original solution is due to del Ferro (1465-1526) and

Tartaglia (1500-1577). Substitute y = w − p

3w
which has the effect of eliminating the
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two terms of degree 1 and 2. We obtain,

(w − p

3w
)
3

+ p(w − p

3w
) + q = 0

w3 −
��

��HH
HH

3w2 p

3w
+
�
�
�
�

3w
p2

9w2
− p3

27w3
+��HHpw −

�
�
�p2

3w
+ q = 0

⇒ w3 + q − p3

27w3
= 0

⇒ w6 + qw3 − p
3

27
= 0

⇒ (w3)2 + q(w3) − p
3

27
= 0

This is a quadratic equation in w3, so, using the quadratic formula and taking the
plus sign, we have,

w3 =
−q +

√
q2 + 4p3

27

2
= Q, say.

Then the three roots1 are,

w = 3
√
Q, w = 3

√
Qe

2πi
3 , w = 3

√
Qe

4πi
3

Here, we introduce the 3rd roots of unity arguing,

w3 = Q × 1⇒ w = 3
√

1 3
√
Q⇒ w = 3

√
Qe

k2πi
3 , k = 0,1,2

Note also that, using eix = cosx + i sinx,

e
2πi
3 = cos

2π

3
+ i sin 2πi

3
= −1 +

√
3i

2

e
4πi
3 = cos

4π

3
+ i sin 4πi

3
= −1 −

√
3i

2

This means we have one real root and two complex (conjugate) roots, given by,

x = y − b
3
= w − p

3w
− b

3

where p = (c + b
2

3
) , q = (d + 2b3

27
− bc

3
) and w has the three given values.

1Please consult the Appendix if you are unfamiliar with the exponential function and roots of
unity, or simply, at this early stage, use the factoring of the difference of two cubes and the quadratic
formula thus,

w3 = Q⇒ w3 − (Q 1
3 )3 = 0⇒ (w −Q 1

3 )(w2 +wQ 1
3 +Q 2

3 ) = 0

⇒ w = Q 1
3 or w2 +wQ 1

3 +Q 2
3 = 0

⇒ w = Q 1
3 ,

−Q 1
3 ±

√
Q

2
3 − 4Q

2
3

2
= Q 1

3 , Q
1
3 (−1 ±

√
3i

2
)
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Example 3. Find the zeros of the cubic equation, x3 − 9x2 + 36x − 80 = 0
Solution Here a = 1, b = −9, c = 36, d = −80 with respect to ax3 + bx2 + cx + d.
Let x = y − b

3
= y − −9

3
= y + 3. The resolvent cubic is,

(y + 3)3 − 9(y + 3)2 + 36(y + 3) − 80 = 0

⇒ y3 +���HHH3y23 + 3y9 + 27 −��ZZ9y2 − 54y − 81 + 36y + 108 − 80 = 0

⇒ y3 + 9y − 26 = 0

⇒ y3 + py + q = 0, p = 9, q = −26,with the degree 2 term eliminated.

Substituting, y = w − p

3w
= w − 9

3w
= w − 3

w

⇒ (w − 3

w
)3 + 9(w − 3

w
) − 26 = 0

⇒ w3 −
�
�
��Z

Z
ZZ

3w2 3

w
+
�
�
��

3w
9

w2
− 27

w3
+��HH9w −

�
�
�27

w
− 26 = 0

⇒ w3 − 26 − 27

w3
= 0

⇒ w6 − 26w3 − 27 = 0,

which is a quadratic equation in w3.

⇒ w3 = 26 ±
√

676 + 108

2
= 13 ±

√
196 = −1,27

Then, using w3 = 27 we have2,

w = 3 or w = 3e
2πi
3 or w = 3e

4πi
3

⇔ w1 = 3,w2 = 3(−1 + i
√

3

2
) ,w3 = 3(−1 − i

√
3

2
)

giving these values for y ∶

y1 = w1 −
3

w1

= 3 − 3

3
= 2

y2 = w2 −
3

w2

= 3(−1 + i
√

3)
2

− 6

3(−1 +
√

3i)

= −3 + 3i
√

3

2
− 2

−1 − i
√

3

(−1 + i
√

3)(−1 − i
√

3)

= −3 + 3i
√

3

2
− −1 − i

√
3

2
= −1 + 2i

√
3

y3 = w3 −
3

w3

= 3(−1 − i
√

3)
2

− 6

3(−1 − i
√

3)
2Or see the previous footnote with Q = 27.
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= −3 − 3i
√

3

2
− 2

−1 + i
√

3

(−1 + i
√

3)(−1 − i
√

3)

= −3 − 3i
√

3

2
− −1 + i

√
3

2
= −1 − 2i

√
3

Using xi = yi + 3 the solutions to our cubic equation are 5,2 + 2
√

3i,2 − 2
√

3i.
Notice that the two complex roots are conjugates. ◇

If we use w = −1 , we obtain the same three roots (your turn!). It is worth noting
that the original mathematicians who solved the cubic did not have the advantage of
complex numbers. Even more interesting, there are cubics whose zeros all appear to
be complex numbers even though they are actually rationals, indeed integers. Let’s
do one more example.

Example 4. Find the zeros of x3 − 7x − 6 = 0
Solution
Applying the Factor Theorem3 to f(x) = x3 − 7x − 6 we have,

f(−1) = (−1)3 − 7(−1) − 6 = 0

so x + 1 is a factor or −1 is a root.
By long or synthetic division we obtain,

x3 − 7x − 6 = (x + 1)(x2 − x − 6) = (x + 1)(x − 3)(x + 2)

Therefore the three roots of x3 − 7x − 6 = 0 are −1,−2,3.
It is, however, very enlightening to apply the method to this equation. We already
have a resolvent cubic x3 +px+ q = x3 −7x−6 with no x2 term so we simply substitute

(following Vieta), x = w − p

3w
= w + 7

3w
to obtain,

(w + 7

3w
)
3

− 7(w + 7

3w
) − 6 = 0

⇒ w3 +
�
�
�
�

3w2 7

3w
+
�
�
�
�Z

Z
Z
Z

3w
49

9w2
+ 343

27w3
−��7w −

�
�
�S
S
S

49

3w
− 6 = 0

⇒ w6 − 6w3 + 343

27
= 0

⇒ w3 =
6 ±

√
36 − 1372

27

2
=

6 ±
√

−400

27

2
=

6 ± 20

√
−3

81

2
= 3 ± 10

9
i
√

3

⇒ w = 3

√
3 ± 10

9
i
√

3 e
k2πi
3 , k = 0,1,2.

3f(a) = 0⇒ (x − a) is a factor of f(x). We prove this again in Corollary 55 on page 104.
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If we take the positive sign and k = 0 then the corresponding value of x is given by,

x = w + 7

3w
= 3

√
3 + 10

9
i
√

3 + 7

3

√
3 + 10

9
i
√

3

This root seems a long way removed from −1, −2 or 3. This is the dilemma that
confronted Tartaglia, del Ferro and the other contributors. In the previous example
we did immediately find one real root so they were satisfied with that, knowing nothing
about complex numbers, but in this current example there seemed no way out for
Tartaglia et. al. We, however, can proceed as follows to find the cube root. Let,

3 + 10

9
i
√

3 = (a + bi)3 = a3 + 3a2bi − 3ab2 − b3i

Comparing real and imaginary parts we have the two equations in two unknowns,

a3 − 3ab2 = 3

3a2b − b3 = 10

9

√
3

It is clear from the second equation that b has
√

3 as a factor. If we then use trial

and error, we eventually find a = 9

6
, b =

√
3

6
so the three values of w resulting from

w3 = 3 + 10

9
i
√

3 are,

w = 9 +
√

3i

6
e
k2πi
3 , k = 0,1,2

So, using, e
2πi
3 = (−1 + i

√
3

2
) , e

4πi
3 = (−1 − i

√
3

2
) , we have the three values of w,

w1 =
9 +

√
3i

6

w2 = (9 +
√

3i

6
)(−1 +

√
3i

2
) = −3 + 2

√
3i

3
,

w3 = (9 +
√

3i

6
)(−1 −

√
3i

2
) = −3 − 5

√
3i

6
,
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Then the three roots resulting from x = w + 7

3w
are,

x1 =
9 +

√
3i

6
+ 7

�3
● �62

9 +
√

3i
● 9 −

√
3i

9 −
√

3i

= 9 +
√

3i

6
+��14 ( 9 −

√
3i

���
�81 + 3 6

) = 3

x2 =
−3 + 2

√
3i

3
+ 7

�3
● �3

−3 + 2
√

3i
● −3 − 2

√
3i

−3 − 2
√

3i

= −3 + 2
√

3i

3
+ �7(−3 − 2

√
3i

��
��9 + 12 3

) = −2

x3 =
−3 − 5

√
3i

6
+ 7

�3
● �6 2

−3 − 5
√

3i
● −3 + 5

√
3i

−3 + 5
√

3i

= −3 − 5
√

3i

6
+��14 (−3 + 5

√
3i

���
�9 + 75 6

) = −1

If we started with the other value w3 = 3 − 10

9
i
√

3 we would find the same roots. ◇

Proofs of this kind that required complex numbers were obviously contraversial
when first used in finding the solutions of polynomials with real roots.

1.4 Formula IV: Solving Quartic or degree 4 Equa-

tions

The first step in solving a polynomial equation of the form,

x4 + bx3 + cx2 + dx + e = 0

is the same idea, namely, substitute x = y − b
4

and eliminate the term in y3 thus,

y4 −
�
�
�

4y3
b

4
+ 6y2

b2

16
− 4y

b3

64
+ b4

256

+ b(��y3 − 3y2
b

4
+ 3y

b2

16
− b3

64
)

+ c(y2 − 2y
b

4
+ b2

16
)

+ d(y − b
4
)

+ e = 0
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The equation now has the form,

y4 + py2 + qy + r = 0

where we can easily express p, q, r in terms of b, c, d, e from the above “pyramid”,

p = 6b2

16
− 3b2

4
+ c,

q = −4b3

64
+ 3b3

16
− 2bc

4
+ d,

r = b4

256
− b4

64
+ b

2c

16
− bd

4
+ e.

We leave only the term in y4 on the left side, giving,

y4 = −py2 − qy − r

and complete the square on it by adding u2y2 + u
4

4
to both sides,

y4 + u2y2 + u
4

4
= u2y2 + u

4

4
− py2 − qy − r

(y2 + u
2

2
)
2

= (u2 − p) y2 − qy + (u
4

4
− r)

Now the right side must also be a perfect square so its discriminant B2−4AC = 0,
that is,

q2 − 4 (u2 − p)(u
4

4
− r) = 0⇒ u6 − pu4 − 4ru2 + 4pr − q2 = 0

If we put z = u2 , we have a cubic,

z3 − pz2 − 4rz + 4pr − q2 = 0

We solve the cubic and obtain a real root α which we put equal to u2. Then, returning
to,

(y2 + u
2

2
)
2

= (u2 − p) y2 − qy + (u
4

4
− r)

the right side is now a perfect square, so by the quadratic formula4 it factors as,

(y − q +∆

2(u2 − p))(y − q −∆

2(u2 − p)) where ∆ =
√
B2 − 4AC.

4Note ax2 + bx + c = 0⇒ x = −b ±∆

2a
, ∆ =

√
b2 − 4ac which means we can factor

f(x) = ax2 + bx + c = a(x + b +∆

2a
)(x + b −∆

2a
).
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But since for a perfect square ∆ = 0, if u2 = α, this gives,

(y2 + α
2
)
2

= (y − q

2(α − p))
2

We solve the two quadratics given by,

y2 + α
2
= ±(y − q

2(α − p))

to find the four roots of the quartic equation.

Example 5. Solve y4 − 5y − 6 = 0
Solution
The equation already has the form y4 + py2 + qy + r = 0 where p = 0, q = −5, r = −6.
The auxiliary cubic z3 − pz2 − 4rz + 4pr − q2 = 0 becomes,

z3 + 24z − 25 = 0

By the factor theorem, α = 1 is a root since 13 + 24 × 1 − 25 = 0 so we need to solve,

(y2 + α
2
) = ±(y − q

2(α − p))

⇒ y2 + 1

2
= y + 5

2
and y2 + 1

2
= −y − 5

2
⇒ y2 − y − 2 = 0 and y2 + y + 3 = 0

⇒ y = −1, 2,
−1 ±

√
−11

2
◇

1.5 Looking Ahead

We have derived formulas for the roots or zeros of polynomial equations of degree ≤ 4.
In each case the zeros were expressed in terms of the coefficients of the polynomial
using only the usual algebraic operations (+,−,×,÷) and the radicals (square roots,
cube roots, etc.) and exponents (x2, . . .) and which also involved the nth roots of
unity where the degree of the polynomial is n, and as we saw in the case of n = 4, also
the kth roots of unity where k∣n. (In the solution of degree 4 polynomials we reached
square roots). We say polynomials of degree ≤ 4 are solvable by radicals, whether real
or complex.

Our goal is to prove that there are polynomials of degree ≥ 5 whose zeros cannot
be expressed in such terms. In other words, there is no formula that can be used
to find the roots of all polynomials of degree ≥ 5. Obviously, an infinite number of
polynomials of any degree can be solved since, for degree 5 for example, we can form
as many polynomials of the type,

f(x) = (x − a)(x − b)(x − c)(x − d)(x − e)



24 Chapter 1. Solving Polynomials Degree ≤ 4

as we choose, and their roots are simply a, b, c, d, e.
Also, using the formulas above, we can solve any degree 5 polynomial which is

the product of a linear polynomial and a degree 4 polynomial, or the product of a
degree 3 polynomial and a degree 2 polynomial and so on. But unlike the cases of
the polynomials of degree less than 5, there is no formula for finding the roots of all
degree 5 and higher polynomials.

We want to prove the insolubility of the quintic and higher degree polynomials by
radicals, that is, we cannot solve all polynomials of degree 5 (and above) by expressing
the zeros in terms of the basic operations, extracting nth roots and raising numbers
to a power.

This is an extremely difficult problem, exacerbated historically by the facts that
Evariste Galois, who gave us the theory essential to the solution of the problem,

� Died in a duel at age 20, due to either “femme fatale” or “vive la révolution,”
who knows?

� But in any case left a treatise of his ideas written the night before he died
that other leading mathematicians either lost or, for many years, could not
understand.

Briefly expressed, Galois proved a SEPARABLE5 polynomial is solvable by rad-
icals if its GALOIS GROUP is a SOLVABLE GROUP. Since the SYMMETRIC
GROUPS, Sn, are not solvable for n ≥ 5, polynomials of degree 5 or greater with
Galois group ISOMORPHIC to Sn are not solvable by radicals.

The genius of Galois was to link GROUP THEORY to FIELD THEORY and
specifically to FIELD EXTENSIONS built from the zeros of the polynomial under
study.

We start with group theory, in particular the study of the symmetric groups Sn
whose elements are the functions which permute or rearrange the set of numbers
{1,2, . . . , n}.

5The upper case words signal what is to come, you do not need to understand them at this time.



Chapter 2

Group Theory Part I

Groups, Subgroups, Cyclic Subgroups

2.1 Groups

A group is an abstract mathematical object. Its inspiration is an abstraction from
the axioms of integers, fractions, real and complex numbers. Each of these is a set
and the binary arithmetic operations apply to each. A group requires a set and one
binary operation, generally regarded as either addition or multiplication.

Definition 5. group and group axioms
In abstract terms we define a group as a set G together with a binary operation ∗,
written (G,∗), such that the following axioms, taken from {Z,Q,R,C}, are satisfied:

1. Closure law: For all a, b ∈ G , we have a ∗ b ∈ G, that is, the result of a binary
operation acting on any two elements of the group is another element of the
group. We say the group is closed under ∗.

2. Associative law: For all a, b, c ∈ G we have a ∗ (b ∗ c) = (a ∗ b) ∗ c

3. Identity law: There is an identity element e ∈ G such that for all a ∈ G we have
a ∗ e = e ∗ a = a

4. Inverses law: For all a ∈ G there is an element b ∈ G such that a ∗ b = b ∗ a = e
and we write this b as a−1.

Example 6. For an example of each axiom, when applied to (Z,+) we have state-
ments such as,

1. Closure: 5,7 ∈ Z and 5 + 7 = 12 ∈ Z

2. Associativity: 2 + (3 + 4) = (2 + 3) + 4

3. Identity: e = 0 since 3 + 0 = 0 + 3 = 3

25
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4. Inverses: −3 is the inverse of 3 since 3+(−3) = (−3)+3 = 0 or, more commonly
3 − 3 = 0 ◇

Definition 6. commutative or abelian group
If a group (G,∗) satisfies a∗ b = b∗ a for all a, b ∈ G we say the group is commutative
or abelian (after Niels Abel, the Norwegian algebraicist).

Clearly, (Z,+) is abelian. All of our number sets so far are abelian but, if you
have studied matrices, matrix multiplication is not abelian.

Note 1. Note that a group obeys the cancellation law a ∗ b = a ∗ c⇒ b = c since,

a ∗ b = a ∗ c⇒ a−1 ∗ (a ∗ b) = a−1 ∗ (a ∗ c)
⇒ (a−1 ∗ a) ∗ b = (a−1 ∗ a) ∗ c
⇒ e ∗ b = e ∗ c
⇒ b = c

where we used the inverse, associative and identity axioms of groups.

For the sake of simplicity we refer to a group (G,∗) as just G since the binary
operation is mostly specified elsewhere. Along these lines we then drop the use
of ∗ and just say statements like a(bc) = (ab)c which can be understood to mean
a × (b × c) = (a × b) × c if the operation is multiplication or a + (b + c) = (a + b) + c if
the operation is ordinary addition. But we will find there are other binary operations
besides the arithmetic ones.

Further, for inverses, a−1 suits multiplication, giving the usual aa−1 = a/a = 1 but
it means −a when we are dealing with addition, thus a + (−a) = 0, and of course
we generally drop the parentheses and write a − a = 0. The inverse elements for the
arithmetic operations are 0 for addition and 1 for multiplication and we call −6 the

additive inverse of 6 and
1

6
the multiplicative inverse of 6.

Z,Q,R,C are obviously all groups under the operation of addition. The only
group axiom that causes an issue with the sets Z,Q,R,C under the operation of
multiplication is the inverse law and the existence of multiplicative inverses. No
integer greater than 1 has a multiplicative inverse that is also an integer, for example,
1/7 is the multiplicative inverse of 7 but 1/7 ∉ Z, failing closure, so (Z,×) is not a
group.

As for Q,R,C , the element 0 does not have a multiplicative inverse, that is there
is no element b such that 0 × b = 1. But we can still form groups simply by deleting
the element 0. So we have the multiplicative groups Q×,R×,C× where the exponent ×
means the zero element has been removed. Thus, for example, C× = C−{0} or C/{0}.

So we have four additive groups, Z,Q,R,C, and three multiplicative groups
Q×,R×,C×. They are all infinite in size and they form the “inspiration” for an infinity
of other groups, some finite, some infinite. If you know about matrices, an example
of a different infinite group is the set of all 2× 2 matrices under matrix addition. We
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can also have them as a group under matrix multiplication but again we have an issue
with inverses and we need to delete all matrices of the form,

(a b
c d

) , ad − bc = 0

2.2 Congruence

Definition 7. congruence
Let m be a positive integer. If m divides the difference a − b of two integers a, b, we

say “a is congruent to b modulo m” and write a ≡ b(mod m).

This means an expression such as 27 ≡ x(mod 6) can have an infinite number of
solutions or congruences, for example,

27 ≡ 15(mod 6)
27 ≡ −21(mod 6)
27 ≡ 123(mod 6)

Unless otherwise specified, we will always take the least positive result, namely,
27 ≡ 3 (mod 6). In simple terms, we can now say p(mod m) is the smallest posi-
tive remainder when p is divided by m. For example, 11(mod 3) ≡ 2.

2.3 Finite Groups

2.3.1 Groups using Congruences

Let’s now define a group that proves to be extremely useful.

Definition 8. Zn under addition modulo n
Zn is the set of all possible smallest positive remainders when the integers are divided

by n. That is,

Zn = {0,1,2, ..., n − 1}

In words, Zn is the set of all integers modulo n where we note that when an integer
is divided by n, no remainder can be greater than n − 1.

Example 7. For example, Z5 = {0,1,2,3,4} with operation modulo 5, meaning any
integer is replaced by its least positive remainder when divided by 5. Thus,

0,1,2,3,4,5,6,7,8,9,10,11, ...

becomes,

0,1,2,3,4,0,1,2,3,4,0,1, ...
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leaving only the elements 0,1,2,3,4.
If we set up what we can call an operations table for all possible combinations of the
elements of Z5 = {0,1,2,3,4} under addition modulo 5, we have,

Mod 5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

where we used 4 + 4 = 8 ≡ 3(mod 5) etc.
You can easily see the set Z5 is closed under addition modulo 5, meaning only its

elements 0,1,2,3,4 are found in the table, that the associative law holds, that there
is an identity 0 (e.g., 0 + 3 = 3 ) and that every element has an additive inverse, the
pairs being (0,0), (1,4), (2,3). ◇

Since we can specify any positive integer n for Zn, we already have an infinite
number of finite groups once we prove the next theorem, that the set Zn together
with the operation of addition modulo n is a group.

Theorem 1. *
The set Zn together with the operation of addition modulo n is a group.

Proof. We need to prove the four group axioms in Definition 5 on page 25 hold.

1. Closure, that is, if a, b ∈ Zn so does a+b(mod n), that is a+b ≡ c(mod n) where
c < n.
This is so since a, b are less than n, so either a + b = c < n and we are done, or
a + b = n + c where we must have c < n, and therefore n divides the difference
a + b − c so by Definition 7, page 27, a + b ≡ c(mod n).

2. Associative Law, that is if a, b, c ∈ Zn then a + (b + c) = (a + b) + c. This is true
since a, b, c are also integers.

3. Identity element is 0.

4. Inverse Law. Given a ∈ Zn, 0 ≤ a ≤ n − 1, then (n − a) + a = 0 making n − a the
inverse of a.

Hence Zn is a group.
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2.3.2 Groups formed by the roots of polynomials

We will be concerned with the roots of polynomials. Let’s consider two examples.

Example 8. The roots of f(x) = x3 − 1 form a group under complex multiplication.
Since x3−1 = (x−1)(x2+x+1), applying the quadratic formula to the second factor, the

roots are 1, ω, ω2 where ω = −1 +
√

3i

2
. We can check that ω2 is the complex conjugate

of ω since,

(−1 +
√

3i

2
) × (−1 +

√
3i

2
) = (−1 −

√
3i

2
)

The multiplication table shows {1, ω, ω2} obeys the four group requirements. Note,
ω3 = 1 and w4 = w.

× 1 ω ω2

1 1 ω ω2

ω ω ω2 1
ω2 ω2 1 ω

Example 9. The roots of x4−1 = (x2−1)(x2+1) are ±1,±i with multiplication table,

× 1 -1 i -i
1 1 -1 i -i
-1 -1 1 -i i
i i -i -1 1
-i -i i 1 -1

The multiplication table shows all four group axioms are satisfied. ◇

2.3.3 Subgroups

Definition 9. subgroup
Given a group (G,∗), if H ⊆ G (H is a subset of G) and H is also a group under the
same operation ∗ as G, we say H is a subgroup of G.

Notation 1. If H is a subgroup of G we write H ≤ G.

Definition 10. proper subgroup
H is a proper subgroup of G if it is a subgroup that does not contain all the elements

of G, that is, as a set, H ⊂ G but H ≠ G. We write H < G.

Example 10. ({0,2},⊗) < (Z4,⊗) where ⊗ is addition modulo 4. The two tables
show each is a group and that {0,2} is a subset of Z4.
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Z4 0 1 2 3 {0,2} 0 2
0 0 1 2 3 0 0 2
1 1 2 3 0 2 2 0
2 2 3 0 1
3 3 0 1 2

We have two tests for subgroups. But first note that the next theorem is our first “if
and only if” theorem. We need to prove a P ⇒ Q statement and also the converse
Q⇒ P. So we first suppose H < G and prove the three conditions and then conversely,
if the three conditions are true, we prove H > G.

Theorem 2. **
Let G be a group with identity element e and let H be a subset of G.
Then H is a subgroup of G if and only if the following conditions are true:

(i) ab ∈H for all a, b ∈H.

(ii) e ∈H.

(iii) a−1 ∈H for all a ∈H.

Proof. First, suppose H is a subgroup of G.
Proof of (i).
Since, by the definition of a subgroup, H is a group with the same operation as G
then the closure axiom for H says ab ∈H for all a, b ∈H.
Proof of (ii).
Suppose f is the identity element for H. Then f is also an element of G since H ⊂ G.
In H we have ff = f and in G we have fe = f.
Then ff = ef and by the cancellation law, f = e, making e ∈H.
Proof of (iii).

Suppose b ∈ H is the inverse of a ∈ H. Then ab = e. But in G, aa−1 = e making
ab = aa−1. Then by the cancellation law, b = a−1 or the inverse of every element in H
is also in H. Put succinctly, a−1 ∈H for all a ∈H.
Proof of the converse
Second, for the converse, we suppose H is a subset of G that satisfies the given
conditions,

(i) ab ∈H for all a, b ∈H.

(ii) e ∈H.

(iii) a−1 ∈H for all a ∈H.

We need to show the four group axioms apply. Closure is given by the first condition,
the identity element by the second, inverses by the third and the associative law is
obvious.
Hence H < G.
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Example 11. A simple example of a subgroup of (Z,+) is (3Z,+) where
3Z = {0,±3,±6,±9, ...} = {3n ∣ n ∈ Z}. Clearly,

� (3n) + (3m) = 3(n +m) ∈ 3Z for all 3n,3m ∈ 3Z.

� 0 ∈ 3Z

� −3n ∈ 3Z for all 3n ∈ 3Z

So the three conditions of Theorem 2 are satisfied.

In general, nZ is a subgroup of Z. The proof is left to the reader.

A more convenient test for a subgroup is this Corollary to Theorem 2.

Corollary 3. ** (Subgroup Test)
A nonempty subset H of a group G is a subgroup of G if and only if for every a, b ∈H

we have ab−1 ∈H.

Proof. First, assume H is a subgroup of G and a, b ∈ H. Then by Theorem 2’s third
condition, b−1 ∈H , so a, b−1 ∈H and by the first condition, ab−1 ∈H.

*****

Conversely, we assume if a, b ∈ H then ab−1 ∈ H. Then H satisfies the group axioms
since we have:

� Identity: Let b = a. Then by the assumption aa−1 ∈ H, but since aa−1 = e in G
we must have e ∈H

� Inverses: Let a = e in the assumption that a, b ∈ H ⇒ ab−1 ∈ H. Then for all
b ∈H , eb−1 = b−1 ∈H.

� Closure: Put b−1 for b in the assumption. Note (b−1)−1 = b.
Then a(b−1)−1 = ab ∈H.

� Associativity in H follows from the fact that all the elements in H are also in
G which is a group.

Example 12. In the previous example, where 3Z ⊂ Z, for every pair 3m,3n ∈ 3Z,
clearly so also does,

3m − 3n = 3(n −m) ∈ 3Z.

Therefore, under the operation of addition, 3Z is a subgroup of Z ◇
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Note 2. Again let us note b−1 represents the inverse of b for any group operation. In
the previous example we are dealing with addition, so b−1 = −b.
Note also that (b−1)−1 = b since, given the inverse of any element added to (or the
relevant binary operation) the element is the identity, then we have both b ∗ b−1 = e
and b−1 ∗ (b−1)−1 = e, so b ∗ b−1 = b−1 ∗ (b−1)−1 and by cancellation, (b−1)−1 = b.
Note further that (ab)−1 = b−1a−1 since,

(ab)(ab)−1 = e and (ab)(b−1a−1) = abb−1a−1 = aea−1 = aa−1 = e.

Hence, (ab)(ab)−1 = (ab)(b−1a−1) and by cancellation, (ab)−1 = b−1a−1.

2.3.4 Cyclic Subgroups

A cyclic subgroup is a group that can be generated by one of its elements meaning
every element in the group can be formed from that one element by repeated applica-
tions of the binary operation. Symbolically we use only addition and multiplication,
but the binary operations take many other forms.

Definition 11. cyclic group1

We define the cyclic group < a > generated by the element a in the group G as,

� for multiplication, < a >= {x ∈ G ∣ x = an for some n ∈ Z}.

� for addition, < a >= {x ∈ G ∣ x = a + a +⋯ + a´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

= na for some n ∈ Z.}

Example 13. For example, (Z5, addition modulo 5) is a finite cyclic group generated
by 2 since,

2 = 2,

2 + 2 = 4,

2 + 2 + 2 = 1,

2 + 2 + 2 + 2 = 3,

2 + 2 + 2 + 2 + 2 = 0

are all elements of Z5 = {0,1,2,3,4}.
Note any further addition of 2’s always yields one of these five elements, for example
102 × 2 ≡ 4 (mod 5). ◇

In general the group (Zn, modulo n) = {0,1,2,⋯, n − 1} is obviously cyclic by
definition. It can be generated by any element a provided gcd(a,n) = 1.
(Try Z8 = {0,1,2,3,4,5,6,7} with a = 3,4.)

The simplest example of an infinite cyclic group is Z which is generated by 1 since
n × 1, n ∈ Z gives us all the integers. We could also use −1.

1We prove < a > is a group in Theorem 4, part (1)
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Before we prove the theorem relating cyclic groups and subgroups, let us note that
the word “order” is used in two different ways when we are dealing with elements and
groups.

Definition 12. order of a group
The order of a group G is the number of elements in the group. We use ∣G∣ as the

symbol for the order of a group.

Example 14. ∣Z5∣ = ∣{0,1,2,3,4}∣ = 5
The order of Q is infinite. ◇

Definition 13. order of a group element
Let G be a group with identity e and let a ∈ G. If there is a positive integer n such
that an = e, then a is said to have finite order. The smallest such positive integer is
called the order of a, written ∣a∣.

Example 15. 2 ∈ Z5 and ∣2∣ = 4 since 24 ≡ 1 (mod 5).

This is where the word cyclic comes from for finite groups. If an = e then, under
repeated multiplication by a, we have the cyclic group < a > with elements,

< a >= {e, a, a2,⋯, an−1, e, a,⋯} = {e, a, a2,⋯, an−1}

Think of this like a clock reducing any number of hours to 1 to 12. Clearly, the
number of elements in < a > is n and we have ∣ < a > ∣ = ∣a∣ = n.

We then prove the four parts of Theorem 4 relating cyclic groups and subgroups,
specifically,

Theorem 4. **
(1) The cyclic group < a >= {x ∈ G ∣ x = ak for some k ∈ Z} is a subgroup of G, the
operation being multiplication.
(2) If ∣a∣ = n then the cyclic subgroup < a > is a finite group given by

< a >= {e, a, a2,⋯, an−1},

and therefore ∣ < a > ∣ = n = ∣a∣.
(3) A finite group G is cyclic if and only if there exists an element a ∈ G such that
the order of G equals the order of a, that is, ∣a∣ = ∣G∣.
(4) A finite cyclic group is abelian.

Proof. Proof of (1)
To show < a > is a group, we use the criteria for a group from Definition 12.

� < a >= {x ∈ G ∣ x = ak for some k ∈ Z} is closed since if ai, aj ∈< a > then
aiaj = ai+j ∈< a > since i + j ∈ Z.

� Associativity follows from ai × (aj × ak) = (ai × aj) × ak = ai+j+k.
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� The identity element is e = a0 = 1 since a0 × ak = ak. Note also an = 1, so
e = a0 = an = 1.

� Inverses exist since (an)−1 = a−n and −n ∈ Z so that an(an)−1 = a0 = 1.

Alternatively, using Corollary 3, page 31, choose any ai, aj ∈< a > .
Then (aj)−1 = a−j and aia−j = ai−j ∈< a > .
Either way, < a > is a subgroup of G.
Proof of (2)

Given ∣a∣ = n we can write any integer k divided by n as k = qn+r,0 ≤ r ≤ n−1. Then,

ak = aqn+r = (an)qar = eq × ar = ar, 0 ≤ r ≤ n − 1.

Thus, all the integer powers, ak, separate out into just the n elements ar with powers
0 ≤ r ≤ n − 1. So,

< a >= {e, a, a2,⋯, an−1},

and therefore ∣ < a > ∣ = n = ∣a∣.
Proof of (3)

Suppose G is cyclic. Then G =< a >= {e, a, a2,⋯, an−1} and clearly ∣a∣ = ∣G∣ since both
equal n.

*****

Conversely, suppose a ∈ G and ∣a∣ = n = ∣G∣. Then a1, a2,⋯, an = e all belong to G and
since ∣G∣ = n, there can be no other elements. Then, G is cyclic by (2).
Proof of (4)
Let < g >= G, that is g is a generator of the cyclic group G.
Let a, b ∈ G. Then a = gx, b = gy for some x, y ∈ Z which is abelian.
Since,

ab = gxgy = gx+y = gy+x = gygx = ba

then G is abelian.

Note 3. Part (3) of Theorem 4 has given us an easy test for a finite group to be
cyclic, namely, a group G is cyclic if and only if it contains an element a of order
∣G∣, that is, an = 1 where n is the number of elements in the group G or n = ∣G∣.



Chapter 3

Group Theory Part II

Symmetric Groups

3.1 Relations and Functions

We first need to recall some algebraic facts concerning relations and functions.

Definition 14. relation
A relation is a set of ordered pairs (x, y) of elements, the first element taken from a

set called the domain, the second from a set called the range. We often use A,B for
the two sets.

Example 16. {(1,2), (5,6), (1,−7)} is a relation on Z.
The domain is the set A = {1,5,−1}, the range is the set B = {2,6,−7}. ◇

Definition 15. function
Given sets A and B, a function f from A to B is a rule that assigns to each x ∈ A

exactly one element y ∈ B. We write f(x) = y to illustrate that f assigns x to y. It is
spoken as “f of x equals y.”

Accordingly, we say a function f is a rule that maps elements of a set A (the
domain) onto elements of a second set B (the range) such that for any x ∈ A there is
only one y ∈ B. Symbolically, we have,

f ∶ A→ B

spoken as “f maps the set A onto the set B.” We always need to specify what the
rule f is as in the following example.

Example 17. f ∶ Z → Q, f (x) = 6 − 2x

3
is a function since any value of x gives only

one possible result.

For example if x = 7 then the unique result is f(7) = 6 − 14

3
= −8

3
. Using y = f(x), we

35
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can also write this function as 2x + 3y = 6 where the rule is not explicit, we need to

do a little algebra to find y = 6 − 2x

3
= f(x).

But y2 + 3x = 6 is not a function because you cannot solve for exactly one value of y
since,

y2 + 3x = 6⇒ y2 = 6 − 3x⇒ y = ±
√

6 − 3x

Thus if, say, x = 1, there are the two y−values, ±
√

3. ◇

3.2 One-to-one and Onto Functions

We mostly need our functions to be more tightly defined than just if f ∶ A → B is a
function then for each x ∈ A there is exactly one y ∈ B such that f(x) = y. We often
want the two sets to mirror one another exactly. We begin with the definitions that
allow us to tighten up our concept of more useful functions.

Definition 16. one-to-one function
f ∶ A → B is a one-to-one function if for all x, y ∈ A the equality f(x) = f(y) means

we must have x = y.

Example 18. The function f ∶ Z→ Z, f(x) = x3 + 1 is one-to-one since,

f(x) = f(y) ⇒ x3 + 1 = y3 + 1⇒ x3 = y3⇒ x = y

The function f ∶ Z→ Z, f(x) = x2 + 1 is not one-to-one since,

f(3) = f(−3) = 10 but 3 ≠ −3. ◇

Definition 17. onto function
f ∶ A→ B is onto if for all b ∈ B there is an a ∈ A such that b = f(a).

Example 19. f ∶ R → R, f (x) = x 3 + 1 is onto since we can solve y = x3 + 1 for x as
x = 3

√
y − 1 thus ensuring every element y of the second R comes from an element x

in the first R. Thus y = 9 is the mapping of x = 2.
However, f ∶ R→ R, f (x) = x 2 is not onto since all the negative numbers in the second
R have not been produced by squaring the numbers in the first R. ◇

Definition 18. one-to-one correspondence
f ∶ A→ B is a one-to-one correspondence if it is both one-to-one and onto1.

Note 4. The simple way to remember the definition of a one-to-one correspondence
between the elements of two finite sets is that it is a function where every element of
one set is paired with exactly one element of the other set and every element of the
other set is paired with exactly one element of the first set. We will formally prove
this later but we will use it several times.

1Due to the work of French mathematicians we also have the nomenclature of injective, surjective
and bijective functions for one-to-one, onto and one-to-one correspondences respectively.
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Another attribute we would like most of our functions to have is that they have
an inverse. That is, given a function f ∶ A → B we would like to have a function
g ∶ B → A such that if f(x) = y then g(y) = x. We encountered this dualism in our
college algebra course. Let’s revisit it.

3.3 Composition of Functions and Inverse Func-

tions

Definition 19. composition of functions
The composition of two functions f, g acting on the variable x is written f ○g(x) and

is defined by,

f ○ g(x) = f(g(x))

In words we read f ○ g(x) as “f of g(x).” Again, for brevity, if the context is clearly
composition of functions, we abbreviate f ○ g to fg.

Example 20. If f(x) = 3x − 1, g(x) = 6 − 5x, then,

f ○ g(x) = f(g(x))
= 3g(x) − 1

= 3(6 − 5x) − 1

= −15x + 17

We prove the following about the composition of functions.

Theorem 5. **
Let f ∶ A→ B,g ∶ B → C,h ∶ C →D be three maps. Then,

(1) Associativity: h ○ (g ○ f) = (h ○ g) ○ f

(2) If f and g are both one-to-one so is their composition g ○ f

(3) If f and g are both onto so is their composition g ○ f

Proof. We prove the three parts separately.

(1) For any x ∈ A we have by Definition 19 on page 37 of composition of functions
that,

h ○ (g ○ f)(x) = h(g ○ f)(x) = h(g(f(x))) = (h ○ g)(f(x)) = (h ○ g) ○ f(x)

(2) By Definition 16 on page 36 of a one-to-one function we need to prove that if
(g ○ f)(x) = (g ○ f)(y) then x = y.
Suppose f and g are both one-to-one and let (g ○ f)(x) = (g ○ f)(y).
Then g(f(x)) = g(f(y)) and since g is one-to-one, we have f(x) = f(y).
But f is also one-to-one so x = y, proving g ○ f is also one-to-one.
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(3) We have the two onto functions f ∶ A → B and g ∶ B → C. By Definition 17 on
page 36 of an onto function, we need to prove for all z ∈ C that there is an x ∈ A
such that (g ○ f)(x) = z.
Let z ∈ C. Since g ∶ B → C is onto, there must be some y ∈ B such that g(y) = z.
Then since f ∶ A → B is onto, if y ∈ B there must be some x ∈ A such that
f(x) = y.
That means g(f(x)) = g(y) = z, so we have found an element x ∈ A with
g(f(x)) = z. So g ○ f is onto.

As we do in a college algebra course, let us now move on to inverse functions.

Definition 20. inverse function
A function f has an inverse function g if we have the two compositions,

f(g(x)) = x for all x in the domain of g.

g(f(x)) = x for all x in the domain of f.

Notation 2. We use the symbol f−1 for the inverse function of the function f and
have,

f(f−1(x)) = x, f−1(f(x)) = x.

Example 21. The inverse function of f(x) = 3x + 7 is obtained as follows. Write
y = 3x + 7 and then interchange x and y to obtain x = 3y + 7. Rearrange this to

y = x − 7

3
and we then have the inverse function f−1(x) = x − 7

3
. We prove this is

correct by forming,

f ○ f−1(x) = f(f−1(x)) = 3f−1(x) + 7 = 3 × x − 7

3
+ 7 = x

as required by the definition, and similarly we need to show f−1(f(x)) = x. ◇

So we want our functions to be one-to-one correspondences and to have inverses.
As we will see in Lemma 6, these are equivalent conditions, that is, a function is a
one-to-one correspondence if and only if it has an inverse.

Lemma 6. ** The function f ∶ A→ B has an inverse if and only if it is a one-to-one
correspondence.

Proof. First, suppose that f has an inverse. We need to show f is one-to-one and
onto.
To show f is onto2 we need to show for all y ∈ B there exists an x ∈ A such that
f(x) = y.

2Definition 17, page 36
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If f has an inverse then let it be g ∶ B → A.
So, given any y ∈ B let x = g(y) ∈ A.
Now by Definition 20 on page 38 of inverse functions, f(g(y)) = y. Then f(x) = y so
f is onto since for all y ∈ B there exists an x ∈ A such that f(x) = y.

**

To show f is one-to-one3 we need to show if f(a) = f(b) then a = b.
If f(a) = f(b) for some a, b ∈ A, then (applying g to both sides) g(f(a)) = g(f(b)).
But by Definition 20 on page 38 of inverse functions, g(f(a)) = a and g(f(b)) = b so
a = b. Thus, f is one-to-one.
So f is both onto and one-to-one and therefore a one-to-one correspondence and we
have proved the first part of the theorem.

*****

Conversely, suppose that f is a one-to-one correspondence. We want to show f has
an inverse g such that f(g(x)) = x and g(f(x)) = x.
Given x ∈ B, there exists a y ∈ A with f(y) = x (since f is onto).
Moreover, there is only one such y, since if we also have f(z) = x then since f is
one-to-one, we have f(z) = f(y) ⇒ z = y.
Define g(x) to be equal to this y.
Then if g(x) = y and x = f(y) then g(f(y)) = y for any y and also if f(y) = x and
y = g(x) then f(g(x)) = x for any x and so by definition, g is the inverse4 of f.
This completes the proof of the second part of the theorem.

3.4 Symmetric Groups

The most important groups required to prove the insolvability of the quintic and all
polynomials of degree ≥ 5 are the symmetric groups.

Definition 21. symmetric groups
We define the nth symmetric group Sn as the set of all permutations or rearrange-

ments of the numbers 1,2,3,⋯, n.

Example 22. For example, S3 is the set of six permutations of the numbers 1,2,3.
We label the permutations φ0, φ1,⋯, φ5. They act on 1,2,3 and, except for the identity
permutation, φ0, create different arrangements thus,

φ0 ∶ 1,2,3→ 1,2,3 φ1 ∶ 1,2,3→ 1,3,2

φ2 ∶ 1,2,3→ 2,1,3 φ3 ∶ 1,2,3→ 2,3,1

φ4 ∶ 1,2,3→ 3,1,2 φ5 ∶ 1,2,3→ 3,2,1

3Definition 16, page 36
4Definition 20, page 38
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So we describe the permutations themselves as functions that act on the elements of
{1,2,3} and we say S3 = {φ ∣ φ permutes 1,2,3} where each of the six φi functions acts
on the elements 1,2,3 and rearranges them into one of the six possible permutations.
Note a permutation φi is obviously a one-to-one correspondence since every element
of the first set is clearly paired with just one element of the second set and vice versa.
Accordingly we can write S3 = {φ0, φ1, φ2, φ3, φ4, φ5} where φ1 for example acts on the

top line of (1 2 3
1 3 2

) , creating the rearrangement on the bottom line as follows,

φ1(1) = 1

φ1(2) = 3

φ1(3) = 2

Similarly φ2 creates (1 2 3
2 1 3

) and so on except for φ0 which is the identity permu-

tation function creating (1 2 3
1 2 3

) by leaving the elements unchanged. ◇

We prove in Theorem 7 that in general Sn has n! possible permutations of the set
A = {1,2,⋯, n} or ∣Sn∣ = n!

Theorem 7. *
There are n! possible permutations of the set A = {1,2,⋯, n} or ∣Sn∣ = n!

Proof. Let φ ∈ Sn. Then φ can be written as,

( 1 2 3 ⋯ n − 1 n
φ(1) φ(2) φ(3) . . . φ(n − 1) φ(n))

There are n choices for φ(1) and n − 1 choices for φ(2), etc. Therefore the total
number of choices is n(n − 1)(n − 2)⋯1 = n!

3.5 Notations for Permutations

3.5.1 First Notation

We adopt several notations for permutations. For example, for S5 (which has 5! = 120
permutations) we can write one of the permutations as,

φ = (1 2 3 4 5
3 1 4 5 2

)

meaning, as above, that φ is the permutation function which acts on 1 2 3 4 5
according to,

φ(1) = 3, φ(2) = 1, φ(3) = 4, φ(4) = 5, φ(5) = 2
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3.5.2 Second Notation

But we can also write φ = (1 2 3 4 5
3 1 4 5 2

) as a cycle read from left to right and

looping back to the beginning, namely, φ = (1 3 4 5 2), meaning φ sends,

1→ 3,3→ 4,4→ 5,5→ 2,2→ 1

As will become clear when we review multiplication of cycles below, in this notation
the identity element of Sn is (1)(2) . . . (n).

Example 23. In cycle notation, S3 = {(1,2,3), (1,3,2), (2,3), (1,3), (1,2), (1)(2)(3)}
The two notations relate as follows.

σ0 = (1 2 3
1 2 3

) = (1)(2)(3) or { } σ3 = (1 2 3
1 3 2

) = (23)

σ1 = (1 2 3
2 3 1

) = (123) σ4 = (1 2 3
3 2 1

) = (13)

σ2 = (1 2 3
3 1 2

) = (132) σ5 = (1 2 3
2 1 3

) = (12)

Note if we follow the practice of omitting 1-cycles then the identity (1)(2)(3) is simply
written as { }.

3.5.3 Third Notation

Finally, we can often write φ as a product of cycles, for example φ = (1 2 3 4 5
3 4 1 5 2

)
consists of two separate or disjoint cycles 1 → 3 → 1 and then we start again with
2→ 4→ 5→ 2.
We can therefore write,

φ = (1 3)(2 4 5)

In each case the cycle is closed once the beginning element is repeated. Note when
the first cycle beginning with 1 is completed by looping back to the beginning, we
start the next cycle with the next highest number not already taken care of in the
first cycle (in this case 2) and so on if there are more than two cycles.

Note (1 3) only affects the numbers 1 and 3, the other numbers remain “fixed”.
Similarly (2 4 5) only affects the numbers 2,4,5 with 1 and 3 being fixed.

Accordingly, to determine the meaning of φ = (1 3)(2 4 5) we start with the
number 1 thus,

φ(1) = (1 3)(2 4 5)(1)
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and progress right to left first through (2 4 5) and then through (1 3) thus: 3← 1← 1,

giving, (1 2 3 4 5
3

) Similarly, we have,

4← 4← 2

1← 3← 3

5← 5← 2

2← 2← 5,

giving φ = (1 2 3 4 5
3 4 1 5 4

) as we require. Before we define cycle multiplication, let’s

take another example,

Example 24. Consider the permutation,

φ = (1 2 3 4 5 6 7 8 9
7 9 1 8 6 4 3 5 2

)

We can rearrange this permutation without altering any value of φ(a) = b as
follows.

φ = (1 7 3 2 9 4 8 5 6
7 3 1 9 2 8 5 6 4

)

In effect the permutation φ ∈ S9 partitions the set A = {1,2,3,4,5,6,7,8,9,} into three
disjoint pieces (1,7,3), (2,9, ), (4,8,5,6). φ moves around the elements in each piece
but does not move elements between pieces.
Let us write the permutation that takes 1 to 7, 7 to 3 and 3 to 1 as ( 1 7 3), that is,

(1 7 3) = (1 2 3 4 5 6 7 8 9
7 2 1 4 5 6 3 8 9

)

Note that all the elements other than 1,7,3 are “fixed”, that is φ(4) = 4, etc.
Similarly we can write (2 9) and (4 8 5 6) where,

(2 9) = (1 2 3 4 5 6 7 8 9
1 9 3 4 5 6 7 8 2

)

(4 8 5 6) = (1 2 3 4 5 6 7 8 9
1 2 3 8 6 4 7 5 9

)

Once we confirm how to multiply cycles, as we did above, we can easily show the
original permutation,

φ = (1 2 3 4 5 6 7 8 9
7 9 1 8 6 4 3 5 2

)

is their product , that is,

φ = (1 7 3)(2 9)(4 8 5 6) ◇
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3.6 Multiplication of two permutations in cycle

format

In general, suppose we wish to find the composition of two permutations σ, τ given
by,

στ = (a1, a2,⋯, ak)(b1, b2,⋯, bm).

Start with 1 and work right to left.

� If 1 is the element bj in τ we use τ(bj) = bj+1 (or if 1 = bm then τ(bm) = b1).

We then look for bj+1 in σ.

– If we find bj+1 = as then we use σ(as) = as+1. (or a1 where s = k. ) We
conclude στ(1) = bj+1. (or a1.)

– If we find there is no ai = bj+1 then we conclude στ(1) = bj+1.

� If 1 is not an element in τ then τ leaves 1 fixed and we search for it in σ.
If we find 1 = as then we use σ(as) = as+1 (or a1 where s = k.) We conclude
στ(1) = as+1. (or a1. )

� If 1 is not an element of either τ or σ then we conclude στ(1) = 1 , that is 1 is
fixed.

So, if we want to write the product as a product of disjoint cycles, then start with
1 and find στ(1) = j say. Then repeat the process for j and if we find στ(j) = k,
then repeat the process for k until eventually we again reach 1 and that first cycle is
complete. For the second cycle, choose the smallest number not in the first cycle and
repeat the process until it is found again thus closing off the second cycle, and so on
until all the elements in σ, τ have been allocated to a cycle.

Example 25. Let us return to φ = (173)(29)(4856). We want to show

φ = (1 2 3 4 5 6 7 8 9
7 9 1 8 6 4 3 5 2

)

Start with 1, that is, calculate φ(1) = (173)(29)(4856)(1)
Working right to left, note (4856) does not change 1 and neither does (29) but (173)

sends 1 to 7 so we have 7← 1← 1← 1 giving φ = (1
7

)

Next calculate φ(7). We have 3← 7← 7← 7 so φ = (1 7
7 3

)

Next φ(3) gives 1← 3← 3← 3 so φ = (1 3 7
7 1 3

)
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Since we are back to 1, we choose the next highest number which is 2.

Then φ(2) gives 9← 9← 2← 2 so φ = (1 2 3 7
7 9 1 3

)

Then φ(9) gives 2← 2← 9← 9 so φ = (1 2 3 7 9
7 9 1 3 2

)
Since we are back to 2 we choose the next highest unused number, namely 4. The
remaining products are,

8← 8← 8← 4

5← 5← 5← 8

6← 6← 6← 5

4← 4← 4← 6

So, φ = (1 2 3 4 5 6 7 8 9
7 9 1 8 6 4 3 5 2

) ◇

We do not need to revert to the first notation to calculate cycle products as this
next example demonstrates.

Example 26. Calculate the product στ in cycle form where,
σ = (16527348), τ = (152468)(37).

Remember we work right to left beginning with the action on 1. Then,

σ ○ τ = (16527348)(152468)(37)
2← 5← 1← 1

= (12

8← 4← 2← 2

= (128

6← 1← 8← 8

= (1286

1← 8← 6← 6

= (1286)(3
3← 7← 3

= (1286)(3)(4
5← 6← 4← 4

= (1286)(3)(45

7← 2← 5← 5

= (1286)(3)(457

4← 3← 3← 7

= (1286)(3)(457)
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We usually omit single element cycles, thus,

σ ○ τ = (1286)(457)

= (1 2 3 4 5 6 7 8
2 8 3 5 7 1 4 6

) . ◇

3.7 More on cycles

Using the binary operation of composition of functions, that is, σ ○ τ(a) = σ(τ(a)),
we prove in Theorem 8 that Sn is a group.

Theorem 8. *
The set Sn of all permutations of the set A = {1,2, . . . , n} is a group under permutation
multiplication or composition of functions.

Proof. The four axioms for a group in Definition 5 on page 25 are satisfied, since,

1. (Closure) By definition, permutations are one-to-one and onto functions and
permutation multiplication is simply composition of one-to-one correspondences.
By Theorem 5 on page 37, the composition of two one-to-one correspondences
is again a one-to-one correspondence (one-to-one and onto) so we have closure.

2. (Associativity) By Theorem 5 the composition of functions is associative.

3. (Identity) The identity is φ = (1 2 3 4 . . . n
1 2 3 4 . . . n

)

4. (Inverses) For example, if φ = (1 2 3 4
a b c d

) then we simply interchange the two

rows and φ−1 = (a b c d
1 2 3 4

) is the inverse function of φ such that,

φ−1φ = (a b c d
1 2 3 4

) (1 2 3 4
a b c d

) =(1 2 3 4
1 2 3 4

)

Hence Sn is a group under the operation of permutation multiplication.

3.7.1 Inverses of permutations

We note the Inverses part of the proof of Theorem 8, namely, if φ = (1 2 3 4
a b c d

)

then, interchanging the two rows, φ−1 = (a b c d
1 2 3 4

) is the inverse function.

In practice we would rearrange the top row of φ−1 so that the elements on the top
line are in numerical order, 1, 2, etc., as in the following example.
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Example 27. If φ = (1 2 3 4
3 1 4 2

) then φ−1 = (3 1 4 2
1 2 3 4

) =(1 2 3 4
2 4 1 3

)

making, φ−1 ○ φ = (1 2 3 4
3 1 4 2

) (1 2 3 4
2 4 1 3

) =(1 2 3 4
1 2 3 4

) ◇

Note 5. In cycle notation, if φ = (ab . . . cd) then φ−1 = (dc . . . ba), the reversal of the
elements of φ.

Example 28. For example, in S3, the inverse of (312) is (213) since
(312)(213) = (1)(2)(3). ◇

3.7.2 Composition of cycles is abelian or commutative

Theorem 9. **
Let A = {1,2, . . . , n} and σ, τ ∈ Sn be disjoint cycles. Then,

στ = τσ or σ ○ τ(x) = τ ○ σ(x) for all x ∈ A.

That is, the composition of disjoint cycles is abelian or it commutes.

Proof. Let σ = (a1, a2, . . . , am) and τ = (b1, b2, . . . , bn) where ai ≠ bj for all i, j such
that 1 ≤ i ≤m,1 ≤ j ≤ n, that is the cycles are disjoint.
Note τ leaves the elements ai fixed (that is τ(ai) = ai) and σ leaves the elements bj
fixed.
Then, using Definition 19 on page 37 of composition of functions, that is
σ ○ τ(x) = σ(τ(x)), we have for x = ai,

σ ○ τ(ai) = σ(τ(ai)) = σ(ai) = ai+1 = τ(ai+1) = τ(σ(ai)) = τ ○ σ(ai),

unless ai = am, in which case,

σ ○ τ(am) = σ(τ(am)) = σ(am) = a1 = τ(a1) = τ(σ(am)) = τσ(am)

A similar argument applies to x = bj and στ(bj). Then στ = τσ for all the elements of
σ and τ proves the composition of two disjoint cycles is abelian or it commutes.

3.7.3 k-cycles and 2-cycles

Definition 22. - k-cycles and 2-cycles
We define a k-cycle as a cycle with k elements or length k. A 2-cycle has 2 elements
or length 2.

We prove in Theorem 10 that every cycle of any length can be written as a product
of 2- cycles.
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Theorem 10. **
Every cycle can be written as the product of 2-cycles, namely,

φ = (anan−1)(anan−2) . . . (ana2)(ana1)

Proof. Let φ = (a1, a2, . . . , an) and consider (anan−1)(anan−2) . . . (ana2)(ana1). Start
with their action on a1.

(anan−1)(anan−2) . . . (ana3)(ana2)(ana1)(a1)
a2 ← . . .← a2 ← an ← a1

= (a1a2
a3 ← . . .← a3 ← an ← a2

= (a1a2a3
= . . . . . .
= (a1a2a3 . . . an)

Example 29. (24513) = (31)(35)(34)(32)

Note 6. The exposition φ = (anan−1)(anan−2) . . . (ana2)(ana1) is not unique, for ex-
ample, we can also have φ = (a1a2)(a1a3) . . . (a1an−1)(a1an).

3.8 The Alternating Subgroup

Definition 23. even and odd permutations
We label permutations as even and odd permutations, meaning the permutation is

respectively either the product of an even number of 2−cycles or an odd number of
2−cycles. We label the set of even permutations as An.

We prove in general in Theorem 11 that An is a subgroup of Sn which we name
the alternating group. We prove in Theorem 12 that exactly half the elements of Sn

are even permutations and the other half are odd, so that ∣An∣ =
∣Sn∣
2

= n!

2
.

Theorem 11. *
The set of even permutations, An, is a subgroup of the symmetric group Sn.

Proof. Note the inverse of a 2-cycle is just its reverse, that is (ab)−1 = (ba).
Let φ, θ ∈ An. By the subgroup test, Corollary 3 on page 31, we need to show φθ−1 ∈ An.
We have by definition that φ, θ are the product of an even number of 2-cycles, say,

φ = σ1σ2 . . . σ2n and θ = τ1τ2 . . . τ2m, m,n ∈ N.
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But then,

φ = σ1σ2 . . . σ2n and θ−1 = (τ1τ2 . . . τ2m)−1 = τ2mτ2m−1 . . . τ1,

are both the product of an even number of 2-cycles and therefore so is,

φθ−1 = σ1σ2 . . . σ2nτ2mτ2m−1 . . . τ1,

which has (2n + 2m) 2-cycles. So φθ−1 ∈ An, proving An is a subgroup of Sn.

Definition 24. alternating subgroup
The subset of even permutations in the symmetric group Sn is called the alternating
subgroup for which we use the notation An.

Example 30. Let us consider the 3! = 6 permutations in Sn, the symmetric group of
permutations on A = {1,2,3}. They are, using Theorem 16, page 53,

σ0 = (1 2 3
1 2 3

) = (1)(2)(3) σ3 = (1 2 3
1 3 2

) = (23)

σ1 = (1 2 3
2 3 1

) = (123) = (32)(31) σ4 = (1 2 3
3 2 1

) = (13)

σ2 = (1 2 3
3 1 2

) = (132) = (23)(21) σ5 = (1 2 3
2 1 3

) = (12)

Note the alternating group A3 is a subgroup of S3 as we proved in Theorem 17 above,
and therefore must contain the identity σ0.
Thus A3 = {σ0, σ1, σ2} = {(1)(2)(3), (32)(31), (23)(21)}.
You can show A3 is closed by showing σ2

1 = σ2, σ2
2 = σ1 and σ1σ2 = σ0. ◇

Theorem 12. **
There are the same number of odd and even 2-cycles in Sn, that is the order of An is,

∣An∣ =
∣Sn∣
2

= n!

2
.

Proof. Let Sn = An ∪On where On is the set of odd permutations.
To show two sets have the same number of elements, we simply need to construct
a one-to-one correspondence (one-to-one and onto function) between them since if
such a function exists then each element in the first set corresponds to exactly one
element in the second set and vice versa, so the two sets must have the same number
of elements.
Let α ∶ An → On where for any σ ∈ An, α(σ) = σ(12), that is, an even permutation
becomes an odd permutation by multiplying it by a 2-cycle (12).
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First note that φ(12)(12) = φ for any cycle φ since (12)(12) is just the identity5 as
seen by their action on 1 and 2 and any other element.

(12)(12)(1) = 1, (12)(12)(2) = 2 and (12)(12)(a) = a for all a ≠ 1,2

Recall Definition 16 on page 36: For θ ∶ A → B to be one-to-one we need to show for
all x, y ∈ A that if θ(x) = θ(y) then x = y.
Then α is one-to-one since if σ, τ ∈ An, then,

α(σ) = α(τ)
⇒ σ(12) = τ(12)
⇒ σ(12)(12) = τ(12)(12)
⇒ σ = τ

Finally, for θ ∶ A → B to be onto, according to Definition 17 on page 36, we need to
show for all b ∈ B that there is an a ∈ A such that θ(a) = b.
Well then, α ∶ An → On is onto since if β ∈ On is an odd permutation then β(12) is
an even permutation with,

α(β(12) = β(12)(12) = β.

Simply expressed, for every β ∈ On there is a β(12) ∈ An. Hence θ ∶ An → On is a

one-to-one correspondence and ∣An∣ = ∣On∣ so that ∣An∣ =
∣Sn∣
2

= n!

2
by Theorem 7 on

page 40.

It is this relationship between An and Sn that is critical to proving the insolvability
by radicals of polynomials of degree ≥ 5.

3.9 Generators of Sn

In the conclusion of this book we will find an actual example of a non-solvable quintic
by using Theorem 106, that an irreducible quintic with exactly three real roots (and
two complex roots) is not solvable by radicals.

The proof of Theorem 106 requires Theorem 13 where we prove every permutation
in Sn is a product of 2-cycles of the form (i, i+1). We also need Theorem 14 where we
prove that the cycles (1,2, . . . , n) and (1,2) generate Sn, meaning every permutation
in Sn can be formed by taking multiples of just (1,2, . . . , n) and (1,2).

Theorem 13. ***
For n ≥ 2, Sn is generated by the (n − 1) 2-cycles (1,2), (2,3), . . . , (n − 1, n).

5Actually the product of any 2−cycle by itself is just the identity as you can easily see - try
(5,6)(5,6) ∈ S6.
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Proof. We have already proved in Theorem 10 on page 47 that every cycle in Sn is
the product of 2-cycles so it suffices to show any 2-cycle (a, b) in Sn is a product of
2-cycles of the form (i, i + 1) where i < n.
We will argue by induction on b − a that (a, b) is a product of 2-cycles (i, i + 1).
Without loss of generality we can say a > b since if b > a we can simply interchange
a, b in the following argument.
Basic Step: This is obvious when b − a = 1, since (a, b) = (a, a + 1) is one of 2-cycles
we want in the desired generating set.
Inductive Step: Now we suppose any 2-cycle (a, b) with b − a = k, k > 1, can be
written as a product of 2-cycles of the form (i, i + 1). Note that, under this choice,
(a, b) = (a, a + k).
Induction Step: Consider a 2-cycle (a, b) with b − a = k + 1, that is,
(a, b) = (a, a + k + 1). We need to show (a, b) is the product of 2-cycles of the form
(i, i + 1). Now (the multiplication is left to the reader),

(a, b) = (a + 1, b)(a, a + 1)(a + 1, b)

The middle 2-cycle lies in our desired generating set. The first and third 2-cycles
satisfy b − (a + 1) = b − a − 1 = k + 1 − 1 = k and therefore by supposition they can be
written as a product of 2-cycles of the form (i, i + 1) and therefore so can (a, b).

Theorem 14. ***
Every permutation in Sn can be written as a product of powers of (1,2, . . . , n) and
(1,2).

Proof. Let σ = (1,2) and ρ = (1,2, . . . , n).
Then,

ρ2 = (3,4, , . . . , n − 1, n,1,2);
ρ3 = (4, . . . , n − 1, n,1,2,3);
ρ4 = (5, . . . , n − 1, n,1,2,3,4)

This works like a clock. For ρk each element “steps forward” by k steps from its
position in ρ. Clearly, ρn = ρ0, the identity, but more importantly, for our purposes,

ρn−1 = (1, n, n − 1, . . . ,2)

Then we can compute to show,

ρσρn−1 = (1,2, . . . , n)(1,2)((1, n, n − 1, . . . ,2) = (2,3)

and in general,

ρ(i, i + 1)ρn−1 = (i + 1, i + 2)
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So we have (1,2) and (2,3) and by ρ(i, i + 1)ρn−1 = (i + 1, i + 2) we can produce,

ρ(2,3)ρn−1 = (3,4)
ρ(3,4)ρn−1 = (4,5), etc.

Therefore the product of powers of ρ, σ generate all 2-cycles of the form (i, i+ 1). By
Theorem 13 on page 49 they generate all permutations in Sn.



Chapter 4

Group Theory Part III

Homomorphisms, Isomorphisms
In this chapter we begin our investigation of functions that operate on groups, we
call them homomorphisms and isomorphisms.

4.1 Homomorphisms

Definition 25. group homomorphism
A group homomorphism φ maps elements in the group G1 onto another group G2.

We write,

φ ∶ G1 → G2,

where “:” is read as “maps” and “→” as “onto”. A group homomorphism obeys the
rule,

φ(a ∗ b) = φ(a) ⊗ φ(b)

for all a, b ∈ G1, where the respective group operations on G1 and G2 are ∗ and ⊗.

Note that the operation ∗ is being taken in G1 while the operation ⊗ is being taken
in G2. For simplicity we simply say φ is a homomorphism of groups if,

φ(ab) = φ(a)φ(b) for all a, b ∈ G1.

Example 31. The map φ ∶ Z→ Z with φ(n) = 5n is a homomorphism since,

φ(m + n) = 5(m + n) = 5m + 5n = φ(m) + φ(n) ◇

Example 32. The map φ ∶ Z→< a > given by φ(n) = an is a homomorphism since

φ(m + n) = am+n = aman = φ(m)φ(n)

Note the operation in Z is addition but in < a > the operation is multiplication. ◇

52
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For composite maps we have Theorem 15 that for any groups G1,G2,G3 and
homomorphisms φ ∶ G1 → G2, ψ ∶ G2,→ G3, the composite map φ ○ψ, or simply φψ, is
a homomorphism from G1 to G3.

Theorem 15. **
For any groups G1,G2,G3 and homomorphisms φ ∶ G1 → G2, ψ ∶ G2,→ G3, the com-
posite map φ ○ ψ is a homomorphism from G1 to G3.

Proof. We need to show,

φ ○ ψ(xy) = φ ○ ψ(x)φ ○ ψ(y).

We use the Definition 19 on page 37 of composition of functions and Definition 25 on
page 52 of homomorphisms, namely,

f ○ g(x) = f(g(x)) and φ(ab) = φ(a)φ(b) and ψ(cd) = ψ(c)ψ(d)

Accordingly,

φ ○ ψ(xy) = φ(ψ(xy)) = φ(ψ(x)ψ(y))) = φ(ψ(x))φ(ψ(y)) = φ ○ ψ(x)φ ○ ψ(y))

Theorem 16 gives us various properties of homomorphisms.

Theorem 16. *** (Properties of homomorphisms)
Let φ ∶ G1 → G2 be a homomorphism. Then,

1. φ(e1) = e2 where e1, e2 are the respective identity elements.

2. φ(a−1) = φ(a)−1

3. φ(an) = φ(a)n for all n ∈ Z.

4. If a ∈ G and the order ∣a∣ is finite, then ∣φ(a)∣ = ∣a∣.

5. If H is a subgroup of G1 then φ(H) = {φ(h)∣h ∈H} is a subgroup of G2.

Proof. We use xe = x, ee = e and φ(x)φ(y) = φ(xy).

1. We want to show φ(e1) = e2
Note φ(e1) ∈ G2 which has identity e2 and hence φ(e1)e2 = φ(e1). But also,

φ(e1)φ(e1) = φ(e1e1) = φ(e1)

hence,

φ(e1)φ(e1) = φ(e1)e2
⇒ φ(e1) = e2

by cancellation.
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2. We want to show φ(a−1) = φ(a)−1
We have,

φ(a)φ(a−1) = φ(aa−1) = φ(e1) = e2 by (1), but also,

φ(a)φ(a)−1 = e2. Thus,

φ(a)φ(a)−1 = φ(a)φ(a−1)
so φ(a)−1 = φ(a−1) by cancellation.

3. We want to show φ(an) = (φ(a))n for all n ∈ Z. We have,

φ(an) = φ(a.a.a.a. . . . .a.a × a)
= φ(a.a.a.a. . . . .a.a)φ(a)
= φ(a.a.a.a. . . . .a × a)φ(a)
= φ(a.a.a.a. . . . .a)φ(a)2

⋮
= φ(a)n

4. We want to show if a ∈ G and the order1 of ∣a∣ is finite, then ∣φ(a)∣ = ∣a∣.
We first claim that if G is a group and a ∈ G is an element of finite order, say
∣a∣ = n, (see Definition 13 on page 33) then for any k ∈ Z, we have ak = e if and
only if n∣k⇔ k = nm for some integer m. That is, n is the smallest integer for
which an = e.
Proof of the claim
Suppose n∣k⇔ k = nm . We want to prove ak = e. Then,

ak = anm = (an)m = em = e.

*****

Conversely, suppose for any k ∈ Z, that ak = e. We want to prove n∣k.
Dividing k by n we can write2 for some b ∈ Z,

k = nb + c,0 ≤ c < n.

Then,

e = ak = anb+c = (an)bac = ac, 0 ≤ c < n

But ac = e with c < n contradicts Definition 13 on page 33 that ∣a∣ = n where n
is the smallest integer such that an = e.
Therefore c = 0 and k = nb⇒ n∣k. Thus n is the smallest integer for which an = e
and our claim has been proved.

1When reading ∣a∣ or ∣φ(a)∣ remember this is the order of a or φ(a), that is the smallest integer
n such that an = e1 or φ(a)n = e2.

2By the Division Algorithm Theorem 57A on page 105
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*****

To prove ∣φ(a)∣ = ∣a∣, let ∣a∣ = n⇔ an = e. Then by (3) we have,

φ(a)n = φ(an) = φ(e1) = e2.

By the claim we just proved above, n must be the smallest integer for which,

φ(a)n = e2⇒ ∣φ(a)∣ = n,

which is also ∣a∣.

5. We want to show if H is a subgroup of G1 then φ(H) = {φ(h)∣h ∈ H} is a
subgroup of G2.
To apply the subgroup test, Corollary 3 on page 31, we need to show that if,

φ(a), φ(b) ∈ φ(H) then φ(a)φ(b)−1 ∈ φ(H).

Let a, b ∈H. Then φ(a), φ(b) ∈ φ(H).
Since H is a subgroup, ab−1 ∈H so that φ(ab−1) ∈ φ(H).
But φ(ab−1) = φ(a)φ(b)−1 so φ(a)φ(b)−1 ∈ φ(H) which is the subgroup test.

4.2 Kernel

The elements of the first group that are mapped onto the identity element of the
second group by a homomorphism are important. We define,

Definition 26. kernel of a group function
Let φ ∶ G1 → G2 be a group function and e2 be the identity in G2. Then the kernel of
φ is the set,

ker(φ) = {x ∈ G1 ∣ φ(x) = e2},

in other words the elements of G1 that are mapped onto the identity of G2.

Example 33. The identity in Z5 = {0,1,2,3,4} is 0 and any integer divisible by 5
becomes 0 under the modulo 5 operation. Hence, the kernel of φ ∶ Z→ Z5 is,

{n ∈ Z ∣ n(mod5) ≡ 0, or 5∣n} = {0,±5,±10, . . .} = 5Z ◇

We prove two theorems relating to the kernel, namely,
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Theorem 17. ***
Let φ ∶ G1 → G2 be a homomorphism. Then ker(φ) is a subgroup of G1.

Proof. To prove ker(φ) = {x ∈ G ∣ φ(x) = e2} is a subgroup of G1, we need, according
to Corollary 3 on page 31, to show if a, b ∈ ker(φ) then so does ab−1, that is φ(ab−1) =
e2. Now if,

a, b ∈ ker(φ) = {x ∈ G1 ∣ φ(x) = e2}

then by definition of the kernel, φ(a) = φ(b) = e2.
But, since φ is a homomorphism,

φ(ab−1) = φ(a)φ(b−1) = φ(a)φ(b)−1 = e2e−12 = e2⇒ ab−1 ∈ ker(φ).

Note the inverse of the identity is the identity.

Theorem 18. ***
Let φ ∶ G1 → G2 be a homomorphism. Then φ is one-to-one if and only if the kernel
is trivial, that is, ker(φ) = {e1} or the kernel contains only the identity element of
G1.

Proof. Suppose φ is one-to-one. We want to show ker(φ) = {e1}.
Let x ∈ ker(φ) = {x ∈ G1 ∣ φ(x) = e2}. Suppose φ(x) = e2. But φ(e1) = e2 by Theorem
16, page 53, so since φ is one to one and φ(x) = φ(e1), by Definition 16 on page 36 of
a one-to-one function, we must have x = e1.
So only e1 is mapped onto e2 and therefore,

ker(φ) = {x ∈ G1 ∣ φ(x) = e2} = {e1}.

*****

Conversely, suppose ker(φ) = {e1} and suppose for some x, y ∈ G1 that φ(x) = φ(y).
To prove φ is one-to-one we need to prove x = y. But,

φ(xy−1) = φ(x)φ(y−1)
= φ(y)φ(y−1) using φ(x) = φ(y)
= φ(yy−1)
= φ(e1)
= e2
⇒ xy−1 ∈ ker(φ) = {e1}
⇒ xy−1 = e1
⇒ xy−1y = e1y
⇒ x = y.

So φ is one-to-one.
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4.3 Isomorphisms

We are particularly interested in group homomorphisms that cause two groups G1

and G2 to have the same “shape”, specifically,

� the same number of elements,

� the same order for corresponding elements (that is, if an = e1, the identity of
G1, then ∣φ(a)∣n = e2, the identity element of G2.)

� preserve properties such as both groups are abelian or both are cyclic

� preserve products, identity elements and inverses like this,

– Products: φ(a1a2 . . . an) = φ(a1)φ(a2) . . . φ(an)
– Identity: φ(e1) = e2
– Inverses: If aa−1 = e1, then φ(a)φ(a−1) = e2.

Briefly expressed, we define such homomorphisms as isomorphisms and we prove
there will be the same “shape” between two groups where the isomorphism
φ ∶ G1⇒ G2 is a homomorphism satisfying,

φ(ab) = φ(a)φ(b) for all a, b ∈ G1,

and is a one-to-one correspondence which we defined earlier. Put simply, a one-to-one
correspondence means the mapping makes every element of G1 correspond to exactly
one element of G2 and every element of G2 correspond to exactly one element of G1.
The technical expression is that for an isomorphism we require φ to be one-to-one
and onto or a one-to-one correspondence as well as being a homomorphism.

Definition 27. group isomorphism
We say φ ∶ G1 → G2 is an isomorphism mapping group (G1,⊗) onto the group (G2,⊙)

if the following three conditions are satisfied,

� φ(a⊗ b) = φ(a) ⊙ φ(b) for all a, b ∈ G1, (that is, φ is a group homomorphism)

� φ is one-to-one, that is, if φ(a) = φ(b) then a = b.

� φ is onto, that is, for every element b ∈ G2 there is a corresponding element
a ∈ G1 such that φ(a) = b.

Note that since an isomorphism is a homomorphism, all the theorems for the
properties of homomorphisms (specifically, Theorems 15, 16, 17 and 18) also apply
to isomorphisms.

Definition 28. isomorphic groups
If an isomorphism φ ∶ G1 → G2 exists then we say G1,G2 are isomorphic groups and
we use the symbol,

G1 ≅ G2.
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Note 7. Note that if we want to prove two groups are isomorphic (which we will do
multiple times in this book), we need to conjecture or guess what the function could be
and then prove the function is a homomorphism and is one-to-one and onto. Theorem
27 will be our first example of this set of steps. First, in Theorems 19 and 20 we prove
the further properties we wished isomorphisms to have.

Theorem 19. ***
Any group isomorphism preserves products, the identity element and inverses. Specif-
ically,

1. φ(a1a2 . . . an) = φ(a1)φ(a2) . . . φ(an)

2. φ(e1) = e2 where e1, e2 are the respective identity elements.

3. φ(a)−1 = φ(a−1) for all a ∈ G1.

Proof. 1. We use induction to prove φ(a1a2 . . . an) = φ(a1)φ(a2) . . . φ(an)
Basis Step: Let Sn be the statement φ(a1a2 . . . an) = φ(a1)φ(a2) . . . φ(an)
Now S1 ∶ φ(a1) = φ(a1) is trivially true but also S2 ∶ φ(a1a2) = φ(a1)φ(a2) is
true by definition.
Induction Step: We assume Sn ∶ φ(a1a2 . . . an) = φ(a1)φ(a2) . . . φ(an) is true.
We need to show Sn+1 ∶ φ(a1a2 . . . anan+1) = φ(a1)φ(a2) . . . φ(an)φ(an+1) is true.

Left side = φ(a1a2 . . . anan+1)

= φ(³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
a1a2 . . . an an+1)

= φ(³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
a1a2 . . . an)φ(an+1) by definition

= φ(a1)φ(a2) . . . φ(an)φ(an+1) by the assumption

= Right side

2. See Theorem 16 on page 53.

3. See Theorem 16.

Theorem 20. *** (Properties of Isomorphic Groups)
Let G1 ≅ G2. Then,

1. ∣G1∣ = ∣G2∣, that is they have the same number of elements.

2. ∣a∣ = ∣φ(a)∣ for all a ∈ G1, that is their respective elements have the same order.

3. G1 is abelian if and only if G2 is abelian.

4. G1 is cyclic if and only if G2 is cyclic.

Proof. Let φ ∶ G1 → G2 be the isomorphism making G1 ≅ G2.
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1. We want to prove ∣G1∣ = ∣G2∣, that is the two groups have the same number of
elements.
Now φ is a one-to-one and onto map between G1 and G2 (Refer Definitions 16
on page 36 and 17 on page 36). First suppose G2 has more elements than G1.
Since φ is onto, all the elements in G2 must be the mapping of an element in G1.
This must mean that there is an element (or several elements), say a ∈ G1, that
maps onto two different elements, say g1, g2 ∈ G2 with φ(a) = g1, φ(a) = g2. But
this contradicts Definition 15 on page 35 of a function, namely every element
of the first set must map into exactly one element of the second set.
On the other hand, suppose G1 has more elements than G2. Since φ is onto,
every element of G2 is a mapping of an element of G1, but this must mean at
least one element of G2, say g2, has been mapped onto by two different elements
of G1, say,

a, b ∈ G1, a ≠ b and φ(a) = φ(b) = g2 ∈ G2

But in turn, this contradicts the fact that φ is one-to-one, whose Definition 16
on page 36, is that if φ(a) = φ(b) then a = b.3

2. We want to prove ∣a∣ = ∣φ(a)∣ for all a ∈ G1, that is their respective elements
have the same order.
This is proved in Theorem 16 (Properties of Homomorphisms), part (4) on page
53, since an isomorphism is also a homomorphism.

3. We want to prove G1 is abelian if and only if G2 is abelian.
Suppose G1 is abelian. Let x, y ∈ G2. We need, according to Definition 6 on
page 26, to show xy = yx.
Since φ is onto, there are elements a, b ∈ G1 such that φ(a) = x,φ(b) = y.
Then since G1 is abelian making ab = ba,

xy = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = yx,

so that G2 is also abelian.

*****

Conversely suppose G2 is abelian. Let x, y ∈ G2, say x = φ(a), y = φ(b) for some
a, b ∈ G1. Then,

xy = yx⇒ φ(a)φ(b) = φ(b)φ(a) ⇒ φ(ab) = φ(ba) ⇒ ab = ba

so G1 is also abelian.

3 We have now formally proved the earlier statement following Definition 18 on page 36 that
the simple way to remember the definition of a one-to-one correspondence between the elements of
two finite sets is that it is a function where every element of the first set is paired with exactly one
element of the second set and every element of the second set is paired with exactly one element of
the first set.
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4. We want to prove G1 is cyclic if and only if G2 is cyclic.
We use Theorem 4 (3) on page 33 which states “a finite group G is cyclic if and
only if there is an element a ∈ G such that ∣a∣ = ∣G∣.”
Suppose G1 =< a > is cyclic. Then ∣a∣ = ∣G1∣ by Theorem 10 (3).
By (1) and (2) above,

∣G2∣ = ∣G1∣ = ∣a∣ = ∣φ(a)∣

so ∣G2∣ = ∣φ(a)∣ and therefore G2 =< φ(a) > is cyclic by Theorem 4 (3).

*****

Conversely, suppose G2 =< b > is cyclic so that ∣b∣ = ∣G2∣. Then since φ is onto
there is an a ∈ G1 with φ(a) = b giving ∣φ(a)∣ = ∣b∣.
But then,

∣a∣ = ∣φ(a)∣ = ∣b∣ = ∣G2∣ = ∣G1∣ by (1) and (2) above,

making ∣G1∣ = ∣a∣ and therefore G1 is cyclic, again by Theorem 4 (3).

Note 8. Let’s return to how we prove two groups are isomorphic. To prove, for
example, that all cyclic groups of the same number of elements n are isomorphic to
each other and also to Zn, we need to conjecture (an educated guess!) a function
φ between the two respective groups G1,G2 and then prove it is an isomorphism by
proving it is one-to-one and onto and that φ(ab) = φ(a)φ(b) for all a, b ∈ G1. A simple
example is to prove Theorem 21 that,

φ ∶ {e1, a, a2, . . . , an} → {e2, b, b2, . . . , bn},

is an isomorphism between the cyclic groups < a >,< b > of order n, where we conjecture
φ(ai) = bi for 1 ≤ n ≤ n.

Theorem 21. ***
Let G1 =< a >,G2 =< b > be cyclic groups of the same finite order n. Then there is an
isomorphism φ ∶ G1 → G2 so that G1 ≅ G2.

Proof. Let G1 =< a >= {e, a, a2, . . . , an−1}, G2 =< b >= {e, b, b2, . . . , bn−1} where the
elements are all distinct.
Define (here is the educated guess) φ ∶ G1 → G2 by φ(ai) = bi for 1 ≤ i ≤ n.
We need to prove φ is one-to-one, onto and a homomorphism.

1. φ is clearly onto4, since for each bi ∈ G2 there is an ai ∈ G1 such that φ(ai) = bi.
4Definition 17, page 36
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2. φ is one-to-one5 since if φ(ai) = φ(aj) then bi = bj, but since the elements are
all distinct we must have i = j, so that ai = aj.

3. φ is a homomorphism6 since,

φ(aiaj) = φ(ai+j) = bi+j = bibj = φ(ai)φ(aj).

We conclude φ is an isomomorphism and G1 ≅ G2.

Of course we could have simply claimed the one-to-one correspondence (one-to-
one and onto) due to the obvious fact that both groups have the same number n of
elements.
Finally, we prove in Corollary 22 that if G =< a > is a cyclic group with ∣G∣ = n then
we have the isomorphism given by,

G ≅ Zn = {0,1,2, . . . , n − 1}.

Corollary 22. *
Let G =< a > be a cyclic group. If ∣G∣ = n then G ≅ Zn = {0,1,2, . . . , n − 1}.

Proof. This is true by Theorem 21 since we have two cyclic groups of the same
order.

Of course we are saying Zn = {0,1,2, . . . , n−1} is cyclic but this is just the definition
of a cyclic group since Zn =< 1 > under the operation addition modulo n.

5Definition 16, page 36
6Definition 27, page 57



Chapter 5

Group Theory Part IV

Cosets, Normal Groups, Factor Groups

5.1 Cosets

Definition 29. cosets
The set of (left) cosets a ∗H of a subgroup H of a group (G,∗) determined by an

element a ∈ G is,

a ∗H = {x ∈ G ∣ x = a ∗ h for some h ∈H}

If the operation ∗ is addition, a ∗H means we are adding a to every element of H.
If the operation is multiplication, a∗H means we are multiplying every element of H
by a.
The set of right cosets is H ∗ a.

Definition 30. index
The number of left cosets of H in G is called the index of H in G and is denoted by
[G ∶H].

Example 34. Let us consider Z6 = {0,1,2,3,4,5} and H = {0,3} under addition
modulo 6.
We first prove closure, associativity and the existence of an identity and inverses and
that H = {0,3} is a subgroup of Z6.

� Closure: 0 + 0 ∈H; 0 + 3 = 3 ∈H ∶ 3 + 3 = 0 ∈H

� Identity: 0

� Inverses: The pairs are 0 + 0 = 0, 3 + 3 = 0

� Associativity: 0,3 are integers and integers have associativity

62
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Since there are 6 possible values for x ∈ Z6, there are therefore 6 possible cosets of
H = {0,3} in Z6 under addition modulo 6, namely,

0 +H = {0,3} =H
1 +H = {1,4}
2 +H = {2,5}
3 +H = {3(mod 6),6(mod 6)} = {3,0} =H
4 +H = {4,1} = 1 +H
5 +H = {5,2} = 2 +H

So there are just three cosets: H,1 +H and 2 +H and we write [Z6 ∶H] = 3. ◇

Note 9. We note that the three cosets 0 +H = {0,3}, 1 +H = {1,4}, 2 +H = {2,5}
partition the group into three disjoint subsets, no elements in common. No two cosets
have the same elements and each contains exactly the same number of elements as H.

Let’s consider another example, this time with multiplication modulo 11.

Example 35. Let G = Z×
11 under multiplication modulo 11.

Let H = {1,10}. Then H is a subgroup since the axioms of Definition 5 on page 25
are satisfied. We have,

(a) Closure: 1 × 1 = 1 ∈H,1 × 10 = 10 ∈H,10 × 10 = 1 ∈H.

(b) Identity element is 1

(c) Associativity is true since the elements are integers.

(d) Inverses: The two elements 1,10 are their own inverses, since
1 × 1 = 1,10 × 10 = 1.

Using multiplication modulo 11, [Z×
11 ∶H] = 5 since the cosets are:

1H = {1,10} =H
2H = {2,20} = {2,9}
3H = {3,30} = {3,8}
4H = {4,40} = {4,7}
5H = {5,50} = {5,6}
6H = {6,60} = {6,5} = 5H

7H = {7,70} = {7,4} = 4H

8H = {8,80} = {8,3} = 3H

9H = {9,90} = {9,2} = 2H

10H = {10,100} = {10,1} = 1H =H ◇
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Note 10. Again note that in both of these examples the cosets partition the set G
into disjoint subsets. All the elements of G may be found in the cosets and none are
repeated.
Note also that since every coset aH contains exactly the elements of H operated on
by a that each coset has exactly the same number of elements as H.
To be rigorous, we can define the map µ ∶H → aH by µ(h) = ah which is,

� onto (ah ∈ aH corresponds to h ∈H)

� one-to-one (ah1 = ah2⇒ h1 = h2 by cancellation),

so µ is a one-to-one correspondence and H and aH must have the same number of
elements.

*****

To show no element can be in more than one coset, let H be a subgroup of G and
suppose a, b, c are elements of G such that b ∉ aH and c is in both aH and bH. Then
there are elements such that c = ah1 and c = bh2 ⇒ ah1 = bh2 ⇒ b = ah1h−12 . But
h1h−12 ∈ H ⇒ b ∈ aH which is a contradiction. Thus, no element can be in more than
one coset.

Using the symbol [G ∶ H] for the number of left cosets of H in G we prove
Lagrange’s Theorem.

Theorem 23. * (Lagrange)
Let G be a group of finite order (finite number of elements) and H a subgroup of G.

Then the order of H divides the order of G. Indeed
∣G∣
∣H ∣ = [G ∶ H]. In addition, if

a ∈ G then the order ∣a∣ of a divides the order ∣G∣ of G.

Proof. Let H be a subgroup of the finite group G.
By Definition 29 on page 62, the number of cosets of H is [G ∶ H] and by Note 10
above, each coset has ∣H ∣ elements.
The cosets are all disjoint and no element of G is omitted, hence altogether the cosets

contain [G ∶H] × ∣H ∣ elements and this is ∣G∣. Hence
∣G∣
∣H ∣ = [G ∶H] so the order of H

divides the order of G.

*****

By Theorem 4 (1) on page 33 < a > is a subgroup of G, so by what we have just
proved, ∣ < a > ∣ divides ∣G∣.
But, by Theorem 4 (2), ∣a∣ = ∣ < a > ∣, so ∣a∣ divides ∣G∣.
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5.2 Normal Subgroups

Definition 31. normal subgroup
We define a subgroup H of a group G to be a normal subgroup if,

ghg−1 ∈H for all h ∈H and g ∈ G.

that is if there is an element h1 ∈H such that ghg−1 = h1.

Notation 3. If H is a normal subgroup of G we write H ⊲ G if H is a proper subgroup
of G and H ⊴ G if it may be either a proper subgroup or the whole of G.

Note 11. Since ghg−1 ∈H ⇒ ghg−1 = h1 for some h1 ∈H, we have
g−1ghg−1g = g−1h1g so that g−1h1g = h. Accordingly some writers define H to be normal
if g−1hg ∈ H for all h ∈ H and g ∈ G. Their subsequent results are the same as those
deriving from our definition.

Easy examples of normal groups are provided by Theorem 24.

Theorem 24. **
Let G be a group with identity element e and let H be a subgroup of G.

1. If H = G then H is normal (a normal subgroup of G).

2. If H = {e} then H is normal.

3. If G is abelian then H is normal.

Proof. In each case we need to prove Definition 31 on page 65 holds, that ghg−1 ∈ H
for all g ∈ G and h ∈H.

1. Let H = G. Now ghg−1 ∈ G but G =H so ghg−1 ∈H making H ⊲ G.

2. Let H = {e} and g = e, h = e in ghg−1.
Then eee−1 = e ∈H so H ⊲ G.

3. Suppose G is abelian.1 If h ∈H and g ∈ G then,

ghg−1 = g(hg−1) = g(g−1h) since G is abelian

= (gg−1)h = eh = h
⇒ ghg−1 ∈H since we assumed h ∈H
⇒H ⊲ G.

1Definition 6, page 26
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Theorem 25 proves the left and right cosets are the same or aH = Ha if and only if
and only if aha−1 ∈H for all h ∈H and a ∈ G, that is, if and only if H ⊲ G.

Theorem 25. *
Consider a subgroup H of a group G and let a ∈ G. Then aH = Ha if and only if
aha−1 ∈H for all h ∈H and a ∈ G. That is, H is a normal subgroup of G or H ⊲ G if
and only if aH =Ha for all a ∈ G.

Proof. Suppose aH = Ha for all a ∈ G. We need to prove that for any h ∈ H that
aha−1 ∈H so that H ⊲ G.
Let h ∈ H. Now by the supposition, aH = Ha for any h ∈ H, or ah = h1a for some
h1 ∈H.
Hence, multiplying on the right by a−1, aha−1 = h1aa−1 for some h1 ∈H.
But aha−1 = h1aa−1⇒ aha−1 = h1e = h1, and since h1 ∈H then so does aha−1, making
H ⊲ G.

*****

Conversely, suppose aha−1 ∈H for all h ∈H and a ∈ G.
We will prove double containment, that is, aH ⊆ Ha and Ha ⊆ aH so that we must
have aH =Ha.
First, we prove aH ⊆ Ha by proving that any element ah ∈ aH is also an element of
Ha. We do this by proving ah = h2a for some h2 ∈H.
Now we have supposed aha−1 ∈H. Then aha−1 = h2 for some h2 ∈H.
Then multiplying by a,

aha−1a = h2a⇒ ahe = h2a⇒ ah = h2a⇒ aH ⊆Ha.

Second, we prove Ha ⊆ aH by proving if ha ∈Ha then ha = ah3 for some h3 ∈Ha.
Now by the assumption xhx−1 ∈H for all h ∈H and x ∈ G.
Let x = a−1 and note (a−1)−1 = a. Then,

a−1h(a−1)−1 ∈H ⇒ a−1h(a−1)−1 = h3 for some h3 ∈H
⇒ aa−1h(a−1)−1 = ah3
⇒ eha = ah3
⇒ ha = ah3
⇒Ha ⊆ aH

But aH ⊆Ha and Ha ⊆ aH means we must have aH =Ha.

aH =Ha is certainly true when the group is abelian as we prove in Corollary 26.

Corollary 26. *
If a group G is abelian, the left and right cosets aH,Ha of the subgroup H of G are
the same. Consequently any abelian subgroup is a normal subgroup.
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Proof. If G is abelian and h ∈ H and a ∈ G, then, using associativity and commuta-
tivity,

aha−1 = a(ha−1) = a(a−1h) = (aa−1)h = eh = h ∈H

So by Theorem 25, aH =Ha and H is a normal subgroup of G.

Example 36. 2Z = {0,±2,±4, . . .} is a subgroup of Z.
Then 2Z ⊲ Z since, under addition, if g ∈ Z then g−1 = −g and for any h = 2k ∈ 2Z we
have,

ghg−1 = g + 2k − g = 2k ∈ 2Z.
Or we could simply say 2Z is abelian (since Z is) and use Theorem 24 (3), page 65.
◇

The fundamental theorem of Galois Theory, which is our penultimate goal, relies on
normal subgroups. We have already proved in Theorem 12 on page 48 a relationship
between the alternating subgroup An and the symmetric group Sn, namely

∣An∣ =
∣Sn∣
2
. We proceed to prove that in general via Theorems 27 and 28 that if H is

a subgroup of a group G and the index [G ∶H] = 2 or ∣H ∣ = ∣G∣
2

then H ⊲ G or H is a

normal subgroup of G. Accordingly, An ⊲ Sn.

Theorem 27. *
Let G be a group with subgroup H such that the index [G ∶ H] = 2. Then H is a
normal subgroup of G, or H ⊲ G.

Proof. [G ∶ H] = 2 means H has just two left cosets and two right cosets which, for
any g ∈ G can only be H,gH and H,Hg respectively.
But since the cosets partition G and the first partition in both cases is H then
whether right or left, the other coset must be the remainder G −H so we can only
have gH =Hg⇒H ⊲ G by Theorem 25 on page 66.

Theorem 28. *

If G is a finite group and H is a subgroup of G where ∣H ∣ = ∣G∣
2

then H is a normal

subgroup of G.

Proof. Suppose G is a finite group and H is a subgroup of G where ∣H ∣ = ∣G∣
2
.

By Lagrange’s Theorem 23 on page 64,
∣G∣
∣H ∣ = [G ∶H].

Then, given ∣H ∣ = ∣G∣
2

we have [G ∶H] = 2. So by Theorem 27, H ⊲ G.

To make use of these results we prove in Theorem 29 that the alternating group
An of even permutations is a normal subgroup of Sn.
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Theorem 29. *
The alternating group An of even permutations is a normal subgroup of Sn.

Proof. From Theorem 12 on page 48 we have ∣An∣ =
∣Sn∣
2

so, by Theorem 28, An is a

normal subgroup of Sn.

That An ⊲ Sn, or An is a normal subgroup of Sn, is once again a vital result for
proving our ultimate goal, the insolvability by radicals of polynomials of degree ≥ 5.

5.3 Factor Groups.

In Example 34 on page 62 we found the cosets of H = {0,3} in G = Z6 = {0,1,2,3,4,5}
to be H,1+H,2+H. We proceed to prove that in general the cosets of the subgroup
H in the group G are themselves a group. We first define the operation we need to
show the cosets form a group.

Definition 32. coset multiplication
For G a group, H a subgroup of G and a, b ∈ G, we define the operation of coset

multiplication by,

(aH)(bH) = abH

To show this operation is well defined we need to show it does not depend upon the
choice of a, b. We prove this in Theorem 31, that if we have a subset H of a set G,
written H < G, and a, b, c, d ∈ G, then,

aH = cH and bH = dH ⇒ abH = cdH ⇒ cHdH = abH.

The proof of Theorem 31 requires the result of Theorem 30.

Note 12. Many mathematical theorems begin with TFAE, meaning,

“ The Following (statements P,Q,R, etc.) Are Equivalent.”

The simplest case is P ⇔ Q which means we must prove P ⇒ Q and Q⇒ P or the
two statements P,Q are equivalent.
To show P,Q,R are equivalent, we must prove P ⇔ Q,Q⇔ R,R⇔ P but this will
follow if we simply prove P ⇒ Q,Q⇒ R,R⇒ P.
And so on. In each case we begin with P and prove a cycle of implications that end
up back with P.
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Theorem 30. ***
Let H be a subgroup of G and let a, b ∈ G. Then, TFAE or the following conditions
are equivalent (if any one is true, so are all the others)

1. bH = aH

2. bH ⊆ aH

3. b ∈ aH

4. a−1b ∈H

Proof. We have four implications to prove.
1.⇒ 2. We want to show bH = aH ⇒ bH ⊆ aH.
Proof: If a set equals another set then it is also true it is contained within that set.

*****

2.⇒ 3. We want to show bH ⊆ aH ⇒ b ∈ aH.
Proof: Now H is a subgroup of G, so by Theorem 2 on page 30 it has the same identity
element e as G. Accordingly, given bH ⊆ aH then bh1 = ah2 for some h1, h2 ∈ H so
that,

bh1h−11 = ah2h−11 ⇒ be = ah3, h3 = h2h−1 ∈H ⇒ b = ah3⇒ b ∈ aH.

*****

3.⇒ 4. We want to show b ∈ aH ⇒ a−1b ∈H.
Proof: Now if b ∈ aH then b = ah for some h ∈H but then a−1b = a−1ah = h ∈H.

*****

4.⇒ 1. We want to show a−1b ∈H ⇒ bH = aH.
Proof: If a−1b ∈ H ⇒ a−1b = h for some h ∈ H, then by multiplying by inverses, we
have the two equations,

a−1b = h⇒ aa−1b = ah⇒ eb = ah⇒ b = ah (5.3.1)

b = ah⇒ bh−1 = ahh−1⇒ bh−1 = a (5.3.2)

We will show bH = aH by showing bH ⊆ aH and aH ⊆ bH.
First let x ∈ bH.
We need to show x ∈ aH or x = ah, h ∈H, to conclude bH ⊆ aH.
Now x ∈ bH ⇒ x = bh1 for some h1 ∈H.
Substituting (5.3.1) gives x = ahh1⇒ x ∈ aH since hh1 ∈H so we have bH ⊆ aH.
Second let x ∈ aH.
We need to show x ∈ bH or x = bh, h ∈H, to conclude aH ⊆ bH.
Now x ∈ aH ⇒ x = ah2 for some h2 ∈H.
Substituting (5.3.2) gives x = bh−1h1⇒ x ∈ bH since h−1h1 ∈H.
We conclude bh ⊆ aH and together with aH ⊆ bH this implies bH = aH.
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Theorem 31. **
Let H ⊲ G and a, b, c, d ∈ G. If aH = cH and bH = dH then abH = cdH.
Proof. Let H ⊲ G and a, b, c, d ∈ G.
If aH = cH and bH = dH then by Theorem 30 (1) ⇔ (4) we have a−1c ∈ H and
b−1d ∈H for any c, d ∈H.
Since H is a normal subgroup, by Definition 31 on page 65, d−1(a−1c)d ∈H.
But we also have bd−1 ∈H so, since H is a group, by closure the product,

(b−1d)d−1(a−1c)d ∈H ⇒ b−1(dd−1)a−1cd ∈H
⇒ (b−1a−1)cd ∈H
⇒ (ab)−1cd ∈H
⇒ (ab)−1cd = h for some h ∈H
⇒ cd = abh
⇒ cdH = abhH = abH since hH =H.

Note 13. It is “obvious” that hH = H but let’s prove it anyway! Again we prove
double containment, that is, hH ⊆H and H ⊆ hH.
First, the multiple of every element of H by h is a set contained within H so
hH ⊆H ⇒ hh−1 ⊆ hH.
Second, if h ∈H then so does the inverse h−1 and again the multiple of every element
of H by h−1 is a set contained within H so that hh−1H ⊆ hH.
Then, hh−1H ⊆ hH ⇒H ⊆ hH since hh−1 = e and eH =H.
So, by double containment, hH =H.
Finally we can prove Theorem 32, that if H is a normal subgroup of G then the set
of left cosets of H forms a group under coset multiplication (aH)(bH) = abH.
Theorem 32. *
If H is a normal subgroup of G then the set of left cosets of H forms a group under
coset multiplication

(aH)(bH) = abH.
Proof. We need to prove the four group axioms (see Definition 5 on page 25) hold for
{aH ∣a ∈ G}.

(i) Closure is shown by Theorem 31 above, that coset multiplication is well defined,
that is, the product of two cosets gives another coset, irrespective of the choice
of a, b.

(ii) The identity element2 is the coset H since eH = H so that, using Definition 39
on page 91 of coset multiplication, we have,

eHaH = eaH = aH and aHeH = aeH = aH for all a ∈ G.
2To show any e is the identity element of a group G we must show ae = ea = a for all a ∈ G, which

is Axiom 3 in Definition 5 of a group.
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(iii) The inverse of aH is a−1H since,

aHa−1H = aa−1H = eH =H.

(iv) Associativity is true since if a, b, c ∈ G then,

(aHbH)cH = abHcH = abcH = a(bc)H = aH(bcH) = aH(bHcH)

Hence {aH ∣a ∈ G} is a group.

Definition 33. factor group
If H is a normal subgroup of G, the group of left cosets of H is called the factor group
of G on H. It is denoted by G/H and is the set {gH ∣ g ∈ G}.

Some algebra books call G/H a quotient group. Employing modulo language, we also
say the coset elements in G/H are the residue classes of G modulo H and we (loosely)
refer to G/H as G mod H.

Example 37. In Example 34 in Section 5.1, we had for H = {0,3} and
G = Z6 = {0,1,2,3,4,5} that the set of cosets is,

Z6/H = {a + {0,3} ∣ a ∈ Z6}
= {{0,3},{1,4},{2,5}}
= {0 +H,1 +H,2 +H}

Again note,

3 +H = 3 + (0,3) = (3,6) ≡ (0,3) =H,
4 +H = 4 + (0,3) = (4,7) ≡ (1,4) = 1 + (0,3) = 1 +H,
5 +H = 5 + (0,3) = (5,8) ≡ (2,5) = 2 + (0,3) = 2 +H

under addition modulo 6, so there are just 3 cosets.
Under the operation(a +H)(b +H) = (a + b) +H we have the operations table,

0+H 1+H 2+H
0+H 0+H 1+H 2+H
1+H 1+H 2+H 0+H
2+H 2+H 0+H 1+H

Clearly closure, associativity, the identity (0 +H) =H, and the three inverses
(1 +H + 2 +H = 0 +H, etc.) are all demonstrated so Z6/H is a group. ◇
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5.4 Another notation for Cosets

5.4.1 Integers

Let us first consider an example.

Example 38. As we found in Example 11 on page 31, 3Z = {0,±3,±6,±9, . . .} is a
subgroup of Z = {0,±1,±2,±3, . . .} and, by Theorem 30 (3), 3Z ⊲ Z since both are
abelian.
The left cosets of 3Z are 0 + 3Z,1 + 3Z,2 + 3Z since any other n + 3Z is simply a
repetition of one of these, for example, 31 + 3Z = 1 + 3 × 10 + 3Z = 1 + 3Z.
Accordingly,

Z/3Z = {0 + 3Z,1 + 3Z,2 + 3Z}
The three cosets have separated the integers into three equal parts depending on
whether the remainder when an integer is divided by 3 is 0,1 or 2.
We can use the following notation for the three cosets,

[0]3 = 0 + 3Z = {0,±3,±6, . . .}
[1]3 = 1 + 3Z = {1,4,7, . . .} ∪ {−2,−5,−8, . . .}
[2]3 = 2 + 3Z = {2,5,8, . . .} ∪ {−1,−4,−7, . . .}

where we call [0]3, [1]3, [2]3 congruence classes and we then have,

Z/3Z = {[0]3, [1]3, [2]3}
Now, Z3 = {0,1,2} under addition modulo 3. We can then define an isomorphism,

φ ∶ Z/3Z→ Z3 where φ(m + 3Z) =m.
It is easy to see this function is one-to-one and onto. It is a homomorphism since,

φ(m + 3Z + n + 3Z)
= φ(m + n + 3Z)
=m + n
= φ(m + 3Z) + φ(n + 3Z)

We conclude Z/3Z ≅ Z3. ◇
Note 14. In general,

Z/nZ = {a + nZ ∣ a ∈ Z}
= {[0]n, [1]n, . . . , [n − 1]n}

since when any integer is divided by n the (least positive) remainders are 0,1, . . . , n−1.
We call [0]n, [1]n, . . . , [n− 1]n the congruence classes of 0 to n− 1 modulo n. We also
note the relationship between Z/nZ and Zn, since the above argument easily generalizes
to Z/nZ ≅ Zn. Accordingly, some authors abuse the notation and use Zn when they
actually mean Z/nZ.
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5.4.2 Cosets for Groups in General

The set of (left) cosets a ∗H of a subgroup H of a group (G,∗) determined by an
element a ∈ G is,

a ∗H = {x ∈ G ∣ x = a ∗ h for some h ∈H}

We can replace the symbol aH with simply [a] which we call the congruence class
of a. Accordingly we can write G/H = {aH ∣ a ∈ G} = {[a1], [a2], . . . [aj]} where any
other [ak], k > j simply repeats one of the cosets [a1], [a2], . . . [aj].
We then define the addition and multiplication of cosets by,

[a] + [b] = [a + b]
[a].[b] = [a.b]

Accordingly, by Theorem 32 on page 70, these operations are well defined.

5.5 Homomorphism Theorem for Groups

The factor groups we particularly need are related to the symmetric groups Sn and
the subgroup, An, of even permutations. We need the definition of the kernel of an
isomorphism, paralleling that for homomorphisms, and also the three isomorphism
theorems.

Definition 34. kernel of an isomorphism
As for groups, the kernel of the isomorphism φ ∶ G1 → G2, is the set of elements in

the first group that are mapped onto the identity of the second group, thus,

ker(φ) = {x ∈ G1 ∣ φ(x) = e2 ∈ G2}

Theorem 33 is the Fundamental Homomorphism Theorem for Groups. It states
that if G1,G2 are groups and φ ∶ G1 → G2 is a group homomorphism with K = ker(φ)
then we have the isomorphic groups,

G1/K ≅ φ(G1)

Theorem 33. *** (Fundamental Homomorphism Theorem or First Isomorphism
Theorem for Groups)
Let G1,G2 be groups. If φ ∶ G1 → G2 is a group homomorphism with K = ker(φ) then

G1/K ≅ φ(G1)

Proof. Note the elements of G1/K are {aK ∣ a ∈ G1}.
We need to find an isomorphism ψ ∶ G1/K → φ(G1)
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Let a ∈ G1. For each coset aK ∈ G1/K, define ψ(aK) = φ(a). To show ψ is well-
defined3 , we need to show its definition is independent of the choice of a. This means
if aK = bK then ψ(aK) = ψ(bK) ⇒ φ(a) = φ(b).
Accordingly, ψ is well-defined since if aK = bK for a, b ∈ G1, then by Theorem 36 on
page 78, ab−1 ∈K ⇒ ab−1 = k for some k ∈K or a = bk and therefore,

φ(a) = φ(bk) = φ(b)φ(k) = φ(b)e2 = φ(b) for all a, b ∈ G1.

***

Second, ψ is a homomorphism (see Definition 25, page 52) since, using coset multi-
plication, (Definition 33, page 71),

ψ(aKbK) = ψ(abK) = φ(ab) = φ(a)φ(b) = ψ(aK)ψ(bK)

Third, to show ψ is one-to-one we need to show ψ(aK) = ψ(bK) ⇒ aK = bK. But,

ψ(aK) = ψ(bK) ⇒ φ(a) = φ(b),

and then, using the homomorphism and Theorem 16 (2), page 53 that
φ(a−1) = φ(a)−1,

φ(ab−1) = φ(a)φ(b−1) = φ(b)φ(b)−1 = e2.

Then, by Definition 34, page 73 of the kernel, ab−1 ∈K, showing aK = bK by Theorem
30, (4) ⇒ (1) on page 69.
Thus ψ is one-to-one.
Fourth, ψ is clearly onto since each φ(a) has a corresponding ψ(aK),
We conclude ψ is an isomorphism making G1/K ≅ φ(G1).

Note 15. If φ ∶ A→ B is a function then every element of A is mapped onto B. Thus
we can write φ(A) ⊂ B. But we cannot say φ(A) = B since there may be elements of
B that are not mapped onto by φ.
For example φ ∶ N→ Z, φ(n) = n2 is a function but φ(N) ≠ Z since no negative integer
is mapped onto by φ.
However, if φ ∶ A→ B is an onto function then by definition of “onto”, every element
b ∈ B is such that φ(a) = b for some element a ∈ A. In this case we do have φ(A) = B.
Specifically, while the Fundamental Homomorphism Theorem 33, page 73, states for
φ ∶ G1 → G2 that G/K ≅ φ(G1), we can have G1/K ≅ G2, provided we first show φ is
onto – and we will do that several times in what follows.

3A function is well-defined if it obeys Definition 15, page 35 of a function, namely f ∶ A → B is
a function if each element a ∈ A maps onto only one b ∈ B, or equivalently, if a, c ∈ A and a = c then
f(a) = f(c), which is what we prove here by proving aH = bH ⇒ Ω(aH) = Ω(bH).
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5.6 Isomorphism Theorems for Groups

We now prove the remaining two of the three isomorphism theorems that we will need
later.

Theorem 34. *** (Second Isomorphism Theorem)
Let N be a normal subgroup of a group G, that is N ⊲ G, and let H be a subgroup of
G. Then,

a. H ∩N ⊲H.

b. HN is a subgroup of G.

c. H/(H ∩N) ≅HN/N.

Note HN = {hn ∣ h ∈H,n ∈ N}.

Proof. a. Show H ∩N ⊲H.
By Definition 31 on page 65 of a normal subgroup we need to show if h ∈H and
n ∈H ∩N then h−1nh ∈H ∩N.
We are given N ⊲ G which means gng−1 ∈ N for all g ∈ G and n ∈ N.
Now if n ∈H ∩N then n ∈ N, and since H ≤ G if h ∈H then h ∈ G.
So gng−1 ∈ N for all g ∈ G means hnh−1 ∈ N since h ∈ G.
Further n ∈ H ∩N ⇒ n ∈ H as do h,h−1 and therefore, by the closure axiom of
groups, the product h−1nh ∈H.
Therefore, h−1nh belongs to both H and N, so h−1nh ∈ H ∩ N and we have
proved H ∩N ⊲H.

b. Show HN is a subgroup of G.
By the subgroup test, Corollary 3 on page 31, to prove HN is a subgroup of G
we need to show if x1, x2 ∈ HN then x1x−12 ∈ HN, that is x1x−12 = hn for some
h ∈H and n ∈ N.
Let x1, x2 ∈ HN ⇒ x1 = h1n1, x2 = h2n2 for some h1, h2 ∈ H and n1, n2 ∈ N.
Then,

x1x
−1
2 = h1n1n

−1
2 h

−1
2 = h1n3h

−1
2 where n3 = n1n

−1
2 ∈ N

= h1h−12 h2n3h
−1
2 where we have inserted h−12 h2 = e

= hn4 where h1h
−1
2 = h ∈H and h2n3h

−1
2 = n4 ∈ N since N ⊲ G.

Hence x1x−12 ∈HN and we conclude HN is a subgroup of G.

c. Show H/(H ∩N) ≅HN/N.
We will use the First Isomorphism Theorem 33 found on page 73 for which we
need a homomorphism.
Note HN/N = {hnN ∣hn ∈HN}.



76 Chapter 5. Group Theory Part IV

But4 nN = N, hence HN/N = {hN ∣ hn ∈HN}.
So we can define,

φ ∶H →HN/N by φ(h) = hN.

Then φ is onto since for every hN ∈ HN/N there is an h ∈ H. Hence recalling
Note 15 on page 74, φ(H) =HN/N.
Also φ is one-to-one since φ(g) = φ(h) ⇒ gN = hN ⇒ g = h.
And φ is a homomorphism since, using Definition 32, (coset multiplication, page
68),

φ(h1h2) = (h1h2)N = (h1N)(h2N) = φ(h1)φ(h2)

Now ker(φ) = {x ∣ x ∈H, φ(x) = e}.
But φ(x) = e means xN = e where xN = {xn for all n ∈ N}.
So ker(φ) is the set of x such that xn = e for some n ∈ N.
But only xx−1 = e, so therefore we must have x−1 ∈ N.
But N is a group so we must also have x ∈ N.
Therefore, ker(φ) = {x ∣ x ∈H and x ∈ N} =H∩N. By the First Homomorphism
Theorem 33 on page 73, making the replacements in
G1/K ≅ φ(G1) of,

G1 =H,
φ(G1) =HN/N,

K = ker(φ) =H ∩N,

we find,

HN/N ≅H/(H ∩N.

Theorem 35. *** (Third Isomorphism Theorem)
If N,M are normal subgroups of a group G and M is a subgroup of N, that is we

have N,M ⊲ G, M ≤ N, then,

G/N ≅ (G/M)/(N/M)

Proof. Noting G/M = {aM ∣ a ∈ G}, let,

φ ∶ G→ (G/M)/(N/M) where φ(a) = (aM)(N/M) for all a ∈ G.

Clearly φ is onto, since given any (aM)(N/M) ∈ (G/M)/(N/M), we have an a ∈ G
so, recalling Note 15, page 74,

φ(G) = (G/M)(N/M).
4As shown in Note 13 on page 74
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And φ is one-to-one since φ(a) = φ(b) ⇒ (aM)(N/M) = (bM)(N/M) ⇒ a = b.
Also φ is a homomorphism, since for all a, b ∈ G we have,

φ(ab) = [(ab)M](N/M)
= [(aM)(bM)](N/M) using coset multiplication

= [(aM)(N/M)][(bM)(N/M)],using coset multiplication

= φ(a)φ(b)

The identity element of (G/M)/(N/M) = {(aM)(N/M) ∣ a ∈ G} when multiplied by
(aM)(N/M) must leave (aM)(N/M) unchanged. But,

(aM)(N/M)(N/M) = (aM){n1Mn2M ∣ n1, n2 ∈ N}
= (aM){n3M ∣ n3 ∈ N}, n3 = n1n2

= (aM)(N/M)

so (N/M) is the identity element.
Therefore the kernel of φ is {x ∈ G ∣ φ(x) = N/M}
Since N/M = {nM ∣ n ∈ N}, it will always be the case that

φ(x) = (xM)(N/M) = N/M

provided x ∈ N, say x = n ∈ N, since then,

(xM)(N/M) = (nM)(N/M) = (N/M)(N/M) = N/M.

But that means ker(φ) = N.
By Theorem 33 on page 73, we have in G1/K ≅ φ(G1) using the replacements,

G = G1,

φ(G) = (G/M)/(N/M),
ker(φ) = N,

that,

G/N ≅ (G/M)/(N/M)

5.7 Key Results

We prove a key result for proving the Insolvability of Polynomials of degree ≥ 5.
Specifically we prove in Theorem 36 there is an isomorphism φ ∶ Sn → Z2 with kernel
An and, using the first isomorphism theorem, Theorem 33, that,

Sn/An ≅ Z2, where Z2 = {0,1}

This is a key result we will need to achieve our final result, specifically that Sn/An is
abelian since it is isomorphic to Z2 which is obviously abelian.
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Theorem 36. ***
The factor group Sn/An is isomorphic to Z2 = {0,1}, that is,

Sn/An ≅ Z2

Proof. Recall for An a subgroup of Sn that for φ ∈ Sn, a left coset φAn of An is given
by,

φAn = {φτ ∣ τ ∈ An}
and that the factor group Sn/An is defined as the group of cosets,

Sn/An = {φAn ∣ φ ∈ Sn}
Now if φ ∈ An then φAn is still in the set of all even permutations, so φAn ∈ An, and
if φ ∉ An, then φAn is an odd permutation. Since we proved in Theorem 12, page

48, there are an equal number of even and odd permutations, specifically, ∣An∣ =
∣Sn∣
2
,

there are only two cosets, the sets of even and odd permutations. Looking for an
isomorphism, we define a function,

ψ ∶ Sn/An → Z2 by ψ(φAn) =
⎧⎪⎪⎨⎪⎪⎩

0, if φ ∈ An
1, if φ ∉ An

Since we are mapping two objects onto two numbers, this mapping is clearly a one-
to-one correspondence. We need to prove it is a homomorphism also, that is, with
the operation addition mod 2,

ψ(φ1An ○ φ2An) = ψ(φ1An) + ψ(φ2An)
Clearly the composition of two even or two odd permutations is even and the com-
position of an odd and an even permutation is odd. Under addition modulo 2, there
are just four cases to consider.

Case 1: φ1 ∈ An, φ2 ∈ An⇒ φ1 ○ φ2 ∈ An
Then ψ(φ1An ○ φ2An) = 0 and ψ(φ1An) + ψ(φ2An) = 0 + 0 = 0

Case 2: φ1 ∈ An, φ2 ∉ An⇒ φ1 ○ φ2 ∉ An
Then ψ(φ1An ○ φ2An) = 1 and ψ(φ1An) + ψ(φ2An) = 0 + 1 = 1

Case 3: φ1 ∉ An, φ2 ∈ An⇒ φ1 ○ φ2 ∉ An
Then ψ(φ1An ○ φ2An) = 1 and ψ(φ1An) + ψ(φ2An) = 1 + 0 = 1

Case 4: φ1 ∉ An, φ2 ∉ An⇒ φ1 ○ φ2 ∈ An
Then ψ(φ1An ○ φ2An) = 0 and ψ(φ1An) + ψ(φ2An) = 1 + 1 = 0.

Therefore in each case ψ(φ1An ○φ2An) = ψ(φ1An)+ψ(φ2An), so ψ is an isomorphism
and Sn/An ≅ Z2.



Chapter 6

Group Theory Part V

Simple and Solvable Groups

Our final chapter on groups concerns simple and solvable groups. Both concepts
are an integral part of our proof of the insolvability by radicals of polynomials of
degree ≥ 5.

6.1 Simple Groups

Definition 35. simple group
A simple group has no normal subgroups other than itself and the identity set {e}

which are called the trivial normal subgroups1.

We prove in Theorem 38 preceded by Theorem 37 that the subgroups An of the
symmetric groups Sn are simple groups for n ≥ 5.

Theorem 37. ***

1. An contains all possible three cycles.

2. If n ≥ 5, no proper normal subgroup of An contains a 3-cycle, that is, if any
normal subgroup N of An contains a 3-cycle, then N = An.

Proof. 1. We want to show An contains all possible three cycles.
By definition any element of An is a product of an even number of 2-cycles. The
pairs of 2-cycles can have only the following three forms,

(a, b)(a, b) = the identity

(a, b)(b, c) = (a, b, c)
(a, b)(c, d) = (a, b, c)(b, c, d)

1We proved the trivial subgroups are normal in Theorem 30, page 69.
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Thus,

An = {id, (r, s, k) ∣ 1 ≤ r, s, k ≤ n, r ≠ s, k ≠ r, k ≠ s}

or An contains all possible three cycles.

2. We want to show if n ≥ 5 , no proper normal subgroup of An contains a 3-cycle,
that is, if any normal subgroup N of An contains a 3-cycle, then N = An.
Now N ⊲ An⇒ N ⊆ An. Let N contain a 3-cycle. We will show An ⊆ N so that,
by double containment, we must have N = An.
So suppose (r, s, c) ∈ N. Then, since N is a group, (r, s, c)2 ∈ N.
Let τ = (r, s, c)2.
Now σ = (r, s)(c, k) ∈ An and hence σ−1 = (k, c)(s, r) ∈ An.
By Definition 31, page 65, of N as a normal group,

τστ−1 ∈ N for all σ ∈ N and τ ∈ An
⇒ (r, s)(c, k)(r, s, c)2(k, c)(s, r) ∈ N
⇒ (r, s, k) ∈ N (the multiplication is left to the reader)

Now, by part (1) of this theorem, An contains all the 3-cycles, hence An ⊆ N.
But we noted above that N ⊆ An. By double containment, N = An.

Theorem 38. ***
The alternating subgroups An of the symmetric groups Sn are simple, that is have no
non-trivial subgroups, if n ≥ 5.

Proof. Let N be a normal subgroup of An. We want to show we can only have N = An.
By Theorem 37 (2) we only need to show N contains a 3-cycle.
Let σ ∈ N and assume σ is written as a product of disjoint cycles. The possible cases
are:
Case 1: σ is a 3-cycle, then we are done.

Case 2: σ contains a cycle of length ≥ 4, say (a, b, c, d, . . .).
Let τ = (b, c, d) ∈ An. (remember, by Theorem 37(1), An contains all the 3-cycles.)
We will use the following argument in each of the following cases. Since N is a normal
subgroup of An and σ ∈ N, both σ−1 and τστ−1 (by definition of a normal subgroup)
belong to N.
In this Case 2, therefore their product,

σ−1τστ−1 = (. . . , d, c, b, a)(b, c, d)(a, b, c, d, . . .)(d, c, b) = (a, b, d) ∈ N

and we again have N = An since N contains a 3−cycle.

Case 3: σ contains a 3-cycle but no longer cycle. We have two possibilities.
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Case 3A: σ = (a, b, c)(d, f, g) . . . .
Again, let τ = (b, c, d) ∈ An and compute,

σ−1τστ−1 = . . . (g, f, d)(c, b, a)(b, c, d)(a, b, c)(d, f, g)(d, c, b) . . . = (a, b, d, c, g) ∈ N

This is a cycle of length greater than 4 so by Case 2 we again have N = An.

Case 3B: σ = (a, b, c)(d, f) . . . .
Then, with τ = (b, c, d),

σ−1τστ−1 = (f, d)(c, b, a)(b, c, d)(a, b, c)(d, f)(d, c, b) . . . = (a, b, d, c, f) ∈ N

Again, this is a cycle of length greater than 4 so by Case 2 we have N = An.

Case 4: σ contains only 2-cycles. There are two possibilities.
Case 4A: σ = (a, b)(c, d)
Let µ = (c, d, e) ∈ An and compute,

σ−1µσµ−1 = (d, c)(b, a)(c, d, e)(a, b)(c, d)(e, d, c) = (c, d, e) ∈ N

We conclude N = An.

Case 4B: σ = (a, b)(c, d) . . . .
Let τ = (b, c, d) ∈ An and compute,

σ−1τστ−1 = . . . (d, c)(b, a)(b, c, d)(a, b)(c, d)(d, c, b) . . . = (a, d)(b, c),

which is Case 4A so again N = An.
There are no other possibilities so An is simple.

We then prove in Theorem 39 that the subgroups An, n ≥ 5 are not abelian groups
(see Definition 6) for n ≥ 5, again a vital result for achieving our major goal.

Theorem 39. *
An is not abelian for n ≥ 5.

Proof. We only need one counter example, so this will suffice. Again, note An contains
all the 3-cycles.

(1,2,3)(3,4,5) = (1 2 3 4 5 6 ...
2 3 1 4 5 6 ...

)(1 2 3 4 5 6 ...
1 2 4 5 3 6 ...

)

= (1 2 3 4 5 6 ...
2 3 4 5 1 6 ...

)
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(3,4,5)(1,2,3) = (1 2 3 4 5 6 ...
1 2 4 5 3 6 ...

)(1 2 3 4 5 6 ...
2 3 1 4 5 6 ...

)

= (1 2 3 4 5 6 ...
2 4 1 5 3 6 ...

)

Hence (1,2,3)(3,4,5) ≠ (3,4,5)(1,2,3) so An is not an abelian subgroup of the
symmetric group Sn for n ≥ 5.

You may choose to investigate some n < 5 cases and later relate these findings
back to the fact that polynomials of degree less than 5 are solvable by radicals as we
found in Chapter 2.

6.2 Subnormal Series

Definition 36. subnormal series
A subnormal series of a group is a finite chain of subgroups,

{e} = G0 ≤ G1 ≤ G2 ≤ . . . ≤ Gn = G

such that Gi ⊲ Gi+1 for all i such that 1 ≤ i ≤ n − 1 , that is Gi is a normal subgroup
of Gi+1.

The key result we will be using is that we have the subnormal series,

{e} = {ρ0} < An < Sn

where ρ0 is the identity permutation. This is true since {e} ⊲ An by Theorem 24,
page 65, and An ⊲ Sn by Theorem 29, page 68.

We need to extend the definition of a subnormal series as follows. The use of the
word “solvable” indicates that we are heading in the direction of the solvability of
polynomials by radicals.

6.3 Solvable Groups

Definition 37. solvable group
A group G is solvable if it has a subnormal series such that the factor groups Gi+1/Gi

are abelian, that is, we can form a finite chain of subgroups,

{e} = G0 ≤ G1 ≤ G2 ≤ . . . ≤ Gn = G

such that Gi ⊲ Gi+1 and the factor groups Gi+1/Gi are all abelian for 1 ≤ i ≤ n − 1.
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Example 39. For example, S3 is solvable since the subnormal series,

{e} = {ρ0} < A3 < S3

has factor groups S3/A3 ≅ Z2, A3/{ρ0} ≅ Z3, (See Theorem 36, page 78 for the first,
the second isomorphism is left to the reader), both of which are abelian and {e} ⊲ A3,
(Theorem 24, page 65) and A3 ⊲ S3 (Theorem 29, page 68). ◇

It can be shown in a similar manner that S4 is also solvable. What we need is
Theorem 40 that Sn, n ≥ 5 is not solvable since the subnormal series,

{ρ0} < An < Sn

has an abelian factor group Sn/An ≅ Z2, but the other factor group is An/{ρ0} ≅ An
which, by Theorem 39, is NOT abelian for n ≥ 5.

Theorem 40. *
The symmetric groups, Sn, n ≥ 5 are not solvable.

Proof. The subnormal series,

{e} = {ρ0} < An < Sn

has the factor group Sn/An which, by Theorem 36, page 78, is isomorphic to
Z2 = {0,1} which is obviously abelian but also the factor group An/{ρ0}. But,

An/{ρ0} = {ρ0τ ∣ τ ∈ an} = {τ ∣ τ ∈ An} = An,

which is not abelian by Theorem 39, page 81, so we do not have a solvable group.

Note 16. It is the fact that Sn, n ≥ 5 is not solvable that was used by Galois to prove
the insolvability by radicals of polynomials of degree ≥ 5 and, further, to enable us to
actually find some examples of such polynomials. An obvious question is whether Sn
can have other series which may have abelian factor groups. That was answered for
all groups in the negative by the Jordan Holder theorem. But we only need Theorem
41, that for n ≥ 5, An is the only proper nontrivial normal subgroup of Sn.

Theorem 41. ***
For n ≥ 5, An is the only proper nontrivial normal subgroup of Sn.

Proof. Let N ⊴ Sn be normal. We want to show N = {e} which is trivial, or N = Sn
which is also trivial, or N = An.

*****
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We first prove N ∩An ⊴ An.
Since N ⊴ Sn then αβα−1 ∈ N for all α ∈ Sn and β ∈ N.
Now if αβα−1 ∈ N for all α ∈ Sn and An ⊂ Sn then αβα−1 ∈ N for all α ∈ An.
Now obviously a subgroup N of Sn cannot contain only odd permutations else we
do not have closure since in N we have the product of an odd permutation by itself
which is an even permutation. Hence there is an even permutation β ∈ N and, of
course, we also have β ∈ An.
But An is a group (see Theorem 11, page 47) so if β ∈ An and α ∈ An then
αβα−1 ∈ An for all α ∈ An and β ∈ N ∩An.
Thus αβα−1 ∈ An as well as αβα−1 ∈ N so αβα−1 ∈ N∩An for all α ∈ An and β ∈ N∩An.
Then, by Definition 26, page 55, N ∩An ⊴ An as we wished to prove.

*****

We proceed to prove that for n ≥ 5, An is the only proper normal subgroup of Sn.
By Theorem 38, page 80, An is simple and can have no normal non-trivial subgroups,
so if N ∩An ⊴ An as we just proved, then we have two possibilities, N ∩An = An or
N ∩An = {e}.
In the first case, if N ∩An = An, then either N = An or N = Sn, which is trivial.
In the second case, if N ∩An = {e}, then either N = {e} or else N consists solely of
one or more odd permutations in addition to the identity element {e}.
But N cannot consist of more than one odd permutation since if N contains two
distinct odd permutations, σ and τ, then N also has the elements σ2 and στ, not
both of which can be the identity e. But both σ2 and στ are even, contradicting the
assumption that N contains only odd nontrivial permutations.
Thus N can consist only of the elements σ, e where σ is the single odd permutation.
But then N also contains σ2 which must equal e so N has order 2.
Then such a subgroup cannot be normal for this reason. Suppose an odd permutation
of order 2 has as its cycle decomposition an odd number, one or more, of disjoint 2-
cycles2. Then suppose without loss of generality that σ = (1,2) is one of these 2-cycles.
Let τ = (1,3) ∈ Sn. Then we should have τστ−1 ∈ N since N ⊴ Sn, but,

τστ−1 = (1,3)(1,2)(3,1)

takes 2 to 3 and thus is neither σ = (1,2) which takes 2 to 1 nor e which takes 2 to
2. So this group is not normal in Sn since that would require τστ−1 ∈ N = {e, σ}.
We conclude for n ≥ 5 that An is the only proper nontrivial normal subgroup of
Sn.

Before we conclude this discussion of groups we prove in Theorem 42 that sub-
groups and factor groups of solvable groups are also solvable, results we need in our
ultimate proofs, albeit this (very long) proof is quite demanding. You may prefer to
just browse this proof at first reading.

2By Theorem 10, page 47, every cycle can be written as the product of 2−cycles.



6.3. Solvable Groups 85

Theorem 42. *****
Let G be a solvable group. Then,

(a) Any subgroup of G is solvable.

(b) If N is a normal subgroup of G then the factor group G/N is solvable.

Proof. Let G be a solvable group. Then by Definition 44, page 94, we have the
subnormal series,

{e} =H0 ⊆H1 ⊆ . . . ⊆Hn = G

of G with Hi+1/Hi abelian and Hi ⊴Hi+1 for 1 ≤ i ≤ n − 1.

*****

Proof of (a) We will show that if K is a subgroup of G then,

{e} =K ∩H0 ⊆K ∩H1 ⊆ . . .K ∩Hn =K

is a subnormal series with K ∩Hi+1/K ∩Hi abelian and K ∩Hi ⊲ K ∩Hi+1, so that,
by definition, K is solvable.
Now since, Hi ∩Hi+1 =Hi, we have both,

K ∩Hi = (K ∩Hi+1) ∩Hi, 0 ≤ i ≤ n − 1, and,

K ∩Hn =K ∩G =K.

Further, by Definition 37 on page 82 of a subnormal series, Hi ⊲Hi+1.
We also have K ∩Hi+1 is a subgroup3 of Hi+1.
The Second Isomorphism Theorem 34, page 75 states that if N is a normal subgroup
of a group G and H is a subgroup of G then,

(i) H ∩N ⊲H

(ii) HN is a subgroup of G

(iii) H/H ∩N ≅HN/N

We make the replacements,

� G↔Hi+1

� H ↔K ∩Hi+1

� N ↔Hi

3In general, if A and B are subgroups of a group G, then A ∩B is a subgroup of either A or B.
The reason is that if b ∈ A ∩B then b ∈ A and b ∈ B. But A and B are groups and therefore b−1 ∈ A
and b−1 ∈ B so b−1 ∈ A ∩B. Then if also a ∈ A ∩B then ab−1 ∈ A ∩B making A ∩B a subgroup of A
by Corollary 3, page 31. Similarly A ∩B is a subgroup of B.
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for the group Hi+1 with subgroup K ∩Hi+1 and normal subgroup Hi to obtain from
(i) and (iii),

(K ∩Hi+1) ∩Hi ⊲K ∩Hi+1 (6.3.1)

(K ∩Hi+1)/((K ∩Hi+1) ∩Hi) ≅ ((K ∩Hi+1)Hi)/Hi (6.3.2)

Since Hi ∩Hi+1 =Hi and (K ∩Hi+1) ∩Hi =K ∩Hi, it follows from (6.3.1) and (6.3.2)
that,

(K ∩Hi) ⊲K ∩Hi+1 (6.3.3)

(K ∩Hi+1)/(K ∩Hi) ≅ ((K ∩Hi+1)Hi)/Hi (6.3.4)

Equation (6.3.3) gives us a chain of subgroups each normal in the next. We need to
show the factor groups are abelian to prove we have a solvable group.

***

First, we claim (K∩Hi+1)Hi ⊆Hi+1. To prove the claim we need to show if x ∈K∩Hi+1

and y ∈Hi then xy ∈Hi+1.
But if x ∈ K ∩Hi+1 then x ∈ Hi+1 and if y ∈ Hi then y ∈ Hi+1 since Hi ⊂ Hi+1. Hence
xy ∈Hi+1 since Hi+1 is a group, proving (K ∩Hi+1)Hi ⊆Hi+1.

*****

Now, in general, it is a fact that if we have groups A,B,C such that A ⊂ B then
A/C ⊂ B/C.
The reason for this is if A ⊂ B, then any a ∈ A is also in B, say a = b ∈ B.
Then if aC ∈ A/C = {aC ∣ a ∈ A} then aC = bC for some b ∈ B and then
aC ∈ {bC ∣ b ∈ B} = B/C. We conclude A/C ⊂ B/C.

*****

It therefore follows, that since (K ∩Hi+1)Hi ⊆ Hi+1 by the claim proved above, we
must have,

(K ∩Hi+1)Hi/Hi ⊆Hi+1/Hi.

But Hi+1/Hi is abelian by assumption and hence so is (a subgroup) (K ∩Hi+1)Hi/Hi

and therefore, by Theorem 20 on page 58 and (6.3.4), its isomorphic group
(K ∩Hi+1)/(K ∩Hi) is also abelian. We conclude,

{e} =K ∩H0 ⊆K ∩H1 ⊆ . . .K ∩Hn =K

is a subnormal series with K ∩Hi+1/K ∩Hi abelian and K ∩Hi ⊲ K ∩Hi+1, so that,
by definition, K is solvable.

**********
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Proof of (b) We will show if N is a normal subgroup of the solvable group G then the

factor group G/N is solvable.
Let G have the subnormal series,

{e} =H0 ⊆H1 ⊆ . . . ⊆Hn = G

where Hi ⊲Hi+1 and Hi+1/Hi are abelian.
Consider the homomorphism4 φ ∶ G→ G/N where every subgroup of G is mapped by
φ onto a subgroup of G/N. In particular, let H̃i = φ(Hi).
First we will prove H̃i ⊲ ˜Hi+1 but first we need to prove two claims.

*****

Claim 1
If θ ∶ G→K is a homomorphism and H is a subgroup of G then θ(H) is a subgroup
of K. And if H is a normal subgroup of G, that is H ⊲ G, then θ(H) is a normal
subgroup of K.
Proof of Claim 1
If x1, x2 ∈ θ(H) such that x1 = θ(h1), x2 = θ(h2), for some h1, h2 ∈H, then

x1x
−1
2 = θ(h1)θ(h2)−1 = θ(h1)θ(h−12 ) = θ(h1h−12 ) = θ(h) ∈ θ(H))

where h = h1h−12 . Hence, by the subgroup test (Corollary 3, page 31), θ(H) is a
subgroup of K.

*****

Second, to prove H ⊲ G⇒ φ(H) ⊲K we need to show,

θ(g)θ(h)θ(g−1) ∈ θ(H) for all θ(g) ∈K and θ(h) ∈ θ(H).

If now H ⊲ G, then by Definition 31 on page 65, ghg−1 ∈H for all g ∈ G and h ∈H.
Now any element k ∈ K is of the form θ(g) for some g ∈ G and any element of θ(H)
is of the form θ(h) for some h ∈H.
Since θ is a homomorphism,

θ(g)θ(h)θ(g)−1 = θ(ghg−1).

But since ghg−1 ∈H, we have,

θ(ghg−1) ∈ θ(H) ⇒ θ(g)θ(h)θ(g)−1 ∈ θ(H)

for all θ(g) ∈K and θ(h) ∈ θ(H).
Hence, by Definition 31, θ(H) ⊲ K or θ(H) is a normal subgroup of K. This proves
Claim 1.

4If φ(g) = gN, φ(h) = hN then φ(gh) = ghN = gNhN = φ(g)φ(h), so φ is a homomorphism.
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*****

Claim 2
If N is a normal subgroup of G and H is any subgroup of G then H ∩N is a normal
subgroup of H. That is, if N ⊲ G and H < G then H ∩N ⊲H.
Proof of Claim 2
We use Definition 31 on page 65 of a normal subgroup repeatedly.
We need to show hkh−1 ∈H ∩N for all h ∈H and k ∈H ∩N.
We are given N ⊲ G so gng−1 ∈ N for all g ∈ G and n ∈ N.
Now, if h ∈H ⊂ G then h ∈ G.
So, putting h = g we have,

hnh−1 ∈ N for all h ∈H and n ∈ N. (6.3.5)

Also if k ∈H ∩N then k ∈ N so, by (6.3.5)

hkh−1 ∈ N for all h ∈H and k ∈H ∩N. (6.3.6)

Further, if h ∈H then h−1 ∈H and if k ∈H ∩N then k ∈H.
Consequently, since H is a group,

hkh−1 ∈H for all h ∈H and k ∈H ∩N. (6.3.7)

Hence, by (6.3.6) and (6.3.7),

hkh−1 ∈H ∩N for all h ∈H and k ∈H ∩N.

This proves H ∩N ⊲H, so Claim 2 is proved.

*****

We now proceed to establish the requirements for a subnormal series of G/N.
First we show H̃i ⊲ ˜Hi+1 where H̃i = φ(Hi.
Define φ ∶Hi+1 →Hi+1/Hi by φ(h) = hHi for all h ∈Hi+1. Then φ is a homomorphism
since φ(hk) = hkHi = hHikHi = φ(h)φ(k).
So substituting our data into the statement of Claim 1, we have since Hi◁Hi+1 that,

φ(Hi) ⊲Hi+1/Hi⇔ H̃i ⊲Hi+1/Hi.

With these same replacements, Claim 2 proves if H̃i ⊲ Hi+1/Hi and ˜Hi+1 < Hi+1/Hi

(which is true since φ maps Hi+1 into Hi+1/Hi), then,

H̃i ∩ ˜Hi+1 ⊲ ˜Hi+1

But, H̃i ∩ ˜Hi+1 = H̃i, so we have,

H̃i ⊲ ˜Hi+1.
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*****

Second, we claim ˜Hi+1/H̃i is abelian.
Let x̃ = φ(x) and ỹ = φ(y) for any two elements x, y ∈Hi+1.
Note x̃ỹ = φ(x)φ(y) = φ(xy).
Since,

˜Hi+1/H̃i = φ(Hi+1)/φ(Hi) = {x̃φ(Hi) ∣ x̃ ∈ φ(Hi+1)} = {x̃H̃i ∣ x̃ ∈ ˜Hi+1)},
˜Hi+1/H̃i abelian is shown by proving,

x̃H̃iỹH̃i = ỹH̃ix̃H̃i

Now, since Hi+1/Hi is abelian, we have,

xHiyHi = yHixHi

⇒ xyHi = yxHi (using coset multiplication, Definition 37, page 82)

⇒ xyh1 = yxh2 for some h1, h2 ∈Hi

⇒ xyh1h
−1
1 = yxh2h−11

⇒ xy = yxd for some d ∈Hi, where d = h2h−11
Thus,

φ(xy) = φ(yxd) ⇒ φ(x)φ(y) = φ(y)φ(x)φ(d) (6.3.8)

But d ∈Hi⇒ φ(d) ∈ H̃i. Therefore,

φ(d)H̃i = H̃i (by Note 15 page 74), (6.3.9)

and,

x̃H̃iỹH̃i = x̃ỹH̃i

= φ(x)φ(y)H̃i

= φ(y)φ(x)φ(d)H̃i by (6.3.8)
= φ(y)φ(x)H̃i by (6.3.9)
= ỹx̃H̃i

= ỹH̃ix̃H̃i. by coset multiplication

Therefore H̃i+1/H̃i is abelian.

*********************************

Thus, the requirements for a solvable group as set out in Definition 37, page 82 are
fully covered and,

{e} = H̃0 ⊲ H̃1 ⊲ . . . ⊲ H̃n = G/N
is a subnormal series of G/N with abelian factors, and therefore G/N is solvable.
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Rings and Fields

7.1 Introduction

The second half of our quest involves finding what we will call the Galois groups of
polynomials and then relating them to fields formed from the rationals and the roots
of the polynomials. We need the algebraic structures called fields and rings. The first
abstract algebraic objects we studied were groups. A group is associated with only
one binary operation, often either addition or multiplication. Obviously in dealing
with these number sets in our normal lives, we employ two binary operations,

� Addition, for example,
3

4
+ 1

2
= 5

4

� Multiplication, for example, 6 × 2

3
= 4

You may ask, what about subtraction and division? But they are just addition and
multiplication involving inverses.

� Subtraction, for example, 6 − 3 = 6 + (−3) = 3

� Division, for example, 12 ÷ 3 = 12 × 3−1 = 12 × 1

3
= 4

So we need more than groups. We proceed in two steps, defining fields and rings.
A field is basically two connected groups. It is a set on which two binary oper-

ations, addition and multiplication, are defined and for which the set is an abelian
group under addition and the nonzero elements of the set are a group under multi-
plication. The distributive law a(b + c) = ab + ac also holds.

A ring is “almost” a field. The exception to the field laws is that ring elements may
not have multiplicative inverses or a multiplicative identity. Obviously the integers are
the classic example, obeying all the rules for a group under addition and multiplication
as well as the distributive law, except, with the exception of ±1, integers do not have

multiplicative inverses. For example, the multiplicative inverse of 7 is
1

7
but this is

not an integer.

90
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If the elements of the ring commute under the two operations and if the multi-
plicative identity 1 is an element of the ring, we classify it as a commutative ring with
identity.

Here are the definitions in detail.

7.2 Rings

Definition 38. rings
A ring is a set, together with two binary operations, usually +,×, that is an abelian

group under addition (closure, associativity, commutativity, identity, inverses) to
which we add two more criteria,

� Multiplication that is associative, that is (ab)c = a(bc) (but no multiplicative
identity or inverses or commutativity)

� The left and right distributive laws, a(b + c) = ab + ac; (b + c)a = ba + ca

Clearly, Q,R,C are all rings but we are not using their full “power”. First they are
commutative rings with identity, meaning the elements commute under the operations
of +,× and the multiplicative identity 1 is also an element. But they are also fields.

First, however, let’s discuss some facts about rings. Just as for groups, we have
homomorphisms and a fundamental theorem.

Definition 39. ring homomorphism
Let R,S be commutative rings. A function φ ∶ R → S is called a ring homomorphism

if for all a, b ∈ R it is a group homomorphism under the two operations, that is,

φ(a + b) = φ(a) + φ(b)
φ(ab) = φ(a)φ(b)

As with groups we note that if ∗R,∗S are the respective additive operations for
R and S we should, strictly speaking, write φ(a ∗R b) = φ(a) ∗S φ(b), similarly for
multiplication.

Definition 40. ring isomorphism
A ring homomorphism that is one-to-one and onto is called a ring isomorphism.

Definition 41. isomorphic rings
If there is a ring isomorphism from ring R onto ring S we say R is isomorphic to S

and we write R ≅ S.

As for groups we could prove the theorems for φ,R,S as above:

� The inverse of a ring homomorphism is a ring homomorphism.

� The composition of two ring homomorphisms is a ring homomorphism.
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� φ(e1) = e2

� φ(−a) = −φ(a) or φ(a−1) = (φ(a))−1

Again, as for groups, we define the kernel of a ring homomorphism,

Definition 42. kernel of a ring homomorphism
Let φ ∶ R → S be a ring homomorphism for rings R,S. The set {a ∈ R ∣ φ(a) = e} is

called the kernel of φ, written ker(φ).

We prove two theorems.

Theorem 43. **
Let φ ∶ R → S be a ring homomorphism with kernel ker(φ). Then R/ker(φ) is a
commutative ring.

Proof. Note that R and S are abelian or commutative by definition. Therefore so is
φ(R) which is contained within S.
First we need to show R/ker(φ) is an abelian group under addition but that is
proved by the Fundamental Homomorphism Theorem 33 on page 73 for groups since
R/ker(φ) is isomorphic to φ(R) which is abelian since, by definition, R is abelian.
Second, to show R/ker(φ) is a ring, we need to verify the distributive, associative
and commutative laws hold for multiplication. We let [a], [b], etc. be the cosets of
ker(φ) so that R/ker(φ) = {[a], [b], . . .}.
As we discussed in Section 5.4.2 and proved in Theorem 31 on page 70, we have the
well-defined operations of addition and multiplication on cosets given by,

[a] + [b] = [a + b]
[a][b] = [ab]

Then we have for the distributive, commutative and associative laws respectively,
using inside the parentheses the same laws applying to R which is abelian,

[a]([b] + [c]) = [a][b + c] = [ab + ac] = [ab] + [ac] = [a][b] + [a][c]
[a] + [b] = [a + b] = [b + a] = [b] + [a]

[a] + ([b] + [c]) = [a] + [b + c] = [a + b + c] = [a + b] + [c] = [a] + [b] + [c]

Hence R/Ker(φ) is a commutative ring.

Theorem 44. ** (Fundamental Homomorphism Theorem for Rings)
Let φ ∶ R → S be a ring homomorphism with kernel ker(φ). Then R/ker(φ) ≅ φ(R).

Proof. Since φ ∶ R → S is a group homomorphism under addition, the proof of the
Fundamental Homomorphism Theorem 33, page 73, tells us that, with K = ker(φ),
since the map

ψ ∶ R/K → φ(R), where ψ(a +K) = φ(a)
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is a group homomorphism1 then R/ker(φ) ≅ φ(R).
To show ψ is a ring homomorphism we need to show it preserves multiplication.
Let a +K, b +K ∈ R/K. Then,

ψ[(a +K)(b +K)] = ψ(ab +K) = φ(ab) = φ(a)φ(b) = ψ(a +K)ψ(b +K).

So ψ preserves multiplication making it a ring homomorphism so we have isomorphic
rings and not just groups.

7.3 Fields

Definition 43. fields
Fields are sets that are abelian groups under addition and the non-zero elements are

an abelian group under multiplication. We also have the distributive laws,

a(b + c) = ab + ac; (b + c)a = bc + ca

Briefly, a field is a ring with multiplicative identity and multiplicative inverses for the
set of non-zero elements.

Note that whenever we discuss the multiplicative inverses of Q,R,C, we always
exclude 0.

Example 40. An interesting example of a field and one that gives us a taste of what’s
to come is Q(

√
2), spoken as “ Q append

√
2 ” and defined by,

Q(
√

2) = {a + b
√

2 ∣ a, b ∈ Q}

There are eleven axioms to be confirmed, five for each of the two abelian groups under
addition and multiplication and then the distributive law. Let’s consider only,

� Additive identity is 0 = 0 + 0
√

2

� Additive inverse of a + b
√

2 is −a − b
√

2. Thus,

(a + b
√

2) + (−a − b
√

2) = (a − a) + (b − b)
√

2 = 0

� Multiplicative identity is 1 = 1 + 0
√

2.

� Multiplicative inverse of a + b
√

2 is
a

a2 − 2b2
− b

a2 − 2b2
√

2. Thus,

(a + b
√

2) ( a

a2 − 2b2
− b

a2 − 2b2

√
2) = a

2 − 2b2

a2 − 2b2
= 1

1Observe ψ(a +K + b +K) = ψ(a + b +K) = φ(a + b) = φ(a) + φ(b) = ψ(a +K) + ψ(b +K).
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Note, given a, b ∈ Q so that
a

b
∈ Q, then, a2 − 2b2 ≠ 0 since a2 − 2b2 = 0 would mean

a

b
=
√

2 which is not an element of Q. ◇

Here is the full set of field axioms.
Let F be a set on which two binary operations called addition (+) and multipli-

cation (⋅) are defined. Then F is called a field if the following properties hold.

1. Closure of F under addition and multiplication:
For all a, b ∈ F both a + b and a ⋅ b are in F.

2. Associativity of addition and multiplication:
For all a, b, c ∈ F the following equalities hold:
a + (b + c) = (a + b) + c; a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

3. Commutativity of addition and multiplication:
For all a, b ∈ F, the following equalities hold:
a + b = b + a; a ⋅ b = b ⋅ a

4. Existence of additive and multiplicative identity elements:
There exists an element of F called the additive identity element and denoted
by 0 such that for all a ∈ F, a + 0 = 0 + a = a
Likewise, there is an element called the multiplicative identity element and
denoted by 1 such that for all a ∈ F, a ⋅ 1 = 1 ⋅ a = a

5. Existence of additive inverses and multiplicative inverses:
For every a ∈ F, there exists an additive identity element −a ∈ F such that
a + (−a) = 0.
Similarly, for any a ∈ F other than 0, there exists an multiplicative identity
element a−1 ∈ F such that a ⋅ a−1 = 1.
(The expressions a+(−b) and a ⋅ b−1 are also denoted a− b and a/b, respectively.
In other words, subtraction and division operations exist.)

6. Distributivity of multiplication over addition:
For all a, b, c ∈ F, the following equality holds: a ⋅ (b + c) = a ⋅ b + a ⋅ c.

Note that the requirement for two binary operations means we need to extend the
definition of an isomorphism between fields just as we did for ring homomorphisms.

Definition 44. field isomorphism
An field isomorphism between fields F,K is a one-to-one and onto function (a one-

to-one correspondence) φ ∶ K → F such that for all a, b ∈K,

φ(ab) = φ(a)φ(b)
φ(a + b) = φ(a) + φ(b)
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Given the axioms, we can now prove theorems which seem simple since you know
them to be true for real and complex numbers (omitting 0), but they are now also
true for the infinity of fields in general, for example Q(

√
3) with 0 = 0+ 0

√
3 deleted.

Theorem 45. *
Let F be a field with elements a, b, c. Then we have,

(a) Cancellation law: a + c = b + c⇒ a = b, and ac = bc⇒ a = b.

(b) Uniqueness of identity elements: a + b = a⇒ b = 0 and ac = a⇒ c = 1, provided
a ≠ 0.

(c) Uniqueness of inverses: a + b = 0⇒ b = −a, and if a ≠ 0, then
ab = 1⇒ b = a−1.

Proof. We can prove (a) and (b) and (c) together.
F is a group under both addition and multiplication – we already have these properties
for groups.

Theorem 46. *
Let F be a field and a, b ∈ F. Then,

(a) a ⋅ 0 = 0.

(b) If a ≠ 0, b ≠ 0 then ab ≠ 0.

(c) −(−a) = a.

(d) (a)(−b) = (−a)(b) = −ab

(e) (−a)(−b) = ab.
Proof. The proofs are straightforward.

(a) a ⋅ 0 + a ⋅ 0 = a(0 + 0) = a ⋅ 0 = a ⋅ 0 + 0 and use cancellation.

(b) We use a contrapositive proof to show if a ⋅ b = 0 then a = 0 or b = 0. So let
a ⋅ b = 0 and suppose a ≠ 0. Then by (a), a ⋅ b = 0 = a ⋅0 and by cancellation, b = 0.

(c) We have both (−a) − (−a) = 0 and (−a) + a = 0 so (−a) − (−a) = (−a) + a. Use
cancellation.

(d) We have both ab + a(−b) = a(b + (−b)) = a ⋅ 0 = 0 and ab + (−ab) = 0 so that
ab + a(−b) = ab + (−ab) and use cancellation.
Similarly, (−a)(b) = −ab.

(e) We have,

(−a)(−b) = −(−a)(b) by (d)

= −(−ab) by (d)

= ab by (c)
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7.4 Finite Cyclic Groups

We now want to prove the theorem that if F is a finite field with multiplicative group
F × then F × is a cyclic group. We need some results for integers proved in Chapter 8,
they do not depend on anything we proceed to prove in Section 7.4. We begin with
a definition.

Definition 45. exponent of a group
Let G be a finite group. The exponent of G, denoted exp(G), is the least common

multiple2 of the orders of all the elements of G. That means if there are integers n
such that an = e for all a ∈ G, then the least positive value of n is the exponent of G.

Example 41. The orders of elements of S3 are 1, 2, 3 as shown below. We have
lcm(1,2,3) = 6, so exp(S3) = 6.

Order 1 ∶ (1 2 3
1 2 3

)

Order 2 ∶ (1 2 3
1 3 2

) since(1 2 3
1 3 2

)(1 2 3
1 3 2

) = (1 2 3
1 2 3

)

Order 2 ∶ (1 2 3
2 1 3

) since(1 2 3
2 1 3

)(1 2 3
2 1 3

) = (1 2 3
1 2 3

)

Order 2 ∶ (1 2 3
3 2 1

) since(1 2 3
3 2 1

)(1 2 3
3 2 1

) = (1 2 3
1 2 3

)

Order 3 ∶ (1 2 3
2 3 1

) since(1 2 3
2 3 1

)(1 2 3
2 3 1

)(1 2 3
2 3 1

) = (1 2 3
1 2 3

)

Order 3 ∶ (1 2 3
3 1 2

) since(1 2 3
3 1 2

)(1 2 3
3 1 2

)(1 2 3
3 1 2

) = (1 2 3
1 2 3

) ◇

Of course we have also illustrated that exp(S3) = ∣S3∣.
We now prove a sequence of three theorems, Theorems 47,48,49. The result we

want is a corollary, Corollary 50, to the third theorem, Theorem 49, namely the
multiplicative group F ∗ of a finite field F is cyclic.

Theorem 47. ***
Let G be an abelian group with identity e and let a, b ∈ G.
Suppose3 that ∣a∣ = n and ∣b∣ =m and gcd(n,m) = 1.
Then ∣ab∣ = nm.
That is, an = e and bm = e⇒ (ab)nm = e.

Proof. Let G be an abelian group with identity e and let a, b ∈ G. Let ∣a∣ = n and
∣b∣ =m and gcd(n,m) = 1.

2The least common multiple of a set of integers is the smallest integer they all divide into.
3Recall Definition 13, page 33, the order of a group element.
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Because G is abelian,

(ab)nm = abab⋯ab = aa⋯abb⋯b = anmbnm = (an)m(bm)n = emen = e.

Now if the order of ab is t, that is (ab)t = e, then (ab)nm = e can only be true if t∣nm,
that is, nm = kt, k ∈ N, so that we can have,

(ab)nm = (ab)kt = ((ab)t)k = ek = e.

Thus, the order t of ab divides nm. Now,

(ab)t = e⇒ atbt = e⇒ at = b−t⇒ atm = b−tm

But,

b−tm = (bm)−t = e−t = e⇒ atm = e

Now by Corollary 60A on page 111, since gcd(n,m) = 1 we may write 1 = rn+ sm for
some r, s ∈ Z. Then, multiplying both sides by n,

t = trn + tsm.

Therefore, as atm = e, we see that since,

astm = (atm)s = es = e and atrn = (an)tr = etr = e,

then,

at = atms+trn = atmsatrn = e ⋅ e = e.

Again, as argued above for t = ∣ab∣ if ∣a∣ = n ⇔ an = e, we can only have at = e if
t = nk, k ∈ N, so that,

at = ank = (an)k = ek = e.

This means n∣t.
Similarly, m∣t.
Thus, nm∣t because gcd(n,m) = 1.
We have therefore proved that nm divides t.
But we showed above that t divides nm.
Therefore, t = nm so that ∣ab∣ = nm = ∣a∣ ⋅ ∣b∣.

We prove in the following theorem that in an abelian group G there is an element
with order exp(G).
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Theorem 48. ***
Let G be an abelian group with identity e and let a, b ∈ G.
Suppose that ∣a∣ = n and ∣b∣ =m and lcm(n,m) = k.
Then there is an element c ∈ G with order ∣c∣ = k.
That is there is an element in G with order exp(G).

Proof. By the Fundamental Theorem of Arithmetic, Theorem 65A, page 117, we may
write any number as a product of primes and specifically,

n = pe11 pe22 . . . perr and m = pf11 p
f2
2 . . . p

fr
r

for some distinct primes p,p2, . . . pr and integers ei, fi ≥ 0.
If si =max(ei, fi) and k = lcm(n,m), then by definition of the least common multiple4,
if k = lcm(n,m) then, k = ps11 ps22 . . . psrr .
For each i put ni =

n

peii
⇔ n = nipeii .

Now ∣a∣ = n ⇒ (ani)p
ei
i = a

n

p
ei
i

⋅p
ei
i = an = e so that ∣ani ∣ = peii . Similarly, we can prove

∣bmi ∣ = pfii .
From (ani)p

ei
i = e and (bmi)p

fi
i = e we identity si =max(ei, fi). We may assume fi ≥ ei.

If not we can simply interchange ei, fi in the proof that follows.
Then, with si = fi,

(anibmi)p
si
i = (ani)p

fi
i (bmi)p

fi
i = (ani)p

fi
i × e = (ani)p

ei
i ⋅p

fi−ei = epfi−ei = e

Accordingly, with si = max(ei, fi), for each i we may find an element ci = anibmi of
order psii .
Set c = c1c2 . . . cr. Then using induction, to show ∣c1c2⋯cr∣ = ∣c1∣∣c2∣⋯∣cr∣ we argue,
Basis Step: If r = 2, ∣c1c2∣ = ∣c1∣∣c2∣ by Theorem 47 above.
Induction Step: Suppose ∣c1c2⋯cr−1∣ = ∣c1∣∣c2∣⋯∣cr−1∣
Then,

∣c1c2⋯cr∣ = ∣c1c2⋯cr−1∣∣cr∣ by basis step
= ∣c1∣∣c2∣⋯∣cr∣ by the supposition.

so,

∣c∣ = ∣c1c2 . . . cr∣ = ∣c1∣∣c2∣ . . . ∣cr∣ = ps11 ps22 . . . psrr = k,

or the order of c = c1c2⋯cr is k = exp(G).
So there is an element of G with order exp(G).

Theorem 49. ***
Let G be a finite abelian group. Then G is cyclic if and only if exp(G) = ∣G∣.

4For example, suppose n = 12 = 223150, m = 20 = 223051, then k = lcm(n,m) = 223151 = 60 where
the exponents of k are the respective maxima of the powers of primes in the expansions of n,m.
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Proof. Suppose G is cyclic. By Lagrange’s Theorem 23 on page 64, each element of
a finite group G has order dividing ∣G∣.
Thus, the lcm of the orders of all the elements divides ∣G∣ or exp(G) divides ∣G∣.
Now if G =< g > is a cyclic group of order n, that is, ∣G∣ = n, then g has order n or
∣g∣ = n by Theorem 4, page 33.
We claim that in a cyclic group, the order of every other element in the group also
divides n making exp(G) = n = ∣G∣.

The proof of the claim is as follows.
If gk = e and k ��∣n then write k = xn+y, 0 ≤ y < n by the Division Algorithm 57A, page
105.
Then gk = gxn+y = (gn)xgy = gy = e and since y < n this is a contradiction to the
minimality of n as the smallest integer for which gn = e, so k∣n.
So, the order of every other element in the group also divides n making
exp(G) = n = ∣G∣.

*****

Conversely, suppose that exp(G) = ∣G∣. By the previous Theorem 48, there is an
element g ∈ G of order exp(G), that is, ∣g∣ = exp(G).
Thus, since exp(G) = ∣G∣, making ∣g∣ = ∣G∣, we see by Theorem 4(3)5 that
G =< g >, so G is cyclic.

Finally we prove the corollary that the multiplicative group of a finite field is
cyclic.

Corollary 50. ***
Let F be a finite field with multiplicative group F ×. Then F × is cyclic.

Proof. Since F × is finite and abelian, the conditions of the previous Theorem 49 apply,
so it is enough to prove that exp(F ×) = ∣F ×∣.
Let exp(F ×) = m and ∣F ×∣ = n. Then each element of F × has order dividing m, by
definition of the exponent.
Thus, gm = 1 for each g ∈ F ×. Therefore, each element of F × is a root of xm − 1.
This makes ∣F ×∣ ≤ deg(xm − 1) =m, so n ≤m.
But, by Lagrange’s Theorem 236, the order of every element of F × divides ∣F ×∣. Then
the exp(F ×) or the lcm of all the elements of F × divides F ×.
Hence m divides n or m ≤ n. But earlier we saw n ≤m, thus, m = n or
exp(F ×) = ∣F ×∣.
By Theorem 49, F × is cyclic.

5Theorem 4(3) on page 33 states a finite group G is cyclic if and only if there exists an element
a ∈ G such that the order of a equals the order of G, that is, ∣a∣ = ∣G∣.

6Lagrange’s Theorem on page 64 proves that if a ∈ G then ∣a∣ divides ∣G∣.



Chapter 8

The Rings of Integers and
Polynomials

8.1 Working with Polynomials

Recall, a polynomial has the form,

f(x) = anxn + an−1xn−1 + . . . + a1x + a0

We will refer to the coefficients as ai,0 ≤ i ≤ n or simply as the ai.

Notation 4. Given a field F, the complete set of polynomials in the variable x with
ai ∈ F is denoted by F [x].

We will now explore F [x]. The results we obtain parallel the results you already
know from your high school and college algebra courses for polynomials whose coef-
ficients are integers, polynomials such as x3 + 3x2 − 2x + 1. Again, it is a question of
abstraction. The polynomials you are familiar with are f(x) ∈ Z[x], meaning their
coefficients are integers. We are broadening to polynomials whose coefficients are in
ANY field. For instance, if f(x) ∈ Q(

√
2)[x], then we might be dealing with not

x3 + 3x2 − 2x + 1 but x3 + 3
√

2x2 − (2 − 5
√

2)x + 17 − 6
√

2.

Definition 46. addition and multiplication of polynomials
The addition of two polynomials,

f(x) = amxm + am−1xm−1 + . . . + a1x + a0
g(x) = bnxn + bn−1xn−1 + . . . + b1x + b0

is defined by just adding the coefficients of the terms with the same power of x.
Assuming1 m ≥ n we can extend g(x) and write,

g(x) = bmxm + . . . + bn+1xn+1 + bnxn + bn−1xn−1 + . . . + b1x + b0
1If m < n then extend f(x) rather than g(x) in similar fashion.

100
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where bj = 0 for n < j ≤m, and then,

f(x) + g(x) =
m

∑
i=0

(ai + bi)xi.

Their product is defined to be,

f(x) ⋅ g(x) = (amxn + am−1xn−1 + . . . + a1x + a0)(bnxn + bn−1xn−1 + . . . + b1x + b0)
= ambnxm+n + . . . + (a2b0 + a1b1 + a0b2)x2 + (a1b0 + a0b1)x + a0b0

=
m+n

∑
k=0

ckx
k, ck =

k

∑
i=0

aibk−i = ∑
i+j=k

aibj

Using these definitions we prove in Theorem 51 that F [x] is a commutative ring
with identity and we then prove a theorem, plus a corollary proving cancellation, that
morphs into factors.

Theorem 51. **
F [x] is a commutative ring with identity, (it has parallel properties to the integers),
that is the following properties hold for all f(x), g(x), h(x) ∈ F [x].

Associative laws:

f(x) + (g(x) + h(x)) = (f(x) + g(x)) + h(x)
f(x) ⋅ (g(x) ⋅ h(x)) = (f(x) ⋅ g(x)) ⋅ h(x)

Commutative laws:

f(x) + g(x) = g(x) + f(x)
f(x) ⋅ g(x) = g(x) ⋅ f(x)

Distributive laws:

f(x) ⋅ (g(x) + h(x)) = f(x) ⋅ g(x) + f(x) ⋅ h(x)
(f(x) + g(x))h(x) = f(x) ⋅ h(x) + g(x) ⋅ h(x)

Identity elements:
f(x) = 0 and f(x) = 1 serve as the additive and multiplication identity elements re-
spectively of F [x].

Additive inverses:
Since each coefficient ai ∈ F has an inverse a−1i ∈ F, the polynomial −f(x) is the
additive inverse of f(x).
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Proof. Except for the distributive law2 the proofs are very easy through writing out
each side of the respective equality in terms of the definitions preceding the statement
of the theorem just as we do in the next proof.

Theorem 52. **
If f(x), g(x) are nonzero polynomials in F [x], then,

deg(f(x)g(x)) = deg(f(x)) + deg(g(x)).

Proof. Let,

f(x) = amxm + am−1xm−1 + . . . + a1x + a0
g(x) = bnxn + bn−1xn−1 + . . . + b1x + b0,

where deg(f(x)) =m, deg(g(x)) = n. Thus am ≠ 0, bn ≠ 0.
Since, by Definition 46, page 100, the leading coefficient in f(x)g(x) is ambn, the
leading term in x is xm+n which has degree m + n = deg(f(x)) + deg(g(x)).

2To prove the distributive law, consider the polynomials
m

∑
i=0
aix

i,
n

∑
j=0

bjx
j ,

p

∑
k=0

ckx
k. We have, as-

suming without loss of generality that n > p,

m

∑
i=0
aix

i ⎛
⎝
n

∑
j=0

bjx
j +

p

∑
k=0

ckx
k⎞
⎠
=
m

∑
i=0
aix

i (bnxn + . . . + b0 + cpxp + . . . c0)

=
m

∑
i=0
aix

i
n

∑
l=0

(bl + cl)xl where cl = 0 for n > p

Now the first sum and the second sum are independent of one another so we can take the first sum
inside the second sum thus,

=
n

∑
l=0

(
m

∑
i=0
aix

i)(bl + cl)xl where cl = 0 for l > p

and use the distributive law of the reals thus,

=
n

∑
l=0

(
m

∑
i=0
aix

i) blxl +
n

∑
l=0

(
m

∑
i=0
aix

i) clxl

and then again using the independence of the aix
i sum, we obtain the desired result,

= (
m

∑
i=0
aix

i)
n

∑
l=0
blx

l + (
m

∑
i=0
aix

i)
n

∑
l=0
clx

l

= (
m

∑
i=0
aix

i)
n

∑
l=0
blx

l + (
m

∑
i=0
aix

i)
p

∑
l=0
clx

l since cl = 0 for l > p.
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Note 17. Let’s look at polynomial cancellation of common factors. We prove if
f(x), g(x), h(x) ∈ F [x] and f(x) is not the zero polynomial, then,

f(x)g(x) = f(x)h(x) ⇒ g(x) = h(x).

The proof is as follows.

f(x)g(x) = f(x)h(x)
⇒ f(x)g(x) − f(x)h(x) = 0

⇒ f(x)[g(x) − h(x)] = 0 distributive law

⇒ g(x) − h(x) = 0 since f(x) ≠ 0

⇒ g(x) = h(x)

Definition 47. factor or divisor
We say g(x) ∈ F [x] is a factor or divisor of f(x) ∈ F [x] if there is a p(x) ∈ F [x]

such that f(x) = g(x)p(x), and we write g(x) ∣ f(x).

Notation 5. The set of all polynomials in F [x] that are divisible by g(x) is denoted
by < g(x) > . In other words f(x) ∈< g(x) > if f(x) = g(x)p(x) for some polynomial
p(x) ∈ F [x].
Further, under addition, < g(x) > is a subgroup of F [x] since, by the subgroup test,
if p(x), q(x) ∈< g(x) > then, given the inverse of p(x) is simply −p(x), under the group
operation of addition of polynomials, we have q(x) − p(x) ∈< g(x) > . Accordingly, by
Corollary 3, page 31, < g(x) > is a subgroup of F [x].

In the final section of Chapter 8 we will prove a key theorem dealing with a factor
group F [x]/ < p(x) > . We prove it is a field.

Example 42.

f(x) = x5 + x3 + 3x2 + 3

= (x2 + 1)(x3 + 3)

makes f(x) ∈< x2 + 1 > and f(x) ∈< x3 + 3 > . ◇

We next prove, via Theorems 53 and 54, the Factor Theorem 55, that c is a
root or solution of the polynomial equation f(x) = 0 if and only if f(c) = 0, that is,
x − c ∣ f(x).

Theorem 53. *
For any element c ∈ F and any positive integer k,

(x − c) ∣ (xk − ck).

Proof. If we multiply out (x − c)(xk−1 + cxk−2 + . . . + ck−2x + ck−1) we get xk − ck.
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Theorem 54. * (Remainder Theorem)
Let f(x) ∈ F [x] be a nonzero polynomial and let c ∈ F. Then there exists a polynomial
q(x) ∈ F [x] such that,

f(x) = q(x)(x − c) + f(c)

That is, when f(x) is divided by x − c the remainder is f(c).

Proof. Let f(x) ∈ F [x] be,

f(x) = amxm + am−1xm−1 +⋯ + a1x + a0, ai ∈ F

Since by Theorem 53 every term in,

f(x) − f(c) = am(xm − cm) + am−1(xm−1 − cm−1) +⋯ + a1(x − c)

is divisible by (x − c), then for some q(x) ∈ F [x], we can write,

f(x) − f(c) = (x − c)q(x)
⇒ f(x) = (x − c)q(x) + f(c).

So when f(x) is divided by (x − c) the remainder is f(c).

Corollary 55. * (Factor Theorem)
Let f(x) ∈ F [x] be a nonzero polynomial and let c ∈ F. Then c is a root or zero of
f(x) if and only if (x − c) is a factor of f(x).
That is f(c) = 0 if and only if (x − c) ∣ f(x) or f(x) = (x − c)g(x), where g(x) is a
polynomial of one less degree than f(x).

Proof. From Theorem 54 we have f(x) = (x − c)q(x) + f(c).
Clearly, if f(c) = 0 then f(x) = (x − c)q(x), that is (x − c) is a factor of f(x).

*****

Conversely, if f(x) = (x − c)q(x) then f(c) = (c − c)q(c) = 0.

The Factor Theorem is an invaluable tool in factoring polynomials.

Example 43. For example, if f(x) = x3 − x2 − x + 1 has factors such as,

f(x) = (x − r1)(x − r2)(x − r3),

the ri can only be ±1. So we calculate,

f(1) = 1 − 1 − 1 + 1 = 0

f(−1) = −1 − 1 − 1 − 1 ≠ 0

and conclude (x− 1) is a factor but (x+ 1) is not. By long (or synthetic) division we
find the other factor is x2 + 1, giving f(x) = (x − 1)(x2 + 1). ◇
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We finish this section with Corollary 56 that a polynomial of degree n with coef-
ficients in F has at most n distinct roots in F.

Corollary 56. *
A polynomial f(x) ∈ F [x] of degree n with coefficients in the field F has at most n
distinct roots in F. Equivalently, f(x) can have at most n distinct factors.

Proof. Let f(x) ∈ F [x] have degree n.
If (x − c) is a factor of f(x) then we can write f(x) = (x − c)g(x) where g(x) has
degree 1 less than f(x). We can repeat this process, saying if (x − b) is a factor of
g(x) then we can write f(x) = (x − c)(x − b)h(x) where h(x) has degree 2 less than
f(x). But we cannot repeat this process more than n times.

We next establish a series of definitions and proofs for polynomials that parallel
the series of definitions and proofs for the integers. We label the parallel definitions
and theorems as A and B.

The comparability is not surprising in the sense that they are both commutative
rings with identity but it is surprising in the sense that a polynomial and an integer
are totally different objects. This is a beautiful example of mathematical abstraction,
in this case, of rings.

The result we need is the final theorem in this chapter.

8.2 Division algorithm

8.2.1 Division Algorithm for Integers

It is simple for us to agree if we divide, say 46 by 7, then the remainder 4 is less than
7, but let’s formalize this.

Theorem 57A. * (Division Algorithm for Integers)
For every a, b ∈ Z there exist a unique pair q, r ∈ Z such that,

a = bq + r, 0 ≤ r < b.
Proof. For this proof we need to accept the Well-Ordering principle which states that
every non-empty set of the positive integers contains a smallest element.
Let S be the set of positive integers that are greater than a/b. By the Well-Ordering
principle S contains a smallest element t, that is, we can construct the inequality,

t − 1 ≤ a
b
< t.

Let q = t − 1 ⇔ t = q + 1, multiply through by b and subtract qb from all the terms.
Then,

qb ≤ a < (q + 1)b⇒ 0 ≤ a − qb < b
Putting r = a − qb gives us the desired result a = qb + r.
Then, substituting this result into 0 ≤ a − qb < b we also obtain 0 ≤ r < b.
Example 44. 67,12 ∈ Z and 67 = 12 ⋅ 5 + 7 where 7 < 12.
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8.2.2 Division Algorithm for Polynomials

Similarly, if we divide a polynomial such as x5+1 by x2+1 then the remainder (−x+1)
will have degree one less than the degree of x2 + 1 but let’s formalize this.

Theorem 57B. ** (Division Algorithm for polynomials)
If F is a field, for any polynomials f(x), g(x) ∈ F [x] where g(x) ≠ 0, there exist
unique polynomials q(x), r(x) such that,

f(x) = q(x)g(x) + r(x)

where either deg(r(x)) < deg(g(x)) or r(x) = 0.

Proof. Let,

f(x) = amxm + am−1xm−1 + . . . + a1x + a0 ∈ F [x], (8.2.1)

g(x) = bnxn + bn−1xn−1 + . . . + b1x + b0 ∈ F [x], (8.2.2)

and consider the set

S = {f(x) − g(x)s(x) ∣ s(x) ∈ F [x]}

Of all the elements f(x) − g(x)s(x), choose s(x) = q(x) to make f(x) − g(x)q(x) any
one of the elements of S with least degree.3 Set,

r(x) = f(x) − g(x)q(x)

so that r(x) has minimal degree in S. Then,

f(x) = g(x)q(x) + r(x)

We must show deg(r(x)) < n = deg(g(x)). Suppose,

r(x) = ctxt + ct−1xt−1 +⋯ + c1x + c0, (8.2.3)

3For example if F = Q, suppose,

f(x) = 3x4 + x3 − 1

g(x) = 2x2 + x + 1

Then we can choose s(x) = 3

2
x2 − 1

4
x − 5

8
so that,

f(x) − g(x)s(x) = 7

8
x − 3

8

which has degree 1 and this is the least degree of all the polynomials in {f(x)−g(x)s(x)} since it is
not possible to choose the coefficients of the general s(x) = ax2+bx+c to have f(x)−g(x)s(x) equal

to a polynomial of zero degree (a constant). Note r(x) = 7

8
x − 3

8
has degree less than the degree of

g(x) = 2x2 + x + 1.
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where the coefficients ci are elements in F and ct ≠ 0 if t ≠ 0. We suppose t ≥ n, and
prove this is a false supposition, hence t < n.
Subtracting

ct
bn
xt−ng(x) from both sides, we have from f(x) − g(x)q(x) = r(x), that,

f(x) − g(x)q(x) − ct
bn
xt−ng(x) = r(x) − ct

bn
xt−ng(x) (8.2.4)

But the right side of (8.2.4) is,

r(x) − ct
bn
xt−n(bnxn + bn−1xn−1 + . . . + b1x + b0)

= r(x) − ctxt +⋯
= (ctxt + ct−1xt−1 +⋯ + c1x + c0) − ctxt +⋯ by (8.2.3)
=���ctxt + ct−1xt−1 +⋯ + c1x + c0 −���ctxt +⋯

which is a polynomial of degree less than the degree of r(x) which is t.
However, the left side of (8.2.4), which must also have degree less than t can be
written as

f(x) − g(x)q(x) − ct
bn
xt−ng(x) = f(x) − g(x) (q(x) − ct

bn
xt−n)

so it is in the set S = {f(x) − g(x)s(x) ∣ s(x) ∈ F [x]} with, since it equals the right
side, degree less than that of r(x) contradicting the fact that r(x) has minimal degree
in S.
So the supposition t ≥ n is false. Therefore the degree of r(x) is less than
n = deg(g(x)).

*****

We can show q(x), r(x) are unique by supposing,

f(x) = g(x)q1(x) + r1(x), deg(r1(x)) < deg(g(x)) (8.2.5)

f(x) = g(x)q2(x) + r2(x), deg(r2(x)) < deg(g(x) (8.2.6)

We note

deg(r2(x) − r1(x)) < deg(g(x)) (8.2.7)

Subtracting the two equations (8.2.5) and (8.2.6) for f(x), we find,

g(x)[q1(x) − q2(x)] = [r2(x) − r1(x)]

Now the factors of a polynomial obviously have degree less than that of the polyno-
mial.
Here, if q2(x) − q1(x) ≠ 0 then deg(r2(x) − r1(x)) ≥ deg(g(x)).
This contradiction to (8.2.7) must mean q2(x) − q1(x) = 0 giving q2(x) = q1(x).
In turn this means r2(x) − r1(x) = 0 so that r2(x) = r1(x).
This proves uniqueness.
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Example 45. For example, with f(x) = x3 + 2x + 2 and g(x) = x2 + x + 1, we have,

x3 + 2x + 2 = (x2 + x + 1)(x − 1) + (2x + 3)

where deg(2x + 3) = 1 is less than deg(x2 + x + 1) = 2. ◇

8.3 Greatest Common Divisor

8.3.1 Integers

Definition 48A. greatest common divisor for integers
The greatest common divisor of the integers a, b ∈ Z is denoted by gcd(a, b) and is

the largest integer d ∈ Z that divides both a and b.
If gcd(a, b) = 1 we say a and b are relatively prime.

Example 46.

gcd(27,18) =9

gcd(23,17) =1 ◇

Theorem 59A. **
(a) Let a and b be integers and d = gcd(a, b). Then d is the smallest positive integer
that can be expressed as a linear combination ax + by of a and b, that is, d = ax + by.
(b) There exist integers x, y satisfying ax + by = c iff d∣c where d = gcd(a, b).

Proof. We prove the two statements separately.
(a) Let a and b be integers and d = gcd(a, b). By the Well Ordering principle4, the
set of all linear combinations of a and b contains a smallest positive element m, say
m = sa + tb.
We want to prove m = gcd(a, b) = d.
By the Division Algorithm, Theorem 57A on page 105, we can write,

a = qm + r, 0 ≤ r <m. (8.3.1)

Then, using m = sa + tb,

r = a − qm = a − q(sa + tb) = (1 − qs)a + (−tq)b,

so r is a linear combination of a and b.
But by (8.3.1) 0 ≤ r < m and m is the smallest positive element of the set of all
possible linear combinations of a and b. This contradiction gives us r = 0 and a = qm
or m∣a.
By a similar argument applied to b = qm + r, 0 ≤ r <m we obtain m∣b.

4Recall, the Well Ordering Principle is an axiom of the natural numbers. It states that every
non-empty set of natural numbers contains a smallest element.
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Then m is a common divisor of a and b.
Now since d∣a and d∣b then5 d∣(sa + tb) so that d∣m making d ≤m.
Since d is the greatest common divisor, we cannot have d <m so we must have d =m
which proves (a), namely d = gcd(a, b) is the smallest positive integer that can be
expressed as a linear combination ax + by.

**********

(b) We want to prove there exist integers x, y satisfying ax + by = c iff d∣c where
d = gcd(a, b).
First assume ax + by = c holds. We want to prove d∣c.
For d = gcd(a, b), let a = ed, b = fd. Then,

c = ax + by = edx + fdy = d(ex + fy) ⇒ d∣c.
*****

Conversely, assume d∣c, say kd = c. We want to prove there exist integers x, y satisfying
ax + by = c.
Now by Part (a), there exist x′, y′ such that ax′ + by′ = d. Hence, multiplying by k,

a(x′k) + b(y′k) = dk = c
In other words, x = x′k and y = y′k are a solution of ax + by = c.
This proves Part (b).

8.3.2 Polynomials

Definition 48B. greatest common divisor for polynomials
If F is a field, the greatest common divisor of the polynomials f(x), g(x) ∈ F [x] is

denoted by gcd(f(x), g(x)) and is the polynomial d(x) ∈ F [x] of largest degree that
divides both f(x) and g(x).
If gcd(f(x), g(x)) = 1 we say f(x) and g(x) are relatively prime.

Example 47.

gcd(x3 + 1, x5 + 1) = x + 1,

gcd(x3 + 1, x2 + 1) = 1.

We now consider the parallel gcd theorem for polynomials.

Theorem 58B. **
Where F is a field, for any nonzero polynomials f(x), g(x) ∈ F [x], the greatest com-
mon divisor d(x) = gcd(f(x), g(x)) exists and can be expressed as a linear combina-
tion of f(x) and g(x) in the form,

d(x) = a(x)f(x) + b(x)g(x)
for some a(x), b(x) ∈ F [x].

5If a = dx, b = dy then sa + tb = sdx + tdy = d(sx + ty) ⇒ d∣(sa + tb).
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Proof. Let f(x), g(x) ∈ F [x]. Consider the set of polynomials,

G[x] = {a(x)f(x) + b(x)g(x) ∣ a(x), b(x) ∈ F [x]}

Let d(x) be an element of G[x] of minimal, or smallest possible, degree. Then,

d(x) = a(x)f(x) + b(x)g(x) (8.3.2)

for some a(x), b(x) ∈ F [x]. By the Division Algorithm 57B, page 106, we have,

f(x) = q(x)d(x) + r(x), deg(r(x)) < deg(d(x)) or r(x) = 0

Then,

r(x) = f(x) − q(x)d(x)

But this means r(x) ∈ G[x] and has degree less than that of d(x). This is a contra-
diction unless r(x) = 0.
But then f(x) = q(x)d(x) which means d(x) ∣ f(x).
By a similar argument we have d(x) ∣ g(x) and hence d(x) is a common divisor of
f(x) and g(x).

*****

To show d(x) is the greatest common divisor of f(x), g(x) we need to show any other
divisor of both f(x) and g(x) divides d(x).
So, suppose some other h(x) ∈ G[x] divides both f(x) and g(x), say,

f(x) = h(x)j(x) and g(x) = h(x)k(x) (8.3.3)

Then since d(x) ∈ G[x], by (8.3.2),

d(x) = a(x)f(x) + b(x)g(x)

for some a(x), b(x) ∈ F [x]. Thus we have, substituting from (8.3.3),

d(x) = a(x)h(x)j(x) + b(x)h(x)k(x)
= h(x)[a(x)j(x) + b(x)k(x)]
⇒ h(x) ∣ d(x),

which means any other common divisor h(x) has degree less than the degree of d(x).
Thus d(x) is the greatest common divisor of f(x), g(x).

We can also prove Theorem 59B by quoting the procedure used in proving the
Euclidean Algorithm 61B in the next section.
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Theorem 59B. ** (Alternative proof)
Where F is a field, for any nonzero polynomials f(x), g(x) ∈ F [x], the greatest com-
mon divisor gcd(f(x), g(x)) exists and can be expressed as a linear combination of
f(x) and g(x) in the form,

gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x)

for some a(x), b(x) ∈ F [x].

Proof. In the proof of the Euclidean Algorithm, Theorem 61B, for polynomials on
page 114 we have the sequence of equations,

rn−2(x) = qn(x)rn−1(x) + rn(x)
rn−3(x) = qn−1(x)rn−2(x) + rn−1(x)
rn−4(x) = qn−2(x)rn−3(x) + rn−2(x)

. . .

g(x) = q2(x)r1(x) + r2(x)
f(x) = q1(x)g(x) + r1(x)

From this sequence we have that rn(x) is a common divisor of f(x) and g(x) and we
can then “backtrack” to form the sequence of equations,

rn(x) = rn−2(x) − qn(x)rn−1(x)
= rn−2(x) − qn(x)[rn−3(x) − qn−1(x)rn−2(x)]

. . .

= rn−4(x)[1 + qn(x)qn−1(x)] − rn−3(x)[qn−2(x) + qn(x)qn−1(x)qn−2(x) + qn(x)] . . .
= a(x)f(x) + b(x)g(x)

where a(x) and b(x) are a combination of the qi(x). So now we have the proof that
a common divisor rn(x) of f(x) and g(x) exists and can be expressed as a linear
combination of f(x) and g(x) in the form,

rn(x) = a(x)f(x) + b(x)g(x)

for some a(x), b(x) ∈ F [x]. We can then prove rn(x) is the greatest common divisor
as in the previous theorem.

The Corollaries

Corollary 60A. *
There exist integers x, y satisfying ax + by = 1 iff gcd(x, y) = 1.

Example 48. For example, given gcd(7,11) = 1, we can construct

7 × 8 − 11 × 5 = 1. ◇
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Corollary 60B. *
If f(x), g(x) are relatively prime, that is gcd(f(x), g(x)) = 1, we can find
a(x), b(x) ∈ F [x] such that

f(x)a(x) + g(x)b(x) = 1

Example 49. For example, given gcd(x3 + 1, x4 + 1) = 1 we can construct (as we do
later),

1 = (x4 + 1)(−x
3

2
+ x

2

2
+ x

2
) + (x3 + 1) (x

4

2
− x

3

2
− x

2

2
− x

2
+ 1) ◇

8.4 Euclidean Algorithm

8.4.1 Euclidean Algorithm for Integers

To find x, y for a given a, b with gcd(a, b) = 1, such that ax + by = 1 we use the
Euclidean Algorithm and repetitions of the Division Algorithm 57A, page 105. The
following example demonstrates how the Euclidean Algorithm is to be applied. The
proof of the Euclidean Algorithm for integers is the same as that for polynomials on
page 121, just omit all the x′ s.

Example 50. For a, b ∈ Z, using the Division Algorithm we set up the chain of
equations which continue until a remainder of 0 is reached, say at r3,

a = b ⋅ q1 + r1, r1 < b
b = r1 ⋅ q2 + r2, r2 < r1
r1 = r2 ⋅ q3 + 0

⇒ gcd(a, b) = r2,

Then the gcd is the remainder immediately prior to a remainder of 0.
Then we can backtrack to a as follows. (We went down the chain until we reached a
(minimum) remainder of 0 and now we go back up the chain to a.) If, say, we found
r2 = 1, then,

1 = r2 = b − r1 ⋅ q2 = b − (a − bq1)q2 (8.4.1)

⇒ −aq2 + b(1 + q1q2) = 1 (8.4.2)

Let’s take a = 67, b = 13,

67 = 13 ⋅ 5 + 2

13 = 2 ⋅ 6 + 1

2 = 1 ⋅ 2 + 0

⇒ gcd(67,13) = 1



8.4. Euclidean Algorithm 113

which is the least non-zero remainder.
Substituting a = 67, b = 13, q1 = 5, r1 = 2, q2 = 6, r2 = 1, q3 = 2⇒ 1+ q1q2 = 31 into (8.4.2)
we have,

−67 ⋅ 6 + 13 ⋅ 31 = 1 ◇

8.4.2 Euclidean Algorithm for Polynomials

To find a(x), b(x) for a given f(x), g(x) with gcd(f(x), g(x) = 1 such that
a(x)f(x) + b(x)g(x) = 1 we use the Euclidean Algorithm 61B and the Division Algo-
rithm 57B. First an example of how to setup the Euclidean Algorithm.

Example 51. Let’s choose f(x) = x4 + 1, g(x) = x3 + 1. Using long division we
construct,

x4 + 1 = (x3 + 1)(x) + (−x + 1)
x3 + 1 = (−x + 1)(−x2 − x) + (x + 1)
−x + 1 = (x + 1)(−1) + 2

x + 1 = 2
x

2
+ 1

2 = 1(2) + 0

to conclude gcd(x4 + 1, x3 + 1) = 1, which is the last non-zero remainder.
With f(x), g(x) as chosen and a1(x) = x, r1(x) = −x + 1, a2(x) = −x2 − x,
r2(x) = x + 1, a3(x) = −1, r3(x) = 2, a4(x) = x/2, r4(x) = 1, a5(x) = 2, r5(x) = 0 we
can reframe this as,

f(x) = g(x)a1(x) + r1(x), deg(r1(x) < deg(g(x)
g(x) = r1(x)a2(x) + r2(x)
r1(x) = r2(x)a3(x) + r3(x)
r2(x) = r3(x)a4(x) + r4(x)
r3(x) = r4(x)a5(x) + r5(x), r5(x) = 0

⇒ gcd(f(x), g(x)) = r4(x), which is the last non-zero remainder.

Then we can backtrack to f(x) as follows:

r4(x) = 1

= r2(x) − r3(x)a4(x)
= r2(x) − [r1(x) − r2(x)a3(x)]a4(x)
= [g(x) − r1(x)a2(x)] − {(r1(x) − [g(x) − r1(x)a2(x)]a3(x)}a4(x)
= g(x)[1 + a3(x)a4(x)] − r1(x)[a2(x) + a4(x) + a2(x)a3(x)a4(x)]
= g(x)[1 + a3(x)a4(x)]

− {f(x) − g(x)a1(x)} × [a2(x) + a4(x) + a2(x)a3(x)a4(x)]
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= −f(x)[a2(x) + a4(x) + a2(x)a3(x)a4(x)]
+ g(x){[1 + a3(x)a4(x)] + a1(x) × [a2(x) + a4(x) + a2(x)a3(x)a4(x)]}

In our example,
f(x) = x4 + 1, g(x) = x3 + 1, a1(x) = x, a2(x) = −x2 − x, a3(x) = −1, a4(x) = x/2,
giving,

(x4 + 1) (−x
3 + x2 + x

2
) + (x3 + 1) (1 + x

4 − x3 − x2 − x
2

) = 1 ◇

Theorem 61B gives us the strict proof of the Euclidean Algorithm for polynomials
or for the integers by deleting all the (x)s.

Theorem 61B. ** (Euclidean Algorithm for Polynomials)
Let F be a field and f(x), g(x) ∈ F [x]. If we apply the Division Algorithm Theorem
57B, page 106, repeatedly,

f(x) = q1(x)g(x) + r1(x) (1)
g(x) = q2(x)r1(x) + r2(x) (2)
r1(x) = q3(x)r2(x) + r3(x) (3) . . .

we must come to a finite end since the degree of the remainders is becoming smaller
and smaller, so we end with,

rn−3(x) = qn−1(x)rn−2(x) + rn−1(x) (n − 1)
rn−2(x) = qn(x)rn−1(x) + rn(x) (n)
rn−1(x) = qn+1(x)rn(x) + rn+1(x) (n + 1)

and rn+1(x) = 0.
Then the last non-zero remainder rn(x) = gcd(f(x), g(x)).

Proof. From equation (n + 1), we have

rn−1(x) = qn+1(x)rn(x) + rn+1(x)

Since rn+1(x) = 0 we see rn(x) ∣ rn−1(x), say, rn−1(x) = a(x)rn(x). Substituting into
equation (n) gives,

rn−2(x) = qn(x)a(x)rn(x) + rn(x) = rn(x)[qn(x)a(x) + 1]

so that rn(x) ∣ rn−2(x), say rn−2(x) = b(x)rn(x).
But then from equation (n − 1) we see rn(x) ∣ rn−3(x) since

rn−3(x) = qn−1(x)rn(x)b(x) + a(x)rn(x) = rn(x)[b(x)qn−1(x) − a(x)],

and so on all the way back to equations (1), (2) which show rn(x) ∣ g(x) and finally,
rn(x) ∣ f(x) so that rn(x) is a common divisor of f(x) and g(x).
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*****

To show it is the greatest common divisor, suppose h(x) is any other common divisor
of f(x) and g(x). Then by equation (1) , h(x) ∣ r1(x), by equation (2) h(x) ∣ r2(x)
and so on all the way down the chain of equations till we reach h(x) ∣ rn(x) making
rn(x) the greatest common divisor, that is, gcd(f(x), g(x)) = rn(x).

8.5 Primes and Irreducibles

8.5.1 Prime integers

Definition 49A. prime integer
A positive integer is a prime number if it cannot be factored into two numbers both

greater than 1.
We could say a prime is irreducible.

Example 52. 2,3,5,7,11,13,17,19,23 are primes in Z.
4,6,8,10,12,14,15,16,18 are called composite numbers.

Theorem 62A. * (Euclid’s Lemma for Integers) If p is a prime and a, b ∈ Z, then if
p∣ab either p∣a or p∣b.

Proof. Suppose p∣ab, p a prime and a, b ∈ Z.
Now if p is a prime then either p∣a (and we are done) or p��∣a making gcd(p, a) = 1.
In this latter case,by Corollary 60A, page 111 if gcd(p, a) = 1 then there exist integers
r, s such that,

rp + sa = 1⇒ brp + sab = b where we multiplied through by b.

Then since p∣ab means ab = pk for some k ∈ Z, we have,

brp + spk = b⇒ b = p(br + sk) ⇒ p∣b.

Example 53. 3∣48 = 6 × 8 and 3∣6

We can go further.

Corollary 63A. *
In general, if p∣a1a2 . . . ar then p∣ai for at least one ai, 1 ≤ i ≤ r.

Proof. If p��∣a1, then p∣a2a3 . . . ar. Then if p��∣a2 then p∣a3a4 . . . ar and so on. Thus if
p��∣ai, 1 ≤ i ≤ r − 1 then we must have p∣ar.
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8.5.2 Irreducible polynomials

Definition 49B. irreducible polynomial
A polynomial is irreducible over a field F if it cannot be factored in F into polynomials

of lesser degree greater than 0.

Example 54. x + 1, x2 + x + 1, x4 + 1 are irreducible in Q[x].
x3 + 1 = (x + 1)(x2 − x + 1) is reducible in Q[x]. ◇

Theorem 62B. ** (Euclid’s Lemma for polynomials)
With F a field, let f(x), g(x), p(x) ∈ F [x]. If gcd(p(x), f(x)) = 1 but p(x) ∣ f(x)g(x)
then p(x) ∣ g(x).

Proof. Suppose f(x), g(x), p(x) ∈ F [x] and p(x)∣f(x)g(x).
Suppose also gcd(p(x), f(x)) = 1 so that p(x)��∣f(x).
By Corollary 60B, page 112, if gcd(f(x), p(x)) = 1 then a(x)f(x) + b(x)p(x) = 1 for
some a(x), b(x) ∈ F [x].
Multiplying by g(x) gives,

g(x) = a(x)g(x)f(x) + b(x)g(x)p(x) (8.5.1)

Now,

p(x)∣f(x)g(x) ⇒ f(x)g(x) = h(x)p(x) for some h(x) ∈ F [x].

Then, subsituting into (8.5.1),

g(x) = a(x)h(x)p(x) + b(x)g(x)p(x)
= p(x)[a(x)h(x) + b(x)g(x)]
⇒ p(x)∣g(x)

Example 55. Since x3+1 = (x+1)(x2−x+1) then x+1∣x3+1 requires x+1 to divide
one of the factors of x3 + 1 and indeed, x + 1∣x + 1.

8.6 Unique Factorization

8.6.1 Integers and Unique Factorization

The fundamental theorem of arithmetic is that each integer is able to be factored into
the product of primes in a unique way up to order (that is, apart from the order, for
example, 12 = 22 × 3 = 3 × 22).
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Theorem 65A. *** (Fundamental Theorem of Arithmetic)
Every integer n > 1 is a product of a unique set of primes. That is,

n = pα1
1 p

α2
2 p

α3
3 . . . pαrr =

r

∏
i=1

pαii

where each pi is a prime and all αi ∈ N.

Proof. To show n is a product of primes, we use a proof by contradiction.
Suppose there is an integer greater than 1 that is not the product of primes.
Then, by the Well-Ordering principle, there must be a smallest one, say m.
Either m is a prime and we are done, or m is not a prime.
In that case, m factors as say, m = rs. Since both r and s are smaller than m, they
must be the product of primes, and therefore m is also, so we have a contradiction.
We conclude there are no integers greater than 1 that are not a product of primes.

*****

To show n is a product of a unique set of primes, we suppose there are integers greater
than 1 with two different factorizations. To find a contradiction, let n be the smallest
of these and let two factorizations of n be,

n = pα1
1 p

α2
2 p

α3
3 . . . pαrr = qβ11 q

β2
2 q

β3
3 . . . qβss (8.6.1)

where the pi are distinct primes and the qj are distinct primes and the exponents
αi, βj ∈ N.
Since p1 divides the right side, then by Corollary 63A, page 115, p1 divides q

βj
j for

some j.
Hence p1 = qj since both are prime. Thus we may divide (8.6.1) by p1 to get two

different factorizations of
n

p1
.

But
n

p1
< n, so we have a contradiction since we supposed n is the smallest integer

with two different factorizations.
We conclude any integer has a unique factorization into primes.

Example 56. 720 = 24325

8.6.2 Polynomials and Unique Factorization

In order to prove the corresponding theorem for polynomials, we first need Theorem
64B.

Theorem 64B. ***
The non-constant polynomial p(x) ∈ F [x] is irreducible over F [x] if and only if for
all f(x), g(x) ∈ F [x],

p(x)∣f(x)g(x) ⇒ p(x)∣f(x) or p(x)∣g(x).
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Proof. Suppose p(x) ∈ F [x] is irreducible over F [x] and that p(x)∣f(x)g(x).
If p(x)��∣f(x) then gcd(p(x), f(x)) = 1 so that p(x)∣g(x) by Theorem 62B on page 116.

*****

Conversely suppose,

p(x)∣f(x)g(x) ⇒ p(x)∣f(x) or p(x)∣g(x) for all f(x), g(x) ∈ F [x].

We need to show p(x) is irreducible or cannot be factored in F [x] into polynomials
of lower degree. If we state the supposition as a contrapositive statement, we have,

p(x)��∣f(x) and p(x)��∣g(x) ⇒ p(x)��∣f(x)g(x) for all f(x), g(x) ∈ F [x]

(Note the contrapositive changes “or” to “and.”)
But p(x)��∣ f(x)g(x) means we cannot have p(x) = f(x)g(x) for any polynomials in
F [x]. So p(x) is irreducible.

We can now prove a fundamental result for our journey to insolvability of poly-
nomials,

Theorem 65B. *** (Unique Factorization for Polynomials)
Any non-constant polynomial f(x) with coefficients in the field F can be expressed as
an element of F times a product of monic polynomials, each of which is irreducible
over the field F. This expression is unique up to order (that is, except for the order
in which the factors are written).

Proof. The proof is by induction on the degree n of f(x) ∈ F [x].
Basis Step: First we show the statement is true for n = 1.
Let f(x) = a1x+a0. Then f(x) = a1(x−a−11 a0) which is an element of F times a monic
irreducible polynomial, so the statement is true for n = 1.
Induction Step: Now suppose the statement is true for polynomials of degree < n. Let
f(x) have degree n. We need to prove f(x) of degree n is the product of ireducible
factors.
If f(x) is irreducible, we are done. If not, let f(x) = g(x)h(x) where g(x), h(x) have
degrees less than n, so, by the supposition, can be written as,

g(x) = ap1(x)p2(x) . . . pj(x), of degree r say,

h(x) = bq1(x)q2(x) . . . qk(x), of degree n − r say,

where a, b ∈ F and all the polynomials p1(x), . . . , pj(x) and q1(x), . . . , qk(x) are monic
and irreducible.
But then we have,

f(x) = g(x)h(x) = abp1(x)p2(x) . . . pj(x)q1(x)q2(x) . . . qk(x)),

of degree n− r + r = n, which is the product of an element of F and monic irreducible
polynomials.
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*****

To prove uniqueness, suppose,

f(x) = ap1(x)p2(x) . . . pj(x) = bq1(x)q2(x) . . . qk(x)

Clearly, a = b. But also, p1(x)∣bq1(x)q2(x) . . . qk(x) so by Theorem 64B above we must
have p1(x)∣bq1(x)q2(x)⋯qk−1 or p1∣qk(x).
If p1(x)∣qk(x) then, since both are irreducible, we must have p1(x) = qk(x). If not, we
replace pk(x) with pk−1(x) and make the same argument. We must eventually have
p1(x) = qs(x) for some s ∶ 1 ≤ s ≤ k.
We can repeat the whole process to show p2(x) = qs(x) for some other s ∶ 1 ≤ s ≤ k.
In this way we match every monic irreducible polynomial in p1(x)p2(x) . . . pj(x) with
a monic irreducible polynomial in q1(x)q2(x) . . . pk(x).
There cannot be more pi(x) polynomials than qj(x) polynomials (or vice versa) since
if we cancel the matched polynomials on either side of

p1(x)p2(x) . . . pj(x) = q1(x)q2(x) . . . qk(x),

we would be left with the product of one or more polynomials equal to 1, so they
must all be 1.

Example 57. 2x4 + 2x3 + 2x + 2 = 2(x + 1)2(x2 − x + 1) ∈ Z(x)

8.7 Multiplicity of roots and factors

8.7.1 Integers with multiple factors

Using the Fundamental Theorem of Arithmetic, Theorem 65A, page 117, we can
express any integer as,

n = pα1
1 p

α2
2 p

α3
3 . . . pαrr =

r

∏
i=1

pαii

where each pi is a prime and all αi ∈ N.
Clearly, n has no multiple factors if and only if αi ≤ 1 for all i.

8.7.2 Polynomials with multiple factors

Let us now address the possibility that a polynomial has multiple factors not all
distinct.

Definition 50B. multiplicity of roots
Let f be a field and f(x) ∈ F [x]. An element c ∈ F is said to be a root of multiplicity
n ≥ 1 of f(x) if (x − c) occurs exactly n times in the unique factorization of f(x).
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Using Calculus6, we prove Theorem 66B, the test for multiple roots, namely, a poly-
nomial f(x) ∈ R[x] has no repeated factors if and only if gcd(f(x), f ′(x)) = 1.

Theorem 66B. **
A non-constant polynomial f(x) ∈ R[x] has no repeated factors if and only if
gcd(f(x), f ′(x)) = 1.

Proof. Suppose f(x) has no repeated factors. If,

f(x) = (ax + b)g(x) then f ′(x) = (ax + b)g′(x) + ag(x),

so that gcd(f(x), f ′(x)) = 1.

*****

Conversely, suppose gcd(f(x), f ′(x)) = 1.
Let f(x) have a repeated factor (ax + b)n, n > 1, that is,

f(x) = (ax + b)ng(x) where (ax + b)��∣g(x)
⇒ f ′(x) = na(ax + b)n−1g(x) + (ax + b)ng′(x)

Then, gcd(f(x), f ′(x)) = (ax + b)n−1 which is a contradiction unless n = 1.
Hence f(x) has no repeated factors.

8.8 Tests for Roots or Factors

8.8.1 Tests for Factors of Integers

There are simple tests revealing whether an integer has the prime factors 2,3,5,7,11
but beyond these small numbers there are no simple tests other than long division.
Tests for division by 2 or 5 are trivially obvious. But, for example, a three digit
number like 583 is divisible by 11 if the middle digit is the sum of the other two (e.g.,
8 = 5 + 3 so that 583 = 11 × 53 ) is not so obvious.7 You may choose to examine
divisibility by 3 (it’s like the algorithm for 11) and 7 (it’s trickier) before you google
them.

6If you have not studied Calculus don’t be concerned since, in the concluding chapters, we will
only deal with polynomials that do not have repeated or multiple factors. This theorem simply tells
us how to confirm that for any given polynomial.

7We can go further and show 11 is/is not a factor of larger integers by observing
10(mod 11) ≡ −1, 100(mod 11) ≡ 1, 1000(mod 11) ≡ −1, etc., so we have a succession of
−1,1,−1,1,−1, . . . for powers of 10(mod 11) as we work right to left on a number of any size.
For example 79475 = 5 + 7 × 10 + 4 × 100 + 9 × 1000 + 7 × 10000 makes

79475 ≡ −5 + 7 − 4 + 9 − 7(mod 11) ≡ 0(mod 11)

which makes 11 a factor.
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8.8.2 Tests for Roots of Polynomials

Let us now consider only polynomials with integer coefficients, that is, f(x) ∈ Z[x].
A simple test for rational roots is given by Theorem 67B.

Theorem 67B. **
Let f(x) = anxn + an−1xn−1 + . . . + a1x + a0 ∈ Z[x].
If
r

s
is a rational root of f(x) with gcd(r, s) = 1, then r∣a0 and s∣an.

Proof. If
r

s
is a rational root of f(x) = anxn + an−1xn−1 + . . . + a1x + a0 then,

f (r
s
) = 0⇒ an (

r

s
)
n

+ an−1 (
r

s
)
n−1

+ . . . + a1 (
r

s
) + a0 = 0

⇒ anr
n + an−1rn−1s + . . . + a1rsn−1 + a0sn = 0 (multiplying by sn).

⇒ r(anrn−1 + an−1rn−2s + . . . + a1sn−1) = −a0sn

⇒ r∣a0sn

⇒ r∣a0 since gcd(r, s) = 1

Similarly,

s(an−1rn−1 + . . . + a1rsn−2 + a0sn−1) = −anrn⇒ s∣an

Example 58. The only possible rational roots of 3x3 + 5x2 + 7x+ 10 where an = 3 has
factors ±1,±3 and a0 = 10 has factors ±1,±2,±5,±10 are:

±1

1
,±1

2
,±1

5
,± 1

10
,±3

1
,±3

2
,±3

5
,± 3

10

Each of these can be tested by the Factor Theorem, namely Corollary 55, page 104,
to find if they are actually roots.8 ◇

8.9 Tests for Irreducibility

8.9.1 Determining whether an integer is prime

A composite number n that factors has the form n = ab where a is less than or equal
to the square root of the number and b is greater than or equal to the square root
of the number. For example we can factor 64 as 4 × 16 and

√
64 = 8 which is greater

than 4 but less than 16. So if a number is not prime it must have a prime factor less
than its square root, hence to test whether any given number is prime, we simply
need to divide it by the primes less than its square root. If all the remainders are
greater than 0 then the number is prime.

8Obviously a computer or sophisticated calculator can do this in less than the blink of an eye.



122 Chapter 8. The Rings of Integers and Polynomials

Example 59. For example, consider 191. We have 169 = 132 < 191 < 142 = 196 and
the primes less than 14 are 13,11,7,5,3,2. Then,

191(mod2) ≡ 1, 191(mod3) ≡ 2,

191(mod5) ≡ 1, 191(mod7) ≡ 2,

191(mod11) ≡ 4, 191(mod13) ≡ 9,

proves 191 is a prime number. ◇

In ancient times, Erasthosthenes developed a sieve to churn out primes. He wrote
down a long list of the natural numbers 1,2,3, etc., skipped over 1, circled 2 as the first
prime and then went through the list of natural numbers eliminating every second
number after 2 (those divisible by 2). Back he went to the beginning of his list and
the first number not crossed out was 3 so he crossed out every third number from
3 onwards (those divisible by 3) and so on until he reached the square root of the
largest natural number he had reached in his list. (He could actually have continued
to the square root of the next square above his final entry – why?) There are today
some very sophisticated algorithms for finding large primes9 but there is no formula
for generating primes.

8.9.2 Determining whether a polynomial is irreducible

The obvious way to determine whether a polynomial with coefficients in Z is irre-
ducible is to attempt to factor it. The key theorem is the Factor Theorem 55, page
104, which says x − c is a factor of f(x) if and only if f(c) = 0.

Example 60. For example, if f(x) = x2−5x−35 the obvious candidates for factors are
drawn from the factors of 35 = ±35×∓1 = ±5×∓7. So we calculate f(±35), f(±1), f(±5), f(±7)
and find f(7) = f(−5) = 0 so that (x+5), (x−7) are factors and f(x) is not irreducible.

◇

More generally, if the polynomial under consideration is not monic, say,

f(x) = anxn + an−1xn−1 + . . . + a1x + a0, an > 0, ai ∈ Z

then we have Theorem 67B, page 121, that r/s, gcd(r, s) = 1 is a rational root of
f(x) if and only if r∣a0 and s∣an. So we only have to consider factors drawn from the
factorizations of an and a0. Finally, a series of lemmas, including Gauss’s Lemma 68B
that the product of two primitive polynomials is again primitive (where primitive
means the greatest common divisor of all the coefficients is 1, or equivalently, no

9As of January 2017, the largest known prime number is 274,207,281−1, a number with 22,338,618
digits. It was found in 2016 by the Great Internet Mersenne Prime Search (GIMPS).
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prime divides all the coefficients) leads, via Theorem 69B, to Eisenstein’s Criterion,
Theorem 70B, another essential result for us, for showing if,

f(x) = anxn + an−1xn−1 + . . . + a1x + a0, an > 0, ai ∈ Z,

and there is a prime p that divides a0 but p2 ��∣a0 and which divides all the other
coefficients except an then f(x) is irreducible over Q.
We then have Corollary 71B that if p is a prime then the polynomial,

φ(x) = x
p − 1

x − 1
= xp−1 + xp−2 + . . . + x + 1

is irreducible over the field of rational numbers. Theorem 70B and Corollary 71B give
us easy access to a huge number of simple irreducible polynomials.

First a definition.

Definition D51B. primitive polynomial
A polynomial with integer coefficients is called primitive if the greatest common di-

visor of all the coefficients is 1 or, equivalently, if there is no prime p that divides all
the coefficients.

Example 61. 3x3 + 6x2 + 5x + 7 is primitive but 3x3 + 6x2 + 9x + 12 is not since 3
divides all the coefficients.

Theorem 68B. ** (Gauss’s Lemma)
The product of two primitive polynomials is itself primitive.

Proof. Consider the two primitive polynomials,

f(x) = amxm + am−1xm−1 + . . . + a1x + a0
g(x) = bnxn + bn−1xn−1 + . . . + b1x + b0.

Suppose the product of these two primitive polynomials f(x) and g(x) is not primi-
tive, so there exists a prime number p that is a common divisor of all the coefficients
of the product. But since f(x) and g(x) are primitive, p cannot divide either all the
coefficients of f(x) or all those of g(x). Let arxr and bsxs be the first (i.e., highest
degree) terms with a coefficient not divisible by p, respectively in f(x) and in g(x),
that is am, am−1, . . . , ar+2, ar+1 and bn, bn−1, . . . , bs+2, bs+1 are all divisible by p.
Now consider the coefficient of xr+s in the product. Its value is given by ∑aibj, where
the sum runs over all pairs of indices i, j such that i + j = r + s. (See Definition 46,
page 100)
The coefficient of the term xr+s in the product f(x)g(x) is therefore,

arbs + ar−1bs+1 + ar−2bs+2 + . . .
+bs−1ar+1 + bs−2ar+2 + . . .
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So apart from arbs all the other terms contain either bs+1, bs+2, . . . or ar+1, ar+2, . . . and
we chose r, s so that bs+1, bs+2, . . . and ar+1, ar+2, . . . are all divisible by p, but arbs is
not.
This contradicts the assumption that there is a prime number p that is a common
divisor of all the coefficients of the product. Therefore, the coefficients of the product
can have no common divisor and are thus primitive.

Theorem 69B. ****
A polynomial with integer coefficients that can be factored into polynomials with ratio-
nal coefficients can also be factored into polynomials of the same degree with integer
coefficients.

Proof. Let’s first understand the theorem statement using an example.
f(x) = 6x2−7x−3 is a polynomial with integer coefficients. It can be factored into the

product of the polynomials, 6(x − 3

2
)(x + 1

3
) which have rational coefficients. But it

can also be factored into the polynomials (3x + 1)(2x − 3) with integer coefficients.

*****

Consider a polynomial with integer coefficients that can be factored into polynomials
with rational coefficients, giving say,

f(x) = anxn + an−1xn−1 + . . . + a1x + a0, an > 0, ai ∈ Z
= (b1,kxk + b1,k−1xk−1 + . . . + b1,1x + b1,0) . . .

(bn,jxj + bn,j−1xj−1 + . . . + bn,1x + bn,0),
where the coefficients bα,β ∈ Q.
Multiplying by the product N of all the denominators of all the coefficients bα,β does
not affect the powers of x in any factor but it clears all the fractions in the coefficients.
Extracting the product M of all the gcds of the numerators of the coefficients in all
the factors also does not affect the powers of x in any factor but now all the factors
are primitive polynomials with integer coefficients, say,

f(x) = M
N

[(c1,kxk + c1,k−1xk−1 + . . . + c1,1x + c1,0)⋯

(cn,jxj + cn,j−1xj−1 + . . . + cn,1x + cn,0)], cα,β ∈ Z. (8.9.1)

where by cancellation we can assume gcd(M,N) = 1.
Now since f(x) in its original definition has integer coefficients and gcd(M,N) = 1,
N must divide every coefficient in the expansion of (8.9.1). But by Gauss’s Lemma
67B above, the product of primitive polynomials is again primitive so N cannot be
a product N = pq where p is a prime, else every coefficient is divisible by p and the
product is not primitive.
Therefore N = 1 and thus,

f(x) =M[(c1,kxk + c1,k−1xk−1 + . . . + c1,1x + c1,0) . . .
(cn,jxj + cn,j−1xj−1 + . . . + cn,1x + cn,0)], cα,β ∈ Z,
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which is a factorization into factors with integer coefficients of the same degree as the
factors with rational coefficients .

Theorem 70B. **** (Eisenstein’s Irreducibility Criteria)
Let f(x) = anxn + an−1xn−1 + . . . + a1x + a0 ∈ Z[x] be a polynomial with integer

coefficients. If there exists a prime number p such that,

an−1 ≡ an−2 ≡ . . . ≡ a0 ≡ 0(modp)

that is, p divides all of these coefficients, but p does not divide an, and if also p2 does
not divide a0 then f(x) is irreducible over Q, the field of rational numbers.

Proof. Let f(x) = anxn +an−1xn−1 + . . .+a1x+a0 ∈ Z[x] be a polynomial with integer
coefficients and for some prime p that,

(1) p��∣an

(2) p∣ai for all i < n

(3) p2 ��∣a0
We will prove a contradiction by supposing f(x) is reducible over Q.
Then by Theorem 69B above, f(x) factors over Z say,

f(x) = (bjxj + bj−1xj−1 + . . . + b1x + b0)(ckxk + ck−1xk−1 + . . . + c1x + c0) (8.9.2)

where the coefficients are integers and j ≠ 0, k ≠ 0, j + k = n.

The constant term in this product must be a0 = b0c0. Now p2 ��∣a0 means p2 ��∣b0c0 so
that p does not divide both b0 and c0. But p divides a0 = b0c0 so p divides one of b0
and c0 so let’s suppose p��∣c0 and p∣b0.
For the leading coefficients we must have an = bjck. Now p��∣an = bjck and therefore p
does not divide either bj or ck.
Let m be the least integer for which p��∣bm, that is, p∣bi for i = 0 to m − 1 but p��∣bm. We
know that 1 ≤m ≤ j < n.
Now if we multiply out equation (8.9.2), we have the coefficient of xm given by,

am = bmc0 + bm−1c1 + . . . + b1cm−1 + b0cm.

Here, for each term except the first, p∣bi, i <m, but for the first term we showed p��∣bm
and p��∣ c0.
Hence p��∣am, where m < n which is contrary to condition (2). This is a contradiction
to the assumption that f(x) is reducible over Q.
Hence f(x) is irreducible over Q, the field of rational numbers.

Example 62. For example, f(x) = x4−12x2+18x−24 is irreducible since 3∣12, 3∣18,
and 3∣24 but 32

��∣24 and 3��∣1 = a4.
Note p = 2 will not prove this since 22∣24. ◇
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We then have Corollary 71B that if p is prime then the polynomial,

g(x) = x
p − 1

x − 1
= xp−1 + xp−2 + . . . + x + 1,

is irreducible over the field of rational numbers.

Note 18. The following proof of the corollary to Eisenstein’s Theorem uses the Bi-
nomial Theorem which gives the following expansion,

(x + y)n = xn + (n
1
)xn−1y + (n

2
)xn−2y2 + . . . + ( n

n − 1
)xyn−1 + yn

where (n
k
) = n!

(n − k)! k!
and n! = n(n − 1)(n − 2)⋯2.1

It also uses the fact that n divides (n
k
) for k ≠ 0 or n.

Corollary 71B. **
If p is prime than the polynomial,

g(x) = x
p − 1

x − 1
= xp−1 + xp−2 + . . . + x + 1,

is irreducible over the field of rational numbers.

Proof. Let,

h(x) = g(x + 1)

= (x + 1)p − 1

(x + 1) − 1

=
xp + (p

1
)xp−1 + (p

2
)xp−2 + . . . + px

x

where the final numerator comes from the binomial theorem. Hence,

h(x) = xp−1 + (p
1
)xp−2 + (p

2
)xp−3 + . . . + p

Then h(x) satisfies the Eisenstein criteria for the prime p since, as per the conditions
in the statement of Theorem 70B,

(1) p��∣1, which is the leading coeffcient,

(2) p ∣(p
k
) for 1 < k < p, and p∣a0 = p.

(3) p2 ��∣a0 = p
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and h(x) is therefore irreducible over Q.
But clearly, if g(x) = a(x)b(x), then, by putting x = x + 1, we have that
g(x + 1) = a(x + 1)b(x + 1) would also be a factorization in Q.
Since this is not so for h(x) = g(x + 1) then it cannot be so10 for g(x).
So g(x) is irreducible over Q.

8.10 Congruence Classes

8.10.1 Congruence classes and Integers

We now redefine congruence and define congruence classes relating to Z.

Definition 52A. congruence for integers
Choose a fixed n ∈ Z+. If a, b ∈ Z and n∣(a − b) we say a and b are congruent modulo
n, written a ≡ b(mod n).
Consequently, a − b = kn, k ∈ Z, or a = b + kn, or, in words, b is a remainder when a
is divided by n.

Note 19. When calculating a ≡ b(mod n) we mostly assume b is the least positive
remainder when a is divided by n. Thus although,

23 ≡ −2(mod5), 23 ≡ 18(mod5),
23 ≡ 13(mod5), 23 ≡ 8(mod5), etc.,

we usually say 23 ≡ 3(mod5).
Let us recall our discussion in Section 5.4, page 72, of a notation for cosets.

Definition 53A. congruence classes for integers
Let a ∈ Z, n ∈ Z+. The set of all integers that have the same remainder as a when

divided by n is called the congruence class of a modulo n and is designated by [a]n.
That is,

[a]n = {x ∈ Z ∣ x ≡ a(modn)}

Example 63. [5]6 = {5,11,17, . . .} ∪ {−1,−7,−11, . . .}
Notation 6. The collection of all congruence classes modulo n is again denoted by
the factor group Z/nZ, that is, (refer back to Note 16, page 83),

Z/nZ = {[a]n ∣ a ∈ Z, 0 ≤ a ≤ n − 1} = {[0]n, [1]n, . . . , [n − 1]n}

The values of a are all the possible remainders when any integer is divided by n and
are therefore given by the elements of Zn = {0,1, . . . , n − 1}.

10The proof that if g(x) factors then g(x + 1) factors is as follows. Let g(x) = p(x)q(x). Then
g(x + 1) = p(x + 1)q(x + 1). So g(x + 1) factors, giving the (little) theorem that if g(x) factors then
g(x+1) factors. The contrapositive is that if g(x+1) does not factor (as it does not here) then g(x)
does not factor.
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Example 64. For example, take n = 5. Then Z5 = {0,1,2,3,4}. Thus,

Z/5Z = {[0]5, [1]5, [2]5, [3]5, [4]5} ◇

8.10.2 Congruence classes and Polynomials

We now define congruence and congruence classes for polynomials f(x) ∈ F [x] over
a field F.

Definition D52B. congruence for polynomials
Let F be a field and p(x) be a fixed polynomial in F [x].

If a(x), b(x) ∈ F [x] and p(x) ∣ (a(x)− b(x)), we say a(x), b(x) are congruent modulo
p(x), written

a(x) ≡ b(x)(modp(x))

Consequently, a(x) − b(x) = p(x)q(x), or a(x) = b(x) + p(x)q(x), where q(x) is a
non-constant polynomial in F [x].

Example 65. (x3 + 2x) − (2x + 1) = (x − 1)(x2 + x + 1) so x3 + 2x ≡ 2x − 1(modx − 1)

Note 20. When calculating congruences modulo p(x) we mostly use the polynomial

of least degree. Thus although by long division on
x4 + 1

x2 + 1
, we could write,

x4+1 ≡ (−x2+1)(mod x2+1), we usually continue the long division to the remainder
of least degree and say x4 + 1 ≡ 2(mod x2 + 1).

Definition 53B. congruence classes for polynomials
The set,

{b(x) ∈ F [x] ∣ a(x) ≡ b(x)(mod p(x)}

is the set of all polynomials in F [x] with the same remainder, a(x), when divided
by p(x) and is called the congruence class of a(x) modulo p(x) and is denoted by
[a(x)]p(x).

Notation 7. The collection of all congruence classes modulo p(x) is denoted by the
factor group F [x]/ < p(x) > . They are all the possible remainders when any polyno-
mial in F [x] is divided by p(x).
In Notation 5 on page 103, we defined < g(x) > to be the set of polynomials in F [x]
that are divisible by g(x). Then we note the factor group, by Definition 33, page 71,
is,

F [x]/ < p(x) > = {(f(x)+ < p(x) >)(mod p(x)) ∣ f(x) ∈ F [x]}
= {(f(x) + p(x)g(x))(mod p(x)) ∣ f(x), g(x) ∈ F [x]}
= {f(x)(mod p(x)) ∣ f(x) ∈ F [x]}
= {[a(x)]p(x) ∣ a(x) ≡ f(x)(mod p(x)), f(x) ∈ F [x]}.
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Example 66. For example, consider p(x) = x2 + 1 ∈ Z[x]. The possible remainders
(try the long division on some polynomials) for,

anx
n + an−1xn−1 + . . . + a1x + a0 ÷ (x2 + 1)

all have the form ax + b, a, b ∈ Z. Thus,

F [x]/ < x2 + 1 >= {ax + b ∣ a, b ∈ Z}

Note this is an infinite set and also the degree of ax + b is less than the degree of
p(x) = x2 + 1. ◇

We prove Theorem 72B that the congruence class [a(x)] modulo p(x), or simply
[a(x)]p(x), contains a unique representative r(x) with deg(r(x)) < deg(p(x)) or
r(x) = 0, so that a representative polynomial of lesser degree than the divisor p(x)
always exists.

Theorem 72B. **
Let p(x) ∈ F [x], F a field and p(x) ≠ 0. Then for all a(x) ∈ F [x], the congruence
class

[a(x)]p(x) = {b(x) ∣ b(x) ≡ a(x)(mod p(x))}

contains a unique representative r(x) with deg(r(x)) < deg(p(x)) or r(x) = 0.

Proof. By the Division Algorithm, Theorem 57B, page 106, if a(x) ∈ F [x], we have
for some q(x) ∈ F [x],

a(x) = q(x)p(x) + r(x), deg(r(x)) < deg(p(x)) or r(x) = 0

⇒ r(x) = a(x) − p(x)q(x)
⇒ r(x) = a(x)(mod p(x))
⇒ r(x) ∈ [a(x)]p(x)

*****

To show uniqueness, we need to show if our r(x) ∈ [a(x)]p(x) and also we have an
s(x) ∈ [a(x)]p(x) with deg(s(x)) < deg(p(x)) or s(x) = 0, then s(x) = r(x).
Let s(x) ∈ [a(x)]p(x), then,

s(x) ≡ a(x)(mod p(x))
⇒ s(x) = a(x) + q1(x)p(x) for some q1(x) ∈ F [x]
(Substitute for a(x) = q(x)p(x) + r(x))
⇒ s(x) = q(x)p(x) + r(x) + q1(x)p(x)
⇒ s(x) − r(x) = p(x)[q(x) − q1(x)]
⇒ p(x) ∣ s(x) − r(x),

which means deg(p(x)) < deg(s(x) − r(x)).
Since deg(s(x) − r(x)) ≤ deg(s(x)), then deg(p(x)) < deg(s(x)) and this is a contra-
diction to deg(s(x)) < deg(p(x)) unless s(x) − r(x) = 0, that is s(x) = r(x).
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8.11 Well-defined Congruency Class Definitions

8.11.1 Integers and Congruency Class Definitions

Let’s revisit the coset notation and operations first met in Chapter 5.

Definition 54A. addition and multiplication of congruence classes in Z/nZ
We define addition and multiplication of congruence classes in Z/nZ by,

[a]n + [b]n = [a + b]n
[a]n ⋅ [b]n = [a ⋅ b]n

Example 67.

[6]7 + [4]7 = [6 + 4]7 = [10]7 = [3]7
[6]7 ⋅ [4]7 = [6 ⋅ 4]7 = [24]7 = [3]7 ◇

But we need to prove this definition makes sense, we say that it must be well-
defined11, meaning it is totally independent of the choice of a, b as the representatives
of the classes [a]n, [b]n.
Accordingly, we let x, y be any other representatives of the classes [a]n, [b]n and prove
in Theorem 73A that:

[x + y]n = [a + b]n
[x ⋅ y]n = [a ⋅ b]n

Given these operations, it is easy to show Z/pZ, p a prime, is a commutative ring –
but we can go further.

Note 21. In general if we have,

a ≡ b(mod n) then [a]n = [b]n.

The reason is that by Definition 53A, page 127,

[a]n = {x ∈ Z ∣ x ≡ a(mod n), and
[b]n = {x ∈ Z ∣ x ≡ b(mod n}

Since we have a ≡ b(mod n) ⇒ a = b + kn, k ∈ Z, then

x ≡ a(mod n) ⇒ x ≡ b + kn(mod n) ⇒ x ≡ b(mod n),
11Whether an operation is well-defined is the same idea as a function since an operation is a

mapping of elements of one set onto another set. For example the square root unitary operation is√ ∶ Z ⇒ C. Just one example won’t prove this, that is
√

(−9) = 3i does not prove the mapping is
true for all integers, we need to show the mapping holds for all x ∈ Z. Hence if we make a definition
of a binary operation involving two elements a, b of the first set then we need to say the definition
also applies to any two other elements, say x, y, of the first set as we do here.
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so,

[a]n = {x ∈ Z ∣ x ≡ a(mod n)}
= {x ∈ Z ∣ x ≡ b(mod n)}
= [b]n

Theorem 73A. **
Let x, y be any other representatives of the classes [a]n, [b]n. Then,

[x + y]n = [a + b]n
[x ⋅ y]n = [a ⋅ b]n,

that is the formulas do not depend upon any particular representatives of the congru-
ency classes.

Proof. By Definition 53A on page 127,

[a]n = {x ∈ Z ∣ x ≡ a(mod n)} = {x ∈ Z ∣ n∣(x − a)}

Let x, y be any other representatives of the classes [a]n, [b]n. Then,

x ∈ [a]n, y ∈ [b]n⇒ x = a + kn, y = b + ln for some k, l ∈ Z
⇒ x + y = a + b +mn, where m = k + l
⇒ x + y ≡ a + b(mod n)
⇒ [x + y]n = [a + b]n by Note 23, page 176

Also,

xy = (a + kn)(b + ln)
= ab + n(la + bk + kln)
⇒ xy = ab +mn, m = la + bk + kln
⇒ xy ≡ ab(mod n)
⇒ [xy]n = [ab]n by Note 21, page 130

So the formulas for addition and multiplication of congruence classes do not depend
on the choice of particular representatives. We say the formulas are well defined.

8.11.2 Polynomials and Congruency Class Definitions

Definition D54B. addition, multiplication of congruence classes F [x]/<p(x)>
Paralleling the integers, for a(x) ∈ F [x], we denote the congruence class

[a(x)] modulo p(x) by [a(x)]p(x)
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and define the addition and multiplication of congruence classes in the factor group
F [x]/<p(x)> by,

[a(x)]p(x) + [b(x)]p(x) = [a(x) + b(x)]p(x)
[a(x)]p(x) ⋅ [b(x)]p(x) = [a(x) ⋅ b(x)]p(x)

Example 68.

[x + 2]x2+1 ⋅ [x + 4]x2+1 = [(x + 2) ⋅ (x + 4)]x2+1
= [x2 + 6x + 8]x2+1
= [x2 + 1 + 6x + 7]x2+1
= [6x + 7]x2+1 ◇

But we need to prove this definition makes sense, we say that it must be well-
defined, meaning it is totally independent of the choice of a(x), b(x) as representatives
of the classes [a(x)]p(x), [b(x)]p(x).
Accordingly, we let [c(x)]p(x), [d(x)]p(x) be any other representatives of the classes
[a(x)]p(x), [b(x)]p(x) and prove in Theorem 73B that,

[a(x)]p(x) + [b(x)]p(x) = [c(x)]p(x) + [d(x)]p(x)
[a(x)]p(x) ⋅ [b(x)]p(x) = [c(x)]p(x) ⋅ [d(x)]p(x)

Given these operations, it is easy to show F [x]/ < p(x) > is a commutative ring – but
we can go further.

Theorem 73B. **
If c(x), d(x) are any other representatives of the classes [a(x)]p(x), [b(x)]p(x) then,

[a(x)]p(x) + [b(x)]p(x) = [c(x)]p(x) + [d(x)]p(x)
[a(x)]p(x) ⋅ [b(x)]p(x) = [c(x)]p(x) ⋅ [d(x)]p(x)

Proof. The proof is exactly the same as the proof for the integers in Theorem 73A
above by replacing

[a]n → [a(x)]p(x)
[b]n → [b(x)]p(x)
[x]n → [c(x)]p(x)
[y]n → [d(x)]p(x)
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8.12 Multiplicative Inverses

8.12.1 Integers - Multiplicative Inverses of Congruence Classes

For the integers we prove Theorem 74A that the congruence class [a]n ∈ Z/nZ has a
multiplicative inverse if and only if gcd(a,n) = 1.

Theorem 74A. **
The conjugacy class [a]n has a multiplicative inverse in Z/nZ if and only if
gcd(a,n) = 1.

Proof. Suppose [a]n has a multiplicative inverse [b]n, Then,

[a]n[b]n = [1]n⇒ [ab]n = [1]n⇒ ab = 1 + kn, k ∈ Z⇒ ab + (−k)n = 1

which by Corollary 60A, page 111, is only true when gcd(a,n) = 1.

*****

Conversely, suppose gcd(a,n) = 1. Then, by Corollary 60A, page 111,

ab + kn = 1 for some b, n ∈ Z
⇒ ab ≡ 1(mod n)
⇒ [ab]n = [1]n by Note ??, page 176

⇒ [a]n[b]n = [1]n

which makes [b]n the multiplicative inverse of [a]n.

Example 69. For example, [5]7 ∈ Z/7Z has the multiplicative inverse [3]7 since

[5]7 ⋅ [3]7 = [3 ⋅ 5]7 = [15]7 = [1]7

But, noting gcd(3,6) ≠ 1, [3]6 does not have a multiplicative inverse, since the only
options are,

[3]6 ⋅ [0]6 = [0]6, [3]6 ⋅ [1]6 = [3]6, [3]6 ⋅ [2]6 = [0]6
[3]6 ⋅ [3]6 = [3]6, [3]6 ⋅ [4]6 = [0]6, [3]6 ⋅ [5]6 = [3]6 ◇

8.12.2 Polynomials - Multiplicative Inverses of Congruence
Classes

Note 22. The following proof illustrates an “if and only if” theorem can be proved in
one step using P ⇔ Q rather than P ⇒ Q and Q⇒ P, if we can continue the “iff”to
the conclusion.
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Theorem 74B. **
Let p(x) ∈ F [x], F a field, p(x) ≠ 0. Then any [a(x)]p(x) has a multiplicative inverse
if and only if gcd(a(x), p(x)) = 1.

Proof. There is a b[x]p(x) such that a[x]p(x) ⋅ b[x]p(x) = [1]p(x),

⇔ [a(x)b(x)]p(x) = [1]p(x)
⇔ a(x)b(x) ≡ 1(modp(x))
⇔ a(x)b(x) = 1 + p(x)c(x) for some c(x) ∈ F [x]
⇔ a(x)b(x) − c(x)p(x) = 1.

But this is true if and only if gcd(a(x), p(x)) = 1, by Corollary 60B, page 112.

Example 70. For example [ax + b]x2+1 has the inverse [−ax + b
a2 + b2 ]

x2+1

since,

[ax + b]x2+1 × [−ax + b
a2 + b2 ]

x2+1

= [−a
2x2 + b2
a2 + b2 ]

x2+1

= [−a
2(x2 + 1)
a2 + b2 + a

2 + b2
a2 + b2 ]x2+1

= [ −a2
a2 + b2 (x

2 + 1) + 1]
x2+1

= [1]x2+1

and we note gcd(ax + b, x2 + 1) = 1. ◇

8.13 Fields

We now determine, for our later purposes, the structures involving rings of integers
and polynomials that are fields.

8.13.1 Integers and Fields

As a consequence of Theorem 74A, since, as you can easily check, the missing field
property is a multiplicative inverse for each of the non-zero elements, Z/pZ is a field
if and only if p is a prime number (then every congruence class has a multiplicative
inverse).

Theorem 75A. *
Z/pZ is a field if and only if p is a prime number

Proof. By Theorem 74A, page 133, the conjugacy classes [a]n, 0 ≤ a ≤ n − 1, have a
multiplicative inverse in Z/nZ if and only if gcd(a,n) = 1.
But if n is not a prime then, say, n = cd, 0 < c, d < n−1, then the conjugacy classes [c]n
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and [d]n in Z/nZ do not have an inverse since gcd(c, n) = c ≠ 1, and gcd(d,n) = d ≠ 1.
In turn this means their product does not have an inverse, so Z/nZ does not have
inverses.
Accordingly, since the missing Field axiom12 is a multiplicative inverse, Z/pZ is a
field if and only if p is a prime number.

The most interesting and important fact about Z/pZ is that it is a finite field with
just p elements.

8.13.2 Polynomials and Fields

As a consequence of Theorem 74B, since, as you can easily check, the missing property
is a multiplicative inverse for each of the non-zero elements, F [x]/ < p(x) > is a field
if and only if p(x) is irreducible in F.

Theorem 75B. *
F [x]/ < p(x) > is a field if and only if p(x) is irreducible in F.

Proof. By Theorem 74B, page 134, the conjugacy class [a(x)]p(x) has a multiplicative
inverse in F [x]/ < p(x) > if and only if gcd(a(x), p(x)) = 1.
But if p(x) is reducible, say, p(x) = c(x)d(x), deg(c(x), d(x)) > 1, then,
the conjugacy classes [c(x)]p(x), [d(x)]p(x in F [x]/ < p(x) > do not have an inverse
since gcd(c(x), p(x)) = c(x) ≠ 1 and gcd(d(x), p(x)) = d(x) ≠ 1. In turn this means
their product p(x) will not have a multiplicative inverse.
Accordingly, since the missing field axiom13 is a multiplicative inverse,
F [x]/ < p(x) > is a field if and only if p(x) is irreducible in F.

Of course, F [x]/ < p(x) > is an infinite field.

12The field axioms may be found in Section 7.3, page 93. You can easily check the axioms are all
satisfied by Z/nZ under coset addition and multiplication defined in Definition ??, page ??. The
multiplicative identity is [1]n.

13The field axioms may be found in Section 7.3, page 93. You can easily check the axioms are all
satisfied by F [x]/<p(x)> under coset addition and multiplication defined in Definition ??, page ??.
The multiplicative identity is [1]p(x).
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Fields I

9.1 Preamble

9.1.1 Field Extensions

Our goal is to prove the insolvability of polynomials of degree ≥ 5 by radicals. Having
obtained the results we need for the ring of polynomials, we turn our attention to
fields and field extensions.

We define an extension field F of a (base) field K if K is a subset of F and K is
a field under the same operations as apply to F. We use the symbol F /K to mean K
is a subfield of F or, equivalently, F is an extension field of K.

For example C is an extension field of R since both are fields under the ordinary
operations of addition and multiplication (excepting 0 from both for multiplication).
Actually C is R with the addition of i =

√
−1 or C = R(i) spoken as

“C is R append i.”
We continue our study of polynomials with coefficients in any general base field

in which addition and multiplication are defined. We again use the symbol K[x] for
polynomials in the variable x with coefficients in the fieldK.We found the polynomials
in K[x] form a commutative ring with identity. In particular, we consider K = Q and
the ring of polynomials Q[x].

******

Our goal is to find, where possible, the solutions of polynomial equations with coef-
ficients in Q. The process begins with building a tower of fields, each a subset of the
“higher” one. We proceed as follows. After we have found one solution or root, α, of
our polynomial f(x) ∈ Q, that is f(α) = 0, we construct the extension field F = Q(α)
over Q. Since the polynomial has a root in F = Q(α), it can be factored into polyno-
mials of lesser degree with coefficients in F = Q(α). Then each of the factors of this
lower degree polynomial are investigated similarly until a field is obtained which is
the smallest field inside Q that contains Q and all the roots of f(x).

136
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Example 71. For example, if f(x) = x4 − 5x2 + 6 = (x2 − 2)(x2 − 3), one factor is
(x −

√
2) so one root is

√
2 and we can write,

f(x) = (x −
√

2)g(x), g(x) = x3 +
√

2x2 − 3x − 3
√

2

where g(x) is clearly of lesser degree (3) than f(x) and has coefficients in the exten-
sion field Q(

√
2) of Q.

Then we factor g(x) = x3 +
√

2x2 − 3x − 3
√

2 ∈ Q(
√

2) into

g(x) = (x +
√

2)(x2 − 3) = (x +
√

2)(x +
√

3)(x −
√

3)

The root
√

2 ∈ Q(
√

2) but the roots ±
√

3 do not. So we construct a further extension
field1 Q(

√
2)(

√
3) = Q(

√
2,

√
3).

Then all the roots of f(x) = (x −
√

2)(x +
√

2)(x −
√

3)(x +
√

3) lie in this extension.
The tower of fields we created was,

Q

Q(
√

2)

Q(
√

2,
√

3)

For another example, consider,

f(x) = x4 − x3 − 2 = (x2 − 2)(x2 + 1) = (x −
√

2)(x +
√

2)(x − i)(x + i)

Here we would need the tower,

Q

Q(
√

2) = {a + b
√

2 ∣ a, b ∈ Q)

Q(
√

2, i) = {c + d
√

2i ∣ c, d ∈ Q(
√

2)

C

◇

The key question is when can we build such a tower of fields and extension fields?
A secondary question is how are the tiers in the tower related?

1In general we claim F (a)(b) = F (a, b). We prove double containment.
F (a, b) is the smallest field containing F,a and b. Obviously F (a)(b) contains F,a and b also so it
must be a bigger field or an equal field, that is F (a, b) ⊆ F (a)(b).
But in general F (c) is the smallest field containing c and therefore F (a, b) is the smallest field
containing F,a and b. So, since F (a)(b) also contains F,a and b, it must be a bigger field or an equal
field giving F (a)(b) ⊆ F (a, b), so by double containment we have F (a)(b) = F (a, b).
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First we prove that if u1 is a solution of the polynomial equation f(x) = 0 where
f(x) ∈K[x], then we can form an extension field F of K namely F =K(u1). We call
such a u1 an algebraic number.

Then if f(x) = an(x−u1)(x−u2)⋯(x−un), since f(u1) = f(u2) = . . . f(un) = 0, we
conclude we can form the extension fields, F =K(u1, u2), F =K(u1, u2, u3), . . . , and
finally, F =K(u1, u2, . . . , un) in which f(x) “splits” or can be factored into a product
of linear factors.

Hence we call F =K(u1, u2, . . . , un) a splitting field for f(x) over K.

9.1.2 Minimal polynomials

We proceed to prove that for any element u in the extension field F of K that there
exists a unique monic polynomial, p(x), of least degree, such that p(u) = 0. We
call p(x) the minimal polynomial of the algebraic number2 u. It is these minimal
polynomials that form the links between the tiers of the tower – and in what we will
find is a very simple manner.

We review the introductory theory of vector spaces before proceeding. After that
we prove that if F = K[u] is an extension field of K and u ∈ F is algebraic over K
with minimal polynomial of degree n, then K(u) is an n–dimensional vector space
over K.

We define the dimension3 of F as a vector space over K as the degree of F
over K and denote it by [F ∶K]. Then we show [F ∶K] is the degree of the minimal
polynomial p(x) of u ∈ F where F =K(u).We prove every element of a finite extension
must be algebraic. For the tower of fields and subfields,

K

E

F

we prove that,

[F ∶K] = [F ∶ E][E ∶K]

This makes life simple in a case such as,

Q

Q(u1)

Q(u1, u2)

2Given F /K, u ∈ F is an algebraic number if it is a root of a polynomial with coefficients in K.
3The dimension of a vector space is the number of vectors in any basis. We will review vector

theory below.
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We simply need to find the degrees of the minimal polynomials, p1(x), p2(x) of u1, u2
respectively, say n1, n2, and then the degree of F over K, or the number of vectors in
any basis, is [F ∶K] = n1n2.

9.1.3 Galois Groups and Extension Fields

Let’s recall that the elements of the symmetric group Sn are functions that act on
{1,2,3, . . . , n} and permute their order. We want to relate permutations of the finite
number of roots, u1, u2, . . . , un, in the factoring of f(x) in an extension field to the
permutations of Sn of acting on {1,2, . . . , n}.

We begin by defining the parallel functions that will permute the roots of f(x).
We call them automorphisms. We define an automorphism acting on a field as a
one-to-one correspondence, φ ∶ F → F, that maps elements of the field onto other
elements of the same field, meaning φ(a) = c where both a, c ∈ F, and φ is also a field
homomorphism. That is, for all a, b ∈ F we have,

φ(ab) = φ(a)φ(b)
φ(a + b) = φ(a) + φ(b)

In other words an automorphism is an isomorphism mapping a field onto itself.
We use the notation, Aut(F ) = {φ ∣ φ ∶ F → F,φ is an isomorphism}.

We define the Galois group of the extension field F /K as the group of automor-
phisms of F that fix the elements of K, hence,

Gal(F /K) = {φ ∈ Aut(F ) ∣ φ(a) = a for all a ∈K}

after, of course, we first prove it is a group (under the operation of composition of
functions as for Sn).

Then we make the definition that if f(x) ∈K[x] splits in F so that
F = K(u1, u2, . . . , un) where f(x) = an(x − u1)(x − u2)⋯(x − un) then Gal(F /K is
called the Galois group of f(x) over K.

Again, in line with our desire for comparability with the elements of Sn, we prove
any element of Gal(F /K) permutes the roots {u1, u2, . . . , un} of f(x) in F just as
any element of Sn permutes the elements in {1,2, . . . ,}.

A simple example of the Galois group of a polynomial in Q[x] is obtained as
follows.

f(x) = x3 − 1

= (x − 1)(x2 + x + 1)

= (x − 1)(x − ω)(x + ω2), ω = −1

2
+

√
3i

2

The Galois group whose elements leave the rational roots unchanged but permute
the roots ω,ω2 has just two elements, the first being the identity function and the
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second a simple interchange:

φ1(ω) = ω, φ1(ω2) = ω2

φ2(ω) = ω2, φ2(ω2) = ω

The next question is how many elements can there be in the Galois group, Gal(F /K)?
The answer is simple. We prove it is the degree of F as a vector space over K, that
is,

∣Gal(F /K)∣ = [F ∶K]

9.1.4 Fundamental Theorem of Galois Theory

Our next goal is to prove the Fundamental Theorem of Galois Theory. We first prove
that for a field F and a subgroup G of Aut(F ) that the elements in F that are fixed
by every element of G form a subfield of F which we label FG and call the G−fixed
subfield of F, the notation being,

FG = {a ∈ F ∣ φ(a) = a for all φ ∈ G}

If G = Gal(F /K) and F is the splitting field of a separable4 polynomial, then we
prove the fixed subfield is actually the base field K, that is, FG =K.

We proceed to prove that if F is a splitting field for f(x) over K and f(x) is
separable with no repeated roots, then if p(x) is the minimal polynomial of any
element of F it must be that p(x) splits into linear factors in F. This means that F
is a splitting field for any and every irreducible polynomial in K[x] that has a root
in F. We say F is a normal or Galois extension of K.

To put it all together, we say F is a Galois extension of K or F is Galois over
K if it is a finite, normal, separable extension of K, which is always the case if F is
simply the splitting field of a separable polynomial with no multiple roots.

So now we have it all set up. We have a tower of fields and subfields built up from
the roots of a separable polynomial f(x) ∈K[x] and we have a group, Gal(F /K) of
functions that permute the n roots of f(x) that lie in the extension field F, paralleling
the elements of the symmetric group, Sn, that permute the set of integers, {1,2, . . . , n}.
And just as Sn has subgroups, so to does Gal(F /K), so both have a finite chain of
subgroups like,

{e} < G1 < G2 < . . . < Gn = G.

Finally we prove the Fundamental Theorem of Galois Theory, that there is a reversing
correspondence between the tower of fields and the chain of subgroups and we find
what this correspondence is.

4A separable polynomial has no multiple roots.
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9.1.5 Insolvability of Degree ≥ 5 Polynomials

Which brings us to our goal, to prove the quintic, and all polynomials of degree ≥ 5,
are not solvable by radicals.

This means there is, for them, no formula involving the operations +,−,×,÷ or
taking nth roots, for finding the roots of ALL polynomials of degree ≥ 5.

We begin by defining an extension field, F, to be a radical extension of a base field
K if there exist elements u1, u2, . . . , um ∈ F such that F = K(u1, u2, . . . , um) and we
can build a tower of subfields and fields between K and F by applying the conditions
un1
1 ∈K and unii ∈K(u1, u2, . . . , ui−1) for i = 2,3, . . . ,m and n1, n2, . . . , nm ∈ Z.

In essence, each extension field contains one more nth root of one of the elements
u1, u2, . . . um ∈ F like this,

un1
1 ∈K

un2
2 ∈K(u1)

un3
3 ∈K(u1, u2)

⋮

unmm ∈K(u1, u2, . . . , um−1)

F =K(u1, u2, . . . , um)

◇

We make the definition that f(x) ∈K[x] is solvable by radicals if there exists a radical
extension F of K that contains all the roots of f(x).

We proceed to prove the main theorem, Galois’ masterpiece, that we need to
show the quintic and polynomials of higher degree are not solvable by radicals. The
theorem states “Given f(x) ∈ K[x], if the equation f(x) = 0 is solvable by radicals
then the Galois group of f(x) over K is solvable.”

The contrapositive statement of this theorem is all we need, it states “Given
f(x) ∈ K[x], if the Galois group of f(x) over K is not solvable, then the equation
f(x) = 0 is not solvable by radicals.”

Using group theory theorems we proceed to find a polynomial f(x) of degree
5 whose Galois group of permutations is actually S5. Then since Sn, n ≥ 5 is not
solvable, neither is the polynomial equation f(x) = 0 solvable by radicals. The same
argument applies to polynomials of higher degree.
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9.2 Extension Fields and Polynomials

Let us begin.

Definition 55. field extension
A field F is an extension field of a field K if K is a subset of F and is a field under

the same two operations as F.

Notation 8. field extension
If F is an extension field of K we write F /K.

We first need to show extension fields exist with the required conditions applying
to them. We prove Kronecker’s Theorem 76 that for K a field and any non-constant
polynomial f(x) ∈ K[x] that there exists an extension field F of K and an element
u ∈ F such that f(u) = 0.

Theorem 76. *** (Kronecker)
Let K be a field and f(x) be any non-constant polynomial in K[x]. Then there exists
an extension field F of K and an element u ∈ F such that f(u) = 0.

Proof. Let K be a field and f(x) be any non-constant polynomial in K[x].
By Theorem 65B, page 118, the polynomial f(x) can be written as the product of
irreducible factors. Let p(x) be any one of the irreducible factors of f(x) so that
f(x) = p(x)g(x), say. We need only find an extension field F of K containing an
element u such that p(u) = 0 making f(u) = p(u)g(u) = 0.
By Theorem 75B, page 135, F = K[x]/ < p(x) >= {a(x)+ < p(x) > ∣ a(x) ∈ K[x]} is
a field.
We claim G = {a+ < p(x) > ∣a ∈K} is a subfield of F isomorphic to K.
Since we are dealing with fields, the subfield test is that for subgroups under the two
operations of addition and multiplication. Accordingly, G ⊆ F is a subfield of F only,

� If a+ < p(x) >, b+ < p(x) >∈ G then a+ < p(x) − (b+ < p(x) >) ∈ G. This is true
since,5

a+ < p(x) > −(b+ < p(x) >) = a+ < p(x) > −b− < p(x) >
= a − b+ < p(x) >∈ G since a − b ∈K.

� If a+ < p(x) >, b+ < p(x) >∈ G then (a+ < p(x) >)(b+ < p(x) >)−1 ∈ G.
This is true since b+ < p(x) >∈ G < F means b+ < p(x) >∈ F.
But F is a field so the inverse of b+ < p(x) >∈ F.
Now (b+ < p(x) >)(b−1+ < p(x) >) = bb−1+ < p(x) >= 1+ < p(x) > so the inverse
of b+ < p(x) > is b−1+ < p(x) > . Then,

(a+ < p(x))(b−1+ < p(x) >) = ab−1+ < p(x) ∈ G since ab−1 ∈K.
5Note < p(x) > is a group as shown in Notation 5 on page 103.
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Hence G = {a+ < p(x) > ∣a ∈K} is a subfield of F.

*****

To show K ≅ G, we can define the map,

ψ ∶K → G where ψ(a) = a+ < p(x) >

We now prove ψ is an isomorphism of these two fields. By Definition 47, page 103,
we must prove it is,

1. One-to-one: We must prove ψ(a) = ψ(b) ⇒ a = b.
Suppose ψ(a) = ψ(b). Then a+<p(x)>= b+<p(x)>⇒ a = b.

2. Onto: We must prove for every ψ(a) = a+<p(x)> there is a corresponding
element in K, namely a. But that is obvious.

3. A field homomorphism: We must prove ψ is a homomorphism under both of
the operations, addition and multiplication. We have,

ψ(a + b) = a + b+<p(x)>= a+<p(x)>+b+<p(x)>= ψ(a) +ψ(b)
ψ(ab) = ab+<p(x)>= (a+<p(x)>)(b+<p(x)>) = ψ(a)ψ(b)

Note, in the expansion of ψ(a + b) and ψ(ab) since < p(x) > is a group, we can say6

a∗ <p(x)>= b∗ <p(x)>=<p(x)>
<p(x)> ∗ <p(x)>=<p(x)>,

where ∗ = × or + .
So ψ is an isomorphism and we have K ≅ G. Now as we proved above, G is a subfield
of F so, using the isomorphism, we can regard F =K[x]/<p(x)> as an extension field
of K which proves the first statement.

*****

Finally, we must show F = K[x]/<p(x)>, the set of all congruence classes modulo
p(x), contains a congruence class that is a zero of p(x).
Let p(x) = anxn + an−1xn−1 + . . . + a1x + a0 and consider the conguence class
[x]p(x) = x ∈ F. Then,

p([x]p(x)) = an[x]np(x) + an−1[x]n−1p(x) + . . . + a1[x]p(x) + a0
= [anxn + an−1xn−1 + . . . + a1x + a0]p(x)
= [p(x)]p(x)
= 0

So F contains a zero of p(x), namely the congruence class [x]p(x).
6See, for example, Note 13, page 70
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Example 72. Consider f(x) = x2 + 1 ∈ Q[x].
Since x2 + 1 = (x + i)(x − i) the extension field of Q is Q(i) and i ∈ Q(i) with f(i) =
i2 + 1 = 0. ◇

Extending Kronecker’s Theorem leads to the proof of Corollary 77 that there exists
an extension field F of K over which f(x) can be factored into a product of linear
factors.

Corollary 77. **
Let K be a field and f(x) be any non-constant polynomial in K[x]. Then there exists
an extension field F of K over which f(x) can be factored into linear factors (factors
of the type (x − c)).

Proof. We build a series of extension fields as follows. First, we factor out the k linear
factors of f(x) in K[x], leaving f(x) = (a1x − b1)(a2x − b2)⋯(akx − bk)g1(x). Here, if
it exists, g1(x) is irreducible in K[x] and deg(g1(x)) > 1. Note also that the k roots
bi
ai

of f(x) all lie in K and therefore in any extension field.

Then we apply Theorem 76, page 142, to find an extension field F1 containing a root
u1 of g1(x) so we have

f(x) = (a1x − b1)(a2x − b2)⋯(akx − bk)(x − u1)g2(x)

Then we again apply Theorem 76 to find an extension field F2 containing a root u2
of g2(x) to obtain,

f(x) = (a1x − b1)(a2x − b2)⋯(akx − bk)(x − u1)(x − u2)g3(x)

We continue in this way until we have an extension field F containing all the roots of
f(x).

Example 73. Pictorially, we have for f(x) = x4−5x2+6 = (x2−2)(x2−3) the lattice
of two towers of extension fields of the base field Q as follows,

Q

Q(
√

2) Q(
√

3)

Q(
√

2,
√

3)

◇

Let us now revisit algebraic numbers.
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9.3 Algebraic Numbers

Definition 56. algebraic numbers
Given an extension field F of a base field K we say u ∈ F is an algebraic number over
K if there exists a non-zero polynomial f(x) ∈K[x] such that f(u) = 0. More simply,
such a u ∈ F is said to be algebraic over K.

Example 74. For example, in the tower of fields above, both
√

2 and
√

3 are algebraic
over Q since they are the roots of the respective polynomials f(x) = x2 − 2 and g(x) =
x2 − 3 with coefficients in Q. ◇

9.4 Monic minimal polynomials

In Theorem 78 we extend Kronecker’s Theorem 76 to prove that if F is an extension
field of K and u ∈ F then there exists a unique monic polynomial p(x) ∈ K[x] such
that p(u) = 0. It is characterized as the monic polynomial of minimal degree that has
u as a root.

Example 75. Now
−1 +

√
3i

2
∈ Q(

√
3, i) which is an extension field of Q. We claim

there exists a unique monic polynomial p(x) ∈ Q[x] such that p(−1 +
√

3i

2
) = 0, and

there is, namely p(x) = x2 + x + 1 which has roots
−1 ±

√
3i

2
◇

There are two possibilities for the elements u ∈ F. One is u ∈ K and the monic
polynomial is p(x) = x − u; the other is u ∉ K but only u ∈ F. We are then looking
for a polynomial that factors in F but not in K. An example is f(x) = x2 + 1 ∈ Q[x],
which is irreducible in K = Q but not in the extension field F = Q(i), since there f(x)
factors as (x + i)(x − i).
Furthermore, we also prove in Theorem 78 that if f(x) is any polynomial in K[x] with
f(u) = 0 then p(x) ∣ f(x), justifying its characterization as the minimal polynomial.

Theorem 78. ****
Let F be an extension field of K and let u ∈ F be algebraic over K. Then there
exists a unique monic irreducible polynomial p(x) ∈K[x] such that p(u) = 0. It is the
monic polynomial of minimal degree that has u as a root. Furthermore, if f(x) is any
polynomial in K[x] with f(u) = 0 then p(x) ∣ f(x).

Proof. We have four statements to prove.

1. p(x) exists
If u ∈ F is an algebraic number and thus a root of some nonzero polynomial
f(x) ∈ F [x], let p(x) have the smallest or minimal degree of all the polynomials
of which u is a root. So p(x) exists since we have at least one polynomial with
u as a root, namely f(x).
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2. p(x) ∣ f(x).
By the Division Algorithm, Theorem 57B, page 106, we can write,

f(x) = q(x)p(x) + r(x), r(x) = 0 or deg(r(x)) < deg(p(x))

Then,

r(x) = f(x) − q(x)p(x) ⇒ r(u) = f(u) − q(u)p(u) = 0

But if we have r(u) = 0 and deg(r(x)) < deg(p(x)) then this contradicts the
choice of p(x) with minimal degree such that p(u) = 0 unless r(x) = 0 which
means,

f(x) = q(x)p(x) ⇒ p(x) ∣ f(x).

3. p(x) is irreducible.
Further, let p(x) = g(x)h(x) where g(x), h(x) ∈K[x], so we are assuming p(x)
may be reducible to a product of polynomials of lesser degree.
Substituting x = u gives g(u)h(u) = p(u) = 0⇒ g(u) = 0 or h(u) = 0, but again,
since the degrees of g(x), h(x) are less than the degree of p(x), this contradicts
p(x) as the polynomial of minimal degree of which u is a root or p(u) = 0. So
p(x) is irreducible.

4. p(x) is unique.
Suppose p(x), q(x) both have the same degree and p(u) = 0, q(u) = 0. Let,

p(x) = anxn + an−1xn−1 + . . . + a1x + a0
q(x) = bnxn + bn−1xn−1 + . . . + b1x + b0

Then,

0 = p(u) − q(u)
= un(an − bn) + un−1(an−1 − bn−1) + . . . + u(a1 − b1) + (a0 − b0)

Since u ≠ 0, this is impossible unless ai − bi = 0 for 0 ≤ i ≤ n and then all
ai = bi⇒ p(x) = q(x).

Example 76. The polynomial f(x) = x4+3x2+2 satisfies f(i) = i4+3i2+2 = 0. Then
the unique monic polynomial of i which is p(x) = x2 + 1 must divide f(x). Indeed,

f(x) = x4 + 3x2 + 2 = (x2 + 2)(x2 + 1). ◇

Definition 57. minimal polynomial
In Theorem 84 we proved that if F is an extension field of K and u ∈ F is algebraic

over K, then there exists a unique monic polynomial p(x) ∈K[x] such that p(u) = 0.
This p(x) is the monic polynomial of minimal degree that has u as a root. We define
this p(x) as the minimal polynomial of u over K and its degree is called the degree of
u over K.
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Example 77. In our tower of extension fields above, we had K = Q and the extension
field F = Q(

√
2). Then there exists a unique monic polynomial p(x) ∈ Q[x] such that

p(
√

2) = 0, namely p(x) = x−
√

2 and we note that any other polynomial that has
√

2
as a root such as,

f(x) = x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) = (x −
√

2)(x +
√

2)(x −
√

3)(x +
√

3)

is divisible by p(x) = x −
√

2 as it clearly is, since one of its factors is (x −
√

2). ◇

In our tower of fields above, f(x) = x4 − 5x2 + 6 had four roots, ±
√

2,±
√

3, so we
begin to extend our definitions to cover the whole tower.

Definition 58. extension field generated by u1, u2, . . . , un
We say if F is an extension field of K and u1, u2, . . . , un ∈ F then the smallest subfield

of F that contains K and u1, u2, . . . , un is called the extension field of K generated by
u1, u2, . . . , un, written F =K(u1, u2, . . . , un).

Definition 59. simple extension
If F =K(u) for a single element u ∈ F then F is said to be a simple extension of K.

We use the Fundamental Theorem of Ring Homomorphisms (Theorem 44) to prove
Theorem 79.

Theorem 79. ****
Let F be an extension field of K and let u ∈ F. If u is algebraic over K, then we have
the isomorphism of fields given by K(u) ≅K[x]/ < p(x) >, where p(x) is the minimal
polynomial of u over K.

Proof. Define φ ∶K[x] →K[u] by φ(f(x)) = f(u) for all polynomials f(x) ∈K[x].
In other words,

f(x) = anxn + an−1xn−1 + . . . + a1x + a0
⇒ φ(f(x)) = anun + an−1un−1 + . . . + a1u + a0

Then φ is a ring homomorphism since,

φ(f(x)g(x)) = f(u)g(u) = φ(f(x))φ(g(x))
φ(f(x) + g(x)) = f(u) + g(u) = φ(f(x)) + φ(g(x))

Now let’s apply the Ring Homomorphism Theorem 44, page 92. Note since φ is
clearly onto, then as shown in Note 17, page 103, the image of φ is all of K[u].
We need to identify ker(φ) = {f(x) ∈ K[x] ∣ f(u) = 0}. Since u is algebraic over
K, the minimal polynomial p(x) of u over K, by Theorem 84, page 158, divides all
f(x) ∈K[x].
Hence, ker(φ) =< p(x) >, the set of all polynomials divisible by p(x).
We conclude that by the Ring Homomorphism Theorem that,

K[x]/ < p(x) >≅K[u]
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But, by Theorem 75B on page 135, K[x]/ < p(x) > is a field and therefore so is K[u].
Since K(u) is clearly the smallest subfield of F containing K and u, then K(u) is
contained within any other subfield, so K(u) ⊂K[u].
But K[u] = {anun + an−1un−1 + . . . + a1u + a0 ∣ ai ∈ K} and each of these elements is
contained in K(u) so that K[u] ⊂K(u).
By double containment, we have K(u) =K[u] and hence,

K[x]/ < p(x) >≅K(u)

Finally we prove in Theorem 80 a restatement of Kronecker’s Theorem 76, page
142, that if p(x) is any irreducible polynomial in K[x],K a field, then there exists an
extension field F of K and an element u ∈ F such that p(x) is the minimal polynomial
of u over K.

Theorem 80. *
Let K be a field and p(x) ∈K[x] be any irreducible polynomial. Then there exists an
extension field F of K and an element u ∈ F such that the minimal polynomial of u
over K is p(x).

Proof. This is just Kronecker’s Theorem 76 restated with f(x) replaced by p(x).

We next unfold the theory of finite fields and algebraic extensions. We need an
introductory understanding of vector spaces.

9.5 Vector Spaces

Vector spaces are defined in introductory courses on linear algebra. We will stay in
three dimensions or R3 but the arguments apply to any number of dimensions or Rn

in general.
In three dimensions, the point (2,4,3) may be regarded as the vector (arrow) drawn
from the origin (0,0,0) to the point (2,4,3) and also referred to simply as the vector
(2,4,3). We add vectors such as (x1, x2, x3) by adding their respective x1, x2, x3 values
thus,

(1,2,3) + (4,5,6) = (5,7,9)

We can multiply a vector by any real number (in general, by a scalar) by multiplying
each x, y, z in turn by it, thus,

5(1,2,3) = (5,10,15)

The Rn vector space is an n−dimensional space “full” of vectors of the form

(x1, x2, . . . , xn), x ∈ R
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Definition 60. basis
A basis B of a vector space is a set of vectors which can be put together in a linear

equation7 to form any given vector.

Example 78. For example, in the third dimension, R3, one basis is the set of vectors,

{(1,0,0), (0,1,0), (0,0,1)},

since any other vector can be reformatted into a linear equation using only elements
from this set and scalars from (in this case), R. For example,

(4,5,−6) = 4(1,0,0) + 5(0,1,0) − 6(0,0,1) ◇

Definition 61. spans
A set of vectors spans a vector space if every vector in the space can be written as a
linear combination of those vectors.

Example 79. For example, we say the set {(1,0,0), (0,1,0), (0,0,1)} spans R3 since
any vector (x1, x2, x3) can obviously be written as,

(x1, x2, x3) = x1(1,0,0) + x2(0,1,0) + x3(0,0,1)

Or, to put it another way, any point in R3, can be “reached” from the origin through
a linear combination of the elements of the basis. ◇

There are obviously many bases for a given vector space. In R3 we could also use,

B = {(7,0,0), (0,−8,0), (0,0,29)}

since,

(x1, x2, x3) =
x1
7
(7,0,0) + x2−8

(0,−8,0) + x3
29

(0,0,29)

But we cannot choose just any set of three vectors for a basis. Let’s see why not.

Definition 62. linear independence
We say the basis vectors must be linearly independent, meaning, for R3 that,

{(a, b, c), (d, e, f), (g, h, i)}

is a basis only if any linear combination of them is only trivially zero, that is, for all
scalars p, q, r it is NEVER the case that,

p(a, b, c) + q(d, e, f, ) + r(g, h, i) = (0,0,0)

unless p = 0, q = 0, r = 0.

7Hence linear algebra
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Example 80. For example, in R3, the set {(−1,0,1), (2,1,3), (0,1,5)} is not a basis
since we can form,

2(−1,0,1) + (2,1,3) − (0,1,5) = (0,0,0)

and the coefficients {2,1,−1} are not all zero. What this means graphically is that
you cannot find every point in R3 through a linear combination of these three vectors.
For example, you cannot “reach” (4,3,8)since we cannot solve the required equations:

p(−1,0,1) + q(2,1,3) + r(0,1,5) = (4,3,8) (9.5.1)

⇒ −p + 2q + 0r = 4 (9.5.2)

0p + q + r = 3 (9.5.3)

p + 3q + 5r = 8 (9.5.4)

since (9.5.2) + (9.5.4) yields 5q + 5r = 12⇒ q + r = 12

5
whereas (9.5.3) says

q + r = 3. ◇

Definition 63. dimension of a vector space

The number of vectors in the basis of a vector space is called the dimension of the
vector space. (We have not proved all bases contain the same number of vectors, but
that is so.)

Let us now generalize since we want to use polynomials and not points in Rn as
our vectors. We use script letters for vectors.

Definition 64. vector space axioms
Let F be a field. A vector space over F is a set V with a binary operation + defined

for all vectors u,v,w ∈ V and a scalar product av ∈ V for all a ∈ F such that the
following axioms hold for all u,v,w ∈ V and a, b ∈ F.

(1) u + v ∈ V

(2) (u + v) +w = u + (v +w)

(3) 0 ∈ V such that 0 + v = v

(4) For each v ∈ V there is a −v such that −v + v = 0

(5) u + v = v + u

(6) av ∈ V

(7) a(bv) = (ab)v

(8) (a + b)v = av + bv
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(9) a(u + v) = au + av

(10) 1v = v

For any field F , F [x] is a vector space over F where addition of polynomials is
ordinary addition of polynomials in F [x] and scalar multiplication of an element of
F [x] by an element of F is ordinary multiplication in F [x]. The 10 axioms can be
readily validated. Here are two of them,

(5)f(x) + g(x) = g(x) + f(x) for all f(x), g(x) ∈ F [x]
(8)(a + b)f(x) = af(x) + bf(x) for all f(x) ∈ F [x] and a, b ∈ F.

Further, if F is an extension field of K then F is a vector space over K where
addition of vectors is the usual addition in F and scalar multiplication is the usual
field multiplication in F with a ∈ K and the vector u ∈ F. Note the field of scalars is
actually a subset of the field of vectors.

Our previous definitions remain the same, namely,

� A set of vectors spans the vector space if every other vector can be written as
a linear combination (using scalars from F ) of them.
For example, ifK is a field and F is an extension field ofK then let u ∈ F be alge-
braic over K. Then K(u) is a vector space over K with basis (1, u, u2, . . . , un−1)
where n = [K(u) ∶ K] is the degree of u over K as we prove below in Theorem
87.

� A basis of a vector space is a set of vectors that span the vector space and are
linearly independent, that is any linear combination of them is never 0 unless
all the scalars involved are 0.

� The dimension of a vector space is the number of vectors in any basis.



Chapter 10

Fields II

Algebraic Extension Fields and Splitting Fields

10.1 Algebraic Extension Fields

Definition 65. algebraic extension field
An extension field of F over K is an algebraic extension field if every element of
F is algebraic over K meaning every element of F is the root of a polynomial with
coefficients in K.

Let us now continue our investigation of polynomials with roots in algebraic ex-
tension fields. We immediately use our knowledge of vector spaces.

Definition 66. dimension of an extension field as a vector space
The dimension of a vector space is the number of elements in any basis. In general

if F is an extension field of K then the dimension of F as a vector space over K is
called the degree of F over K and we denote it by the symbol [F ∶K].

We first prove in Theorem 81 that for an extension field F /K, with u ∈ F an
element algebraic over K, that if the minimal polynomial1 of u over K has degree n
then K(u) is an n−dimensional vector space over K, that is [K(u) ∶ K] = n, with
basis B = {1, u, u2, . . . , un−1}.

Theorem 81. ***
Let F be an extension field of K and let u ∈ F be an element algebraic over K. If the
minimal polynomial of u over K has degree n then K(u) is an n−dimensional vector
space over K, or [K(u) ∶K] = n, and basis B = {1, u, u2, . . . , un−1}.

Proof. Let p(x) = anxn +an−1xn−1 + . . .+a1x+a0 be the minimal polynomial of u over
K.
By Theorem 79, page 147, K(u) ≅K[x]/ < p(x) >

1Definition 57, page 146

152



10.1. Algebraic Extension Fields 153

Now the cosets of K[x]/ < p(x) > are the remainders when all f(x) ∈K[x] are divided
by the minimal polynomial p(x). Since p(x) has degree n the remainders have at most
degree n − 1. Hence,

K[x]/ < p(x) >= {an−1xn−1 + an−2xn−2 + . . . + a1x + a0 ∣ ai ∈K}

Accordingly, using the isomorphism, K(u) ≅K[x]/ < p(x) >,

K(u) = {an−1un−1 + an−2un−2 + . . . + a1u + a0 ∣ ai ∈K}

Thus a basis for K(u) as a vector space over K is,

B = {1, u, u2, ..., un−1}

which spans K(u) since any element of K(u) is a linear combination of these elements.
Also B is a linearly independent set of vectors since,

an−1u
n−1 + an−2un−2 + . . . + a1u + a0 = 0

⇒ p(u) − anun = 0

⇒ anx
n = 0, since p(u) = 0

But un ≠ 0 and an ≠ 0 so we cannot have an−1un−1 + an−2un−2 + . . .+ a1u+ a0 = 0 unless
each ai = 0 which is the definition of linear independence.
By Definition 66, page 152, [K(u) ∶K] = ∣B∣ = n which is the degree of p(x).

Example 81. For example, i ∈ Q(i) is algebraic over Q. Its minimal polynomial in
Q[x] is p(x) = x2 + 1 which has degree 2.
We claim Q(i) is a 2-dimensional vector space which is easily seen to be the case
since Q(i) = {a + bi ∣ a, b ∈ Q, b ≠ 0}. So a basis for Q(i) is {1, i} since any element
in Q(i) is a linear combination a ∗ 1 + b ∗ i = a + bi, a, b ∈ Q of these two elements.
We also need to show 1, i are linearly independent, that is, a+bi = 0 if and only if a = 0
and b = 0. We can simply solve a + bi = 0 ⇒ a = −bi ⇒ a2 = −b2, which is impossible
unless a = b = 0, which is the definition of linear independence. ◇

Put simply, if F is an extension field of K and u ∈ F is algebraic over K then
[F ∶K] is the degree of the minimal polynomial of u.

Example 82. For example, consider Q(
√

2) as an extension field of Q. The minimal
polynomial of

√
2 over Q is p(x) = x2 − 2 which has degree 2 and clearly

√
2 is

algebraic over Q since it is the root of a monic polynomial with coefficients in Q. Also
Q(

√
2) = {a + b

√
2 ∣ a, b ∈ Q} so that a basis for Q(

√
2) over Q(

√
2) is B = {1,

√
2}

thus ∣B∣ = 2, making [Q(
√

2 ∶ Q] = 2 also. ◇

We proceed to prove in Theorem 82 that every element of a finite extension must
be algebraic.
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Theorem 82. ***
Let F be an extension field of K and let u ∈ F. TFAE or the following conditions are
equivalent:

(1) u is algebraic over K.

(2) K(u) is a finite extension of K.

(3) u belongs to a finite extension of K.

Proof. (1) ⇒ (2)
If u is algebraic over K then u is the root of a polynomial with coefficients in K. Since
such a polynomial necessarily has finite degree any extension containing all its roots
is finite.
(2) ⇒ (3)
Obvious.
(3) ⇒ (1).
We need to show any u in any finite extension of K is an algebraic number, that is it
is the root of a polynomial with coefficients in K.
Suppose u ∈ F, F an extension field of K and [F ∶ K] = n. We showed in Theorem
81 above that the set {1, u, u2, ..., un−1} is a basis for K(u) as a vector space over K.
Therefore any vector is a linear combination of the elements of this set and not all
the coefficients can be zero. Specifically, the vector un must be,

un = a0 + a1u + . . . + an−1un−1, ai ∈K
⇒ a0 + a1u + . . . + an−1un−1 − anun = 0

and not all the a′is can be zero. Therefore u is algebraic over K since it is the solution
of f(x) = a0 + a1x + . . . + an−1xn−1 − anxn.

We will be building towers of finite extensions like this as we did above,

Q

Q(u1)

Q(u1, u2)

and using the formula proved below in Theorem 83, that if E is a finite extension of
K and F is a finite extension of E then F is a finite extension of K and
[F ∶K] = [F ∶ E][E ∶K].

Theorem 83. ****
Let E be a finite extension of K and F be a finite extension of E. Then F is a finite
extension of K and [F ∶K] = [F ∶ E][E ∶K].

Proof. Let E be a finite extension of K and F be a finite extension of E, thus:
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K

E

F

Let [F ∶ E] = n, [E ∶ K] = m. Let u1, u2, . . . , un be a basis for F over E and let
v1, v2, . . . , vm be a basis for E over K. Consider,

B = {uivj ∣ 1 ≤ i ≤ n, 1 ≤ j ≤m}
= {u1v1, u1v2, . . . , u1vm,

u2v1, u2v2, . . . , u2vm,

. . .

unv1, unv2, . . . , unvm,}

This set has n rows and m elements per row, so ∣B∣ = nm. We will prove B is a
basis for F over K so that [F ∶K] = ∣B∣ =mn = [F ∶ E][E ∶K].
We need to show B spans F over K, that is every vector in F can be written as
a linear combination of the elements of B. and that the vectors in B are linearly
independent.

*****

First, the linear combinations for any vector u ∈ F.
If {u1, u2, . . . , un} is a basis for F over E and {v1, v2, . . . , vm} is a basis for E over K
then any element u ∈ F is given by,

u = a1u1 + a2u2 + . . . + anun

where each ai ∈ E so that,

ai = ci1v1 + ci2v2 + . . . + cimvm, cij ∈K.

Thus,

u = c11u1v1 + c12u1v2 + . . . + c1mu1vm
+ c21u2v1 + c22u2v2 + . . . + c2mu2vm
+ . . .
+ cn1unv1 + cn2unv2 + . . . + cnmunvm

so that u is a linear combination of the elements of B and hence B spans F over K.

*****
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Second, to prove linear independence we need to prove any linear combination of the
basis elements is zero only if all the coefficients in the linear combination are zero.
Suppose,

c11u1v1 + c12u1v2 + . . . + c1mu1vm
+ c21u2v1 + c22u2v2 + . . . + c2mu2vm
+ . . .
+ cn1unv1 + cn2unv2 + . . . + cnmunvm = 0

Replacing rows with columns, we can re-order the terms thus,

(c11u1 + c21u2 + . . . + cn1un)v1
+ (c12u1 + c22u2 + . . . + cn2un)v2
+ . . .
+ (c1mu1 + c2mu2 + . . . + cnmun)vm = 0

Since the elements {v1, v2, . . . , vm} form a basis for E over K and are therefore linearly
independent, each of the coefficients c1ju1+c2ju2+. . .+cnjun, 1 ≤ j ≤m, (which belong
to F ) must be zero. Then since the elements {u1, u2, . . . , un} are a basis for F over
E, for each i we must have cij = 0 for all j. This proves B is a linearly independent
set. Thus,

[F ∶K] = ∣B∣ = nm = [F ∶ E][E ∶K].

Example 83. Consider
f(x) = x4 − 5x2 + 6.
As we “ascend” the tower of extension fields from Q to Q(

√
2,

√
3) we have,

Q

Q(
√

2

Q(
√

2,
√

3)

p1(x) = x2 − 2, deg 2

p2(x) = x2 − 3, deg 2

Thus, [Q(
√

2,
√

3) ∶ Q(
√

2)] × [Q(
√

2) ∶ Q] = 2 × 2 = 4 since the respective degrees of
the minimal polynomials are 2,2.
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Since,

Q(
√

2) = {a + b
√

2 ∣ a, b ∈ Q} and
Q(

√
2,

√
3) = {x + y

√
3 ∣ x, y ∈ Q(

√
2)}

= {a + b
√

2 + (c + d
√

2)
√

3 ∣ a, b, c, d ∈ Q}
= {a + b

√
2 + c

√
3 + d

√
6 ∣ a, b, c, d ∈ Q},

a basis for Q(
√

2,
√

3) is B = {1,
√

2,
√

3,
√

6} and hence,

[Q(
√

2,
√

3)] = ∣B∣ = 4 = [Q(
√

2,
√

3) ∶ Q(
√

2)] × [Q(
√

2) ∶ Q] ◇

10.2 Splitting Fields

Let’s return to the discussion of polynomials over K and their roots in an extension
field F /K. Let us keep in mind that we want to build a tower of fields above a base
field K = Q for polynomials f(x) ∈ K[x] where each extension field contains one or
more of the roots of f(x) that do not lie in K.

We have seen in Kronecker’s Theorem 76 that given any field and any polynomial
over that field that there exists an extension field in which the polynomial has a root.
We extend this finding by defining the concept of a splitting field which contains all
the roots of the polynomial.

Definition 67. splitting field
Let f(x) = anxn+an−1xn−1+ . . .+a1x+a0 be a polynomial in K[x] of degree n > 0. An

extension field F /K is called a splitting field for f(x) over K if there exist elements
r1, r2, . . . , rn ∈ F such that f(x) = an(x−r1)(x−r2)⋯(x−rn) and F =K(r1, r2, . . . , rn).
In this case, we say f(x) splits over F. In simple terms, f(x) has a splitting field F
over K if it factors in F into the product of linear factors (such as (x −

√
2)).

Example 84. For example, let K = Q and consider

f(x) = x4 − 5x2 + 6

= (x −
√

2)(x +
√

2)(x −
√

3)(x +
√

3)

Then F = Q(
√

2,
√

3) is a splitting field for f(x) over Q. ◇

We proceed to prove in Theorem 84 that if f(x) ∈K[x] is a polynomial of degree
n > 0 then there exists a splitting field F for f(x) over K with [F ∶K] ≤ n!
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Theorem 84. ****
Let f(x) ∈K[x] be a polynomial of degree n ≥ 0. Then there exists a splitting field F
for f(x) over K, with [F ∶K] ≤ n!

Proof. The proof is by induction on the degree of f(x).
Basis Step: If deg(f(x)) = 1 ⇒ f(x) = a(x − b), then K itself is a splitting field and
[K ∶K] = 1 ≤ 1!
Induction Step: Assume the theorem is true for any polynomial g(x) ∈ K[x] with
deg(g(x)) < n.
We need to prove f(x) with degree n splits over K. Let p(x) be an irreducible factor
of f(x), so f(x) = p(x)q(x) for some q(x) ∈K[x].
By Kronecker’s Theorem 76, page 142, there exists an extension field E of K in
which p(x) has a root r. Since g(x) is any polynomial in K[x] consider K(r) with
g(x) ∈K(r)[x], that is g(x) has its coefficients in K(r). We have the tower,

K

K(r)

F

Over the field K(r), f(x) factors as,

f(x) = p(x)q(x) = (x − r)g(x)

for our chosen polynomial g(x), deg(g(x)) = n − 1.
Thus, by the induction hypothesis there exists a splitting field F of g(x) over K(r).
By definition this means if (say) g(x) = b(x−r1)(x−r2)⋯(x−rn−1) then this splitting
field is

F =K(r1, . . . , rn−1)

and, again by the hypothesis, [F ∶K(r)] ≤ (n − 1)!
We are done since it is clear that

f(x) = b(x − r)(x − r1)(x − r2)⋯(x − rn−1), deg(f(x)) = n,

splits or has all its roots in the extension field.

F =K(r)(r1, . . . , rn−1) =K(r, r1, . . . , rn−1)

Finally, note [K(r) ∶ K] ≤ n since the irreducible minimal polynomial p(x) has
degree at most the degree of f(x) which is n.
Then, by Theorem 83, page 154,

[F ∶K] = [F ∶K(r)] × [K(r) ∶K] ≤ (n − 1)!n = n!



10.2. Splitting Fields 159

Example 85. Consider the splitting field of f(x) = x3 − 1 over Q. Now,

f(x) = 0⇒ x3 − 1 = 0

⇒ (x − 3
√

2)(x − ω 3
√

2)(x − ω2 3
√

2) = 0, ω = −1

2
+

√
3i

2

As we noted earlier, ω is a root of the monic polynomial x2+x+1 which is irreducible
in Q so our tower of fields with monic polynomials is,

Q

Q( 3
√

2)

Q( 3
√

2, ω)

p1(x) = x3 − 2, deg 3

p2(x) = x2 + x + 1, deg 2

Hence,

[Q( 3
√

2) ∶ Q] = 3 and [Q( 3
√

2, ω) ∶ Q( 3
√

2)] = 2Ô⇒ [Q( 3
√

2, ω) ∶ Q)] = 6 ≤ 3! ◇
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Galois Groups of Polynomials

11.1 Galois Group

In Section 2.3 we saw two examples of groups formed by the roots of polynomials.
The Galois groups will consist of functions that permute the roots of polynomials.
The functions will be automorphisms.

Definition 68. automorphism on a field
An automorphism on a field F is a one-to-one and onto function (a one-to-one

correspondence1) φ ∶ F → F, such that for all a, b ∈ F,

φ(ab) = φ(a)φ(b)
φ(a + b) = φ(a) + φ(b)

In other words, an automorphism is a field isomorphism that maps a field onto itself
in the sense that any element of the field maps to another element of the field.

Notation 9. We use Aut(F ) for the set of all automorphisms of F.

In what follows we will always have F as an extension field of a field K and a
polynomial f(x) ∈K[x]. Again, for our purposes, K = Q. We first prove in Theorem
85 that the subset of automorphisms of F defined by,

G = {φ ∈ Aut(F ) ∣ φ(a) = a for all a ∈K}

is a group under composition of functions. We say these are the automorphisms that
“fix” K, in the sense that they may alter or permute elements of F that are not in
K but they leave the elements of K unaltered.

1Recall, a one-to-one correspondence is a one-to-one and onto function, and the simple way to
remember the definition of a one-to-one correspondence between the elements of two sets is that it
is a function where every element of the first set is paired with exactly one element of the second
set and every element of the second set is paired with exactly one element of the first set.

160
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Theorem 85. **
Let F be an extension field of a field K. The set of all automorphisms,

G = {φ ∶ F → F ∣ φ(a) = a for all a ∈K}

is a group under composition of functions.

Proof. Let G = {φ ∶ F → F ∣ φ(a) = a for all a ∈ F}. We use the subgroup test,
Corollary 3, page 31, namely if φ,ψ ∈ G then we need to show φψ−1 ∈ G.
Let φ,ψ ∈ G so that φ(a) = a,ψ(a) = a for all a ∈K, then,

φψ−1(a) = φ(ψ−1(a))
= φ(ψ−1(ψ(a)) since ψ(a) = a
= φ(a) since ψ−1ψ(a) = a
= a since φ(a) = a

Then φψ−1 ∈ G since it “fixes” a ∈K.
Therefore, by the subgroup test, we have the subgroup

{φ ∈ Aut(F ) ∣ φ(a) = a for all a ∈ F} of Aut(F ).

It is the set of automorphisms of Theorem 85 that are fundamental to our goal.
They merit the name of Galois.

Definition 69. Galois group of an extension field
We define the Galois group of F over K, denoted by Gal(F /K), by,

Gal(F /K) = {φ ∈ Aut(F ) ∣ φ(a) = a for all a ∈K}

In words, the Galois group of an extension field over the base field is the set of auto-
morphisms that fix all the elements of the base field.

Definition 70. Galois group of a polynomial
If the extension field F of a base field K is the splitting field of a polynomial
f(x) ∈K[x], that is F =K(r1, r2, . . . , rn) for the polynomial,

f(x) = anxn + an−1xn−1 + . . . + a1x + a0
= an(x − r1)(x − r2)⋯(x − rn), ri ≠ rj for all i, j such that 1 ≤ i, j ≤ n,

then Gal(F /K) is called the Galois group of f(x) over K.

We now prove that if F is an extension field of K and f(x) ∈ K[x] then any
element of the Galois group Gal(F /K) permutes or rearranges the roots of f(x) that
lie in F (paralleling the permutations of Sn that permute the elements of {1,2, . . . , n}.)
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Theorem 86. ***
Let F be an extension field of K and let f(x) ∈K[x]. Then any element of Gal(F /K)
defines a permutation of the roots of f(x) that lie in F.

Proof. Let f(x) = anxn + an−1xn−1 + . . . + a1x + a0 where ai ∈K for 1 ≤ i ≤ n.
If u ∈ F with f(u) = 0 and φ ∈ Gal(F /K) then, using the properties of an isomorphism
(note, an automorphism is also an isomorphism), and, by definition of the Galois
group, that φ(ai) = ai for 1 ≤ i ≤ n, we have,

φ(f(u)) = φ(anun + an−1un−1 + . . . + a1u + a0)
= φ(anun) + φ(an−1un−1) + . . . + φ(a1u) + φ(a0)
= φ(an)φ(un) + φ(an−1)φ(un−1) + . . . + φ(a1)φ(u) + φ(a0)
= anφ(u)n + an−1φ(u)n−1 + . . . + a1φ(u) + a0
= f(φ(u))

Now f(u) = 0⇒ φ(f(u)) = φ(0) = 0 and therefore f(φ(u)) = 0.
In other words, if u is a root of f(x) then so is φ(u). This means φ maps roots of
f(x) onto roots of f(x). Since there are only finitely many roots and φ is a one-to-one
correspondence, φ must define a permutation of those roots of f(x) that lie in F.

11.2 The Size of the Galois Group

Our next goal is to prove that if K is a field and F is a splitting field for a polynomial
f(x) ∈K[x] then the size of the Galois group Gal(F /K) is given by,

∣Gal(F /K)∣ = [F ∶K]

where ∣Gal(F /K)∣ is the number of automorphisms in the Galois Group and [F ∶K]
is the dimension of F as a vector space over K.
In the cases that interest us, this is a simple formula for the number of automorphisms
in the Galois group of f(x) over K, since if F is an extension field of K and u ∈ F is
algebraic over K with minimal polynomial of degree n then [F ∶ K] is equal to the
degree n of the minimal polynomial of F over K so that the number of automorphisms
in the Galois group is simply n. We prove this challenging series of theorems and then
the desired corollary.
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Theorem 87. ****
Let θ ∶K → L be an isomorphism of fields.
Let F be an extension field of K such that F =K(u) for some algebraic element u ∈ F.
Let p(x) be the minimal polynomial of u over K.
Let v be any root of the image q(x) of p(x) under θ, that is θ(p(x)) = q(x) and
q(v) = 0, and let E = L(v).
Then there is a unique way to extend θ ∶ K → L to an isomorphism φ ∶ F → E such
that φ(u) = v and φ(a) = θ(a) for all a ∈K.
Diagrammatically, this means we have,

F =K(u) E = L(v)

K L

φ

p(x) q(x)

θ

Proof. Let θ ∶K → L be an isomorphism of fields.
Let F be an extension field of K such that F = K(u) for some algebraic element
u ∈ F.
Let p(x) be the minimal polynomial of u over K.
Let v be any root of the image q(x) of p(x) under θ, that is θ(p(x)) = q(x) and
q(v) = 0, and let E = L(v).
Now, by Theorem 81, page 152, if p(x) has degree n, a basis for F as a vector space
over K is B = {1, u, u2, . . . , un−1} so that the elements of K(u) have the form,

an−1u
n−1 + an−2un−2 + . . . + a1u + a0, ai ∈K.

Therefore we define the required field isomorphism φ ∶K(u) → L(v) by,

φ(an−1un−1 + an−2un−2 + . . . + a1u + a0) = θ(an−1vn−1 + an−2vn−2 + . . . + a1v + a0)

Clearly φ is a one-to-one correspondence.
But, by Definition 47, page 103, we need to show φ is a field isomorphism obeying
both the sum and product requirement, that is, if f(x), g(x) ∈K[x], then,

φ(f(x) + g(x)) = φ(f(x)) + φ(g(x)) and φ(f(x)g(x)) = φ(f(x))φ(g(x))

Let f(u), g(u) ∈K(u) be such that,

f(u) = an−1un−1 + an−2un−2 + . . . + a1u + a0
g(u) = bn−1un−1 + bn−2un−2 + . . . + b1u + b0
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We use the fact that θ is a field isomorphism.

φ(f(u) + g(u))
= φ(an−1un−1 + an−2un−2 + . . . + a1u + a0 + bn−1un−1 + bn−2un−2 + . . . + b1u + b0)
= θ(an−1vn−1 + an−2vn−2 + . . . + a1v + a0 + bn−1vn−1 + bn−2vn−2 + . . . + b1v + b0)
= θ(an−1vn−1 + an−2vn−2 + . . . + a1v + a0) + θ(bn−1vn−1 + bn−2vn−2 + . . . + b1v + b0)

(since θ is an isomorphism)

= φ(an−1un−1 + an−2un−2 + . . . + a1u + a0) + φ(bn−1vn−1 + bn−2vn−2 + . . . + b1v + b0)
= φ(f(u)) + φ(g(u))

Second,

φ(f(u) ⋅ g(u))
= φ((an−1un−1 + an−2un−2 + . . . + a1u + a0) ⋅ (bn−1un−1 + bn−2un−2 + . . . + b1u + b0))
= φ(an−1bn−1u2n−2 + . . . + ∑

i+j=k

aibju
k + ⋅ ⋅ ⋅ + a0b0)

= θ(an−1bn−1v2n−2 + . . . + ∑
i+j=k

aibjv
k + ⋅ ⋅ ⋅ + a0b0)

= θ((an−1vn−1 + an−2vn−2 + . . . + a1v + a0) ⋅ (bn−1vn−1 + bn−2vn−2 + . . . + b1v + b0))
= θ(an−1vn−1 + an−2vn−2 + . . . + a1v + a0) ⋅ θ(bn−1vn−1 + bn−2vn−2 + . . . + b1v + b0)
= φ(an−1un−1 + an−2un−2 + . . . + a1u + a0) ⋅ φ(bn−1un−1 + bn−2un−2 + . . . + b1u + b0)
= φ(f(u)) ⋅ φ(g(u))

So φ is a field homomorphism, making φ the unique field isomorphism extending
θ.

We proceed to extend Theorem 87 to the case of a splitting field generated by
multiple algebraic numbers.

Theorem 88. *****
Let f(x) ∈ K[x] be a polynomial with no repeated roots and let F be a splitting field
for f(x) over K. If θ ∶ K → L is a field isomorphism that maps f(x) to g(x) ∈ L[x]
and E is a splitting field for g(x) over L then there exist exactly [F ∶K] isomorphisms
φ ∶ F → E such that φ(a) = θ(a) for all a ∈K.

Proof. Let f(x) ∈ K[x] be a polynomial with no repeated roots and let F be a
splitting field for f(x) over K. Let θ ∶K → L be a field isomorphism that maps f(x)
to g(x) ∈ L[x] and E be a splitting field for g(x) over L.
With respect to the diagram we want to prove φ is any one of [F ∶K] isomorphisms.

F E

K L

φ

f(x) g(x)

θ
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We want to show if F is the splitting field of f(x) over K then there exist [F ∶ K]
isomorphisms as defined in the statement of the theorem.
We proceed to construct extension fields between F and K and between E and L.
Let f(x) ∈ K[x] have degree n. Proceeding by induction on the degree of f(x), we
assume the result holds for all polynomials of degree less than n and for all fields K.
If f(x) has degree 0 or 1 then F =K and E = L so there is nothing to prove.
Let p(x) be an irreducible factor of f(x) which maps to the irreducible factor q(x)
of g(x). Let the degrees of p(x) and q(x) be n.
All the roots of p(x) are elements of F so we may choose one, say u, which gives the
tower of fields K ⊆ K(u) ⊆ F. Since f(x) has no repeated roots, neither does p(x)
and therefore neither does q(x) so we may choose any one, say v, of the d roots of
q(x) in E which gives the tower of fields L ⊆ L(v) ⊆ E.

F E

K(u) L(v)

K L

ψ

p(x) q(x)

θ

By Theorem 81, page 152, the degree d of the minimal polynomial p(x) is equal to
[K(u) ∶K], so the number of roots of p(x) is d = [K(u) ∶K].
Applying Theorem 87 above there exist d = [K(u) ∶K] isomorphisms
ψ ∶ K(u) → L(v) (one for each root v) such that ψ(u) = v and ψ(a) = θ(a) for all
a ∈K.
Letting f(x) = (x − u)s(x) and g(x) = (x − v)t(x), then the polynomial s(x) has
degree less than n, the extension F is a splitting field for s(x) over K(u) and the
extension E is a splitting field for t(x) over L(v). Thus the induction assumption
may be applied to the setup,

F E

K(u) L(v)

K L

φ

s(x) t(x)

ψ

p(x) q(x)

θ

and so there exist [F ∶ K(u)] isomorphisms φ ∶ F → E such that φ(x) = ψ(x) for all
x ∈K(u).
In particular, φ(a) = ψ(a) = θ(a) for all a ∈K.
Therefore we have precisely [K(u) ∶ K] extensions of θ into a ψ and for each ψ we
have [F ∶K(u)] extensions into a φ giving, by Theorem 87 above,

[F ∶K(u)][K(u) ∶K] = [F ∶K]
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extensions of the original isomorphism θ.

Corollary 89. *
Let K be a field with f(x) ∈K[x] a polynomial with no repeated roots and let F be a
splitting field for f(x) over K. Then ∣Gal(F /K)∣ = [F ∶K]

Proof. By definition2, ∣Gal(F /K)∣ is the number of isomorphisms of Theorem 94.

Before we consider examples of Galois groups let us summarize what we have.

(1) Given an extension field F /K and an element u ∈ F that is algebraic over K,
the degree of the minimal polynomial of u over K is the degree of K(u) as a
vector space over K, that is [K(u) ∶K].

(2) If F is an extension field of K then [F ∶ K] is the degree of the minimal
polynomial of an algebraic element in F that is not in K.

(3) Given a finite extension of spitting fields F /E/K then [F ∶K] = [F ∶ E][E ∶K]

(4) If f(x) ∈K[x] is a polynomial of degree n > 0 then there exists a splitting field
F of f(x) over K with [F ∶K] ≤ n!

(5) If F is a splitting field for a separable polynomial f(x) ∈K[x] of degree n then
∣Gal(F /K)∣ = [F ∶K] and if f(x) = a(x − r1)(x − r2)⋯(x − rn) then,

∣Gal(F /K)∣ = [F ∶K] =
n

∏
i=1

deg(pi(x))

is also equal to the product of the degrees of the minimal polynomials pi(x) of
the roots ri to rn as we build the tower of fields:

K

K(ri)

K(ri, r2)

. . .

F =K(ri, r2, ⋮, rn)

2Definitions 69, page 161, and 70, page 161.
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11.3 Examples of Galois Groups

Example 86. As an example of both Galois groups, their size, and how they permute
the roots of the polynomial, let us consider the base field K = Q and the splitting field
F = Q(

√
2,

√
3) of the polynomial,

f(x) = x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) = (x +
√

2)(x −
√

2)(x +
√

3)(x −
√

3)
First let us note that in building the description of an extension field such as K(α)
we define,

K(α) = {a + b α ∣ a, b ∈K}

Accordingly, the extension field Q(
√

2) = {a+b
√

2 ∣ a, b ∈ Q} and the further extension
field is given by,

Q(
√

2)(
√

3) = Q(
√

2,
√

3) = {x + y
√

3 ∣ x, y ∈ Q(
√

2)}
= {a + b

√
2 + (c + d

√
2)

√
3 ∣ a + b

√
2, c + d

√
2 ∈ Q(

√
2), a, b, c, d ∈ Q}

= {a + b
√

2 + c
√

3 + d
√

6 ∣ a, b, c, d ∈ Q}
Note that the addition of any two elements of this form still has the structure,

a + b
√

2 + c
√

3 + d
√

6

as does the multiplication of any two elements since that will involve terms like,
√

2 ×
√

3 =
√

6;
√

2 ×
√

6 = 2
√

3;
√

3 ×
√

6 = 3
√

2

So a basis for F = Q(
√

2,
√

3) as a vector space over Q is B = {1,
√

2,
√

3,
√

6}.
The size of the Galois group is given by ∣Gal(F /K)∣ = [F ∶K] = ∣B∣ = 4.
The four automorphisms in the Galois group are defined by their action on the terms
in a + b

√
2 + c

√
3 + d

√
6, specifically by their action on

√
2,

√
3,

√
6.

The only3 possibilities are,

i ∶
√

2→
√

2,
√

3→
√

3,
√

6→
√

6, the identity map fixing all elements

α ∶
√

2→ −
√

2,
√

3→
√

3,
√

6→ −
√

6,fixing
√

3 only

β ∶
√

2→
√

2,
√

3→ −
√

3,
√

6→ −
√

6,fixing
√

2 only

γ ∶
√

2→ −
√

2,
√

3→ −
√

3,
√

6→
√

6,fixing
√

6 only

with each map fixing the elements of the base field as required by the definition of
Gal(F /K).
The action table where the maps act on the roots and where a ∈ Q is,

3Why, for instance, is δ fixing
√

2 and
√

3 but not
√

6, that is,

δ ∶
√

2→
√

2,
√

3→
√

3,
√

6→ −
√

6

not a member of the Galois group?
The reason is that, since δ is a homomorphism, δ(

√
6) = δ(

√
2
√

3) = δ(
√

2)δ(
√

3) =
√

2
√

3 =
√

6,
which is a contradiction to δ(

√
6) = −

√
6.
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i α β γ
a a a a a√
2

√
2 −

√
2

√
2 −

√
2√

3
√

3
√

3 −
√

3 −
√

3√
6

√
6 −

√
6 −

√
6

√
6

It is obvious that i, α, β, γ are permutations of the roots ±
√

2,±
√

3 of

f(x) = x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) = (x +
√

2)(x −
√

2)(x +
√

3)(x −
√

3)

that lie in F = Q(
√

2,
√

3) ◇

Example 87. Let us continue the previous example for F = Q(
√

2,
√

3) over K = Q.
We identified four automorphisms so that ∣Gal(F /K)∣ = ∣Gal(Q(

√
2,

√
3)∣ = 4.

We can show the size of the Galois group is ∣Gal(F /K)∣ = 4 by another method.
We proceed as follows. We built F = Q(

√
2,

√
3) in two steps. The minimal polynomial

(no roots in Q) for the first extension field Q(
√

2) was x2 − 2 and for the second
extension field Q(

√
2,

√
3) the minimal polynomial (no roots in Q(

√
2) was x2 − 3.

The tower of fields is like this,

K = Q

E= Q(
√

2)

F= Q(
√

2,
√

3)

p1(x) = x2 − 2, deg 2

p2(x) = x2 − 3, deg 2

So, by Theorem 87, page 163, using the degrees of the minimal polynomials,

[F ∶ E] = 2, [E ∶K] = 2⇒ [F ∶K] = 2 × 2 = 4 = ∣Gal(F /K)∣ ◇

Example 88. Consider,

f(x) = x3 − 1 = 0

⇒ (x − 1)(x2 + x + 1) = 0

⇒ x = 1, ω, ω2, ω = −1

2
−

√
3

2

Since the field extension given by,
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Q

Q(ω)

p1(x) = x2 + x + 1

is the splitting field of f(x) and the irreducible factor polynomial of f(x) in Q is
x2+x+1 which has degree 2, then, [Q(ω) ∶ Q] = 2 so the Galois group of automorphisms
acting on the roots of f(x) that fix all roots that are elements of Q, (in this case the
root 1), and permute the other roots has just two elements. They can only be the
identity automorphism and the automorphism that interchanges ω and ω2, namely,

φ0 ∶ ω → ω, ω2 → ω2, the identity

φ1 ∶ ω → ω2, ω2 → ω

The Galois group {φ0, φ1} with order 2 is isomorphic to Z2 = {0,1} ◇

Let’s use a totally different approach to finding a Galois group of a polynomial.

Example 89. Consider the polynomial f(x) = x4 − 10x2 + 1 ∈ Q[x]. Applying the
quadratic formula gives x2 = 5 ±

√
6. There is no formula to find the four values of x

but by trial and error we can quickly find the four roots,

a =
√

2 +
√

3, b =
√

2 −
√

3, c = −
√

2 +
√

3, d = −
√

2 −
√

3,

since each of a2, b2, c2, d2 is one of 5 ± 2
√

6.
There are 4! ways to permute these four roots but not all are members of the Galois
group. The members of the Galois group must preserve or fix rational numbers and
in particular must preserve any algebraic equation with rational coefficients involving
a, b, c, d.
Some of these equations are,

ab = −1, ac = 1, cd = −1, bd = 1 (11.3.1)

a + d = 0, b + c = 0 (11.3.2)

Of course we chose the equations that produce rational numbers so that we can form
equations such as,

ab = −1⇒ φ(ab) = φ(−1) ⇒ φ(a)φ(b) = −1⇒ φ(b) = −1

φ(a) (11.3.3)

Note we use the definition that φ is an automorphism that fixes rationals, so
φ(−1) = −1.
In a similar fashion we can form the equations,

φ(c) = 1

φ(a) ; φ(d) = −φ(a) (11.3.4)
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It then follows that the only permutations that obey these relationships are the identity
and three others, namely,

φ0 ∶ (a, b, c, d) → (a, b, c, d)
φ1 ∶ (a, b, c, d) → (b, a, d, c)
φ2 ∶ (a, b, c, d) → (c, d, a, b)
φ3 ∶ (a, b, c, d) → (d, c, b, a)

Let’s consider any one of these, say φ2. Its action upon (a, b, c, d) is,

φ2(a) = c, φ2(c) = a, φ2(b) = d, φ2(d) = b

Now, applying the equation φ2(c) = 1

φ(a) to the pair φ2(a) = c, φ2(c) = a, we have

ac = φ2(c)φ2(a) = 1

φ(a)φ(a) = 1 and similarly bd = 1. In other words, the required

relationships of (11.3.1) hold for φ(2) so it is a member of the Galois group, and you
can easily show this is also true for φ1, φ3, φ4.
But if we try any other permutation we find these relationships do not hold (so it is
not a member of the Galois group).
For example, let’s suppose φ ∶ (a, b, c, d) → (b, c, a, d) is a member of the Galois group.
Then, φ(a) = b, φ(b) = c.
But by (11.3.4) above, φ(b) = − 1

φ(a) ⇒ c = −1

b
. But then b+ c = b− 1

b
= b − 1

b
≠ 0 since

b =
√

2 −
√

3.
So we have a contradiction to (11.3.2) above which states b + c = 0. ◇

Example 90. Consider f(x) = x3 − 2 over Q?
We have4,

x3 − 2 = 0

⇒ x3 = 2

⇒ x = 3
√

2 e
2πik
3 , k = 0,1,2

⇒ x = 3
√

2,
3
√

2ω,
3
√

2ω2, ω = −1 +
√

3i

2

Note ω is a root of the irreducible monic polynomial x2+x+1, so the splitting field
for f(x) over Q is therefore F = Q( 3

√
2, ω). The tower of fields with monic polynomials

indicated is,

4Please refer to Section 1.4 where we first encountered cube roots and the 3rd roots of unity
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Q

Q( 3
√

2)

Q( 3
√

2, ω)

p1(x) = x3 − 2, deg 3

p2(x) = x2 + x + 1, deg 2

The three zeros of x3 − 2 are 3
√

2, 3
√

2ω, 3
√

2ω2. The two zeros of x2 + x + 1 are ω,ω2.
We proved in Theorem 92, page 177, that the automorphisms permute the roots, so if
φ ∈ Gal(F /Q) then,

φ( 3
√

2) = 3
√

2 or
3
√

2ω or
3
√

2ω2

φ(ω) = ω or ω2

So we have six automorphisms5, namely,

φ0 ∶ 3
√

2→ 3
√

2, ω → ω

φ1 ∶ 3
√

2→ 3
√

2, ω → ω2

φ2 ∶ 3
√

2→ 3
√

2ω, ω → ω

φ3 ∶ 3
√

2→ 3
√

2ω, ω → ω2

φ4 ∶ 3
√

2→ 3
√

2ω2, ω → ω

φ5 ∶ 3
√

2→ 3
√

2ω2, ω → ω2

Then the Galois group has six elements or is of order 6. It is isomorphic to a finite
group of order 6. There are two possibilities, the abelian group Z6 and the non-abelian
symmetric group S3. Note, however, that,

φ2 ○ φ1( 3
√

2) = φ2( 3
√

2) = 3
√

2ω

but φ1 ○ φ2( 3
√

2) = φ2( 3
√

2ω) = φ2( 3
√

2)φ2(ω) = 3
√

2ω ⋅ ω

so the Galois group is not abelian and therefore Gal(Q( 3
√

2ω)/Q) ≅ S3. ◇

11.4 Multiple Roots

Next, we need to discuss the possibility that f(x) has some roots that are the same.
We will find that we always need the roots to be simple, that is f(x) has no multiple
roots.

5Note also the product of the degrees of the minimal polynomials in the tower is also 6.



172 Chapter 11. Galois Groups of Polynomials

Definition 71. multiple roots
If f(x) has the factorization,

f(x) = (x − r1)m1⋯(x − rs)ms),

we say the root ri has multiplicity mi.

Definition 72. simple roots
If mi = 1 we say ri is a simple root.

To determine whether a polynomial has multiple roots, we prove in Theorem 90
that f(x) ∈ K[x] has no multiple roots if and only if gcd(f(x), f ′(x)) = 1. Since our
base field is Q, the symbol f ′(x) is the ordinary derivative6 of f(x) in Q.

Theorem 90. ** A non-constant polynomial f(x) over the field R of real numbers
has no repeated roots if and only if gcd(f(x), f ′(x)) = 1, where f ′(x) is the usual
derivative of f(x) with respect to x.

Proof. We need to prove two implications,

(a) f(x) has no repeated roots implies gcd(f(x), f ′(x)) = 1.

(b) gcd(f(x), f ′(x)) = 1 implies f(x) has no repeated roots

In both cases we will prove the contrapositives,

(a) gcd(f(x), f ′(x)) ≠ 1 implies f(x) has repeated roots.

(b) f(x) has repeated roots implies gcd(f(x), f ′(x)) ≠ 1.

First, suppose gcd(f(x), f ′(x)) = d(x) ≠ 1. Then let p(x) be an irreducible factor of
d(x). Then,

f(x) = p(x)a(x) and f ′(x) = p(x)b(x) (11.4.1)

for some a(x), b(x) ∈ R[x].
By the product rule of differentiation we also have,

f ′(x) = a′(x)p(x) + a(x)p′(x)
⇒ p(x)b(x) = a′(x)p(x) + a(x)p′(x) by (11.4.1)

⇒ a(x)p′(x) = p(x)[a′(x) − b(x)]

Since p(x)��∣p′(x) this means p(x)∣a(x), say a(x) = c(x)p(x) for some c(x) ∈ R[x].
Then f(x) = a(x)p(x) = c(x)p2(x) and f(x) has a repeating factor, thus proving
f(x) has no repeated roots implies gcd(f(x), f ′(x)) = 1.

6Again, if you have not studied Calculus, you can simply accept we have a process for determining
whether a polynomial has multiple roots. Theorem 72B, page 129 is another proof of this theorem.
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*****

Conversely, suppose f(x) has a repeated factor, say f(x) = gn(x)q(x), n > 1. Then,

f ′(x) = ngn−1(x)g′(x)q(x) + gnq′(x)
= g(x)[ngn−2(x)g′(x)q(x) + gn−1(x)q′(x)]

which means g(x) also divides f ′(x) and so the gcd(f(x), f ′(x)) ≥ g(x) ≠ 1. This
proves that f(x) has repeated roots implies gcd(f(x), f ′(x)) ≠ 1.

11.5 Separable Polynomials

We will find, in our pursuit of unsolvable polynomials that we want our polynomials
to have no multiple roots. We define,

Definition 73. separable polynomial
We define a polynomial as separable if its irreducible factors have only simple roots,

that is, no multiple roots.

Definition 74. separable field
Given an algebraic extension field F over K as a field in which all the elements

are algebraic over K, that is, every element in F is the root of a nonzero polynomial
f(x) ∈ K, we say F is a separable field if the minimal polynomial of each element of
F is separable, that is if each of its irreducible factors does not have multiple roots.

Example 91. For example, f(x) = x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) ∈ Q[x] has an
algebraic extension field Q(

√
2,

√
3) which is separable since the minimal polynomials

x2−2 and x2−3 have the irreducible factors (x+
√

2), (x−
√

2), (x+
√

3) and (x−
√

3),
that is f(x) has the simple roots ±

√
2,±

√
3. ◇

Finally, we prove in the difficult Theorem 91 that if F is separable over K then it
is a simple extension of K, that is F =K(γ) for some γ ∈ F.

Theorem 91. *****
Let F be a finite, separable extension of a field K. Then F =K(γ) for some γ ∈ F.

Proof. We proceed by induction. We first prove the result in the case F =K(α1, β1).
For our purposes K = Q which is an infinite field so we suppose K is an infinite field.
Let F =K(α1, β1), α1, β1 ∈ F. We want to show F =K(γ), γ ∈ F.
Let f(x), g(x) be the minimal polynomials of α1, β1, so that f(α1) = 0, g(β1) = 0 and
assume the minimal polynomials have degree m,n respectively.
Let E be an extension of F over which both f(x), g(x) split.
Since F is separable, the roots α1, α2, . . . , αm and β1, β2, . . . , βn of f(x) and g(x) are
distinct and all lie in E.
If j ≠ 1, the equation αi + βjx = α1 + β1x has a unique solution x = αi − α1

β1 − βj
in E.
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But there are only a finite number of such an x since there are only a finite number
of αi given i = 2,3, . . . ,m, and only a finite number of βj given j = 2,3, . . . , n.
So since K and therefore E have an infinite number of elements there must be (an

infinite number of) elements a such that a ≠ αi − α1

β1 − βj
or α1 + aβ1 ≠ αi + aβj for αi ≠ α1

and βj ≠ β1.
Then, for one such value of a let γ = α1 + aβ1. We shall prove F =K(α1, β1) =K(γ).
It is clear that K(γ) =K(α1 + aβ1) ⊆ F =K(α1, β1) since if a,α1, β1 ∈ F then so does
α1 + aβ1.
Now if we can show β1 ∈K(γ) then so does −aβ1 and then,

−aβ1 ∈K(γ) and γ = α1 + aβ1 ∈K(γ) ⇒ α1 + aβ1 − aβ1⇒ α1 ∈K(γ)

We could then conclude α1 + aβ1 ∈ K(γ) so that K(α1, β1) ⊆ K(γ) and double con-
tainment gives the equality K(α1, β1) =K(γ).

******

So let’s prove β1 ∈K(γ).
Now, in general, if the minimal polynomial of an algebraic number u over a field K
has degree 1, (of the form x − u), then u must be an element of K.
Our strategy therefore is to prove the minimal polynomial p(x) of β1 over K(γ) is
linear or has degree 1 (of the form (x − β1)) so that β1 ∈K(γ).
Let h(x) = f(γ − ax), where γ = α1 + aβ1. This polynomial has coefficients −a and γ
in K(γ) and,

h(β1) = f(γ − aβ1) = f(α1) = 0,

since f(x) is the minimal polynomial of α1 over K. Thus β1 is a root of h(x) as well
as of its own minimal polynomial g(x).
We note, by Theorem 78, page 145, the minimal polynomial p(x) of β1 over K(γ)
must divide both h(x) and g(x).
We consider all three polynomials, p(x), g(x), h(x) over the extension field E.
Since γ = α1 +aβ1 and α1 +aβ1 ≠ αi +aβj then γ ≠ αi +aβj so γ −aβj ≠ αi for 1 ≤ i ≤m
and 2 ≤ j ≤ n. This means,

h(βj) = f(γ − aβj) ≠ f(αi) = 0,

so βj is not a root of h(x) for 2 ≤ j ≤ n.
Therefore since g(x) = b(x − β1)(x − β2)⋯(x − βn) only β1 is a root of both g(x) and
h(x).
We can conclude that over E, the gcd(h(x), g(x)) = x−β1. But the minimal polynomial
p(x) is a common divisor of h(x) and g(x) over E as well as over K(γ), so we must
have p(x) = x − β1 or it is linear.
We have therefore proved in the case F =K(α1, β1) that F =K(γ), γ = α1 + aβ1. We
proceed to prove the general result by induction.
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*****

Reformatting this result, we have proved F =K(α1, α2) ⇒ F =K(γ2) say.
Suppose F =K(γn−1) is true for F =K(α1, α2, . . . , αn−1).
We want to prove the result is true for F =K(α1, α2, . . . , αn), that is, F =K(γn).
Now,

F =K(α1, α2, . . . , αn−1, αn)
=K(α1, α2, . . . , αn−1)(αn)
=K(γn−1)(αn) by the assumption

=K(γn−1, αn)

But this is just the case F = K(α1, β1), so we are done, concluding F = K(γn) for
some γn ∈ F.



Chapter 12

Fundamental Theorem of Galois
Theory

The fundamental theorem of Galois Theory determines a one-to-one correspondence
for the extension field F /K of the intermediate fields between F and K with the
subgroups of the Galois group Gal(F /K). The tower or lattice of these intermediate
fields corresponds to the inverted tower or lattice of the subgroups of the Galois group.

12.1 The G-fixed subfield of a field F

Note 23. First let us recall the test for a subfield. We say a subset K of a field F
is a subfield if and only if K is a field under the same addition and multiplication
operations that apply to F. That is, K is a subgroup of F under addition and the
nonzero elements K× of K are a subgroup of F under multiplication. The subfield test
therefore is that for subgroups under the two operations of addition and multiplication.
Accordingly, K ⊆ F is a subfield of F if and only if,

� If a, b ∈K then a − b ∈K.

� If a, b ∈K× then ab−1 ∈K×.

We first prove in Theorem 92 that for a field F and a subgroup G of Aut(F ) that
the set,

{a ∈ F ∣ φ(a) = a for all φ ∈ G}

is a subfield of F, that is the elements in F that are fixed by all the automorphisms
in the subgroup G form a subfield of F.

176
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Theorem 92. ***
Let F be a field and G a subgroup of Aut(F ).
Then E = {a ∈ F ∣ φ(a) = a for all φ ∈ G} is a subfield of F.

Proof. Let F be a field and G < Aut(F ).
To show E = {a ∈ F ∣ φ(a) = a for all φ ∈ G} is a field, we need to show it is a subgroup
under both operations. We use the subfield tests outlined in Note 25 on page 183.
Let a, b ∈ E. Let φ ∈ G. We need to show a − b ∈ E and ab−1 ∈ E. The argument is the
same for both operations.
First, if b ∈ E, then b−1 ∈ E, since φ(b−1) = φ(b)−1 = b−1 so φ fixes b−1.
But then for all φ ∈ G, φ(ab−1) = φ(a)φ(b−1) = ab−1, so that φ fixes ab−1 making
ab−1 ∈ E.
Thus E is a subfield of F.

We now change the notation from E to one more informative.

Definition 75. G-fixed subfield of a field
The elements in a field F that are fixed by all the automorphisms in the subgroup G

of Aut(F ) are called the G−fixed subfield of F and we denote it by FG, that is,

FG = {a ∈ F ∣ φ(a) = a for all φ ∈ G}

Example 92. Let’s extend our example for F = Q(
√

2,
√

3), where
Gal(F /Q) = {i, α, β, γ}, with these elements given by,

i ∶
√

2→
√

2,
√

3→
√

3,
√

6→
√

6, the identity map fixing all elements

α ∶
√

2→ −
√

2,
√

3→
√

3,
√

6→ −
√

6,fixing
√

3 only

β ∶
√

2→
√

2,
√

3→ −
√

3,
√

6→ −
√

6,fixing
√

2 only

γ ∶
√

2→ −
√

2,
√

3→ −
√

3,
√

6→
√

6,fixing
√

6 only

The subgroup G = {i, α} consists of the identity automorphism i which fixes every el-
ement of F and α which fixes every element of Q as well as

√
3 and replaces

√
2,

√
6

with their additive inverses.
So the functions in G = {i, α} cause a permutation of the roots {±

√
2,±

√
3} by ex-

changing
√

2 with −
√

2 but leave ±
√

3 fixed along with all rational numbers.
Accordingly, FG = F {i,α} = {

√
3, a ∣ a ∈ Q}. ◇

We next prove in Theorem 93 that if F is the splitting field over K of a separable
polynomial and G = Gal(F /K), then, FG = FGal(F /K) =K.

Theorem 93. ***
If F is the splitting field over K of a separable polynomial f(x), then FGal(F /K) =K.

Proof. Say f(x) = a(x−α1)(x−α2)⋯(x−αr). With G = Gal(F /K) we have the tower
of fields,
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K

FG = {a ∈ F ∣ φ(a) = a for all φ ∈ G}

F =K(α1, α2, . . . , αr)

FG does not contain any of the αi since by Theorem 86, page 162, the automorphisms
φ permute all the roots of f(x) which is not the case for FG. So F is a splitting field
over FG as well as over K. Thus the automorphisms of Gal(F /FG) are the same as
those of Gal(F /K) making Gal(F /FG) = Gal(F /K).
By Corollary 89, page 166, we have both,

∣Gal(F /K)∣ = [F ∶K] and ∣Gal(F /FG)∣ = ∣Gal(F /K)∣ = [F ∶ FG]. (12.1.1)

By Theorem 83, page 154, [F ∶ K] = [F ∶ FG] ⋅ [FG ∶ K], so substituting (12.1.1) we
have,

∣Gal(F /K) = ∣Gal(F /K)∣ ⋅ [FG ∶K]

Hence, [FG ∶K] = 1.
This means a basis for FG over K has just the one element, the identity element e.
Hence every element of FG is just e times an element of K which means FG =K.

Example 93. In our above example, K = Q and F = Q(
√

2,
√

3), so F is the splitting
field of,

f(x) = x4 − 5x2 + 6 = (x −
√

2)(x +
√

2)(x +
√

3)(x −
√

3)

and G = Gal(F /Q) = {i, α, β, γ}. Then only the elements of Q are fixed by all of
i, α, β, γ so that FG = Q. ◇

Artin proved in Theorem 94 that if G is a finite group of automorphisms of a field
F then the degree of F as a vector space over FG is less than or equal to the number
of elements in G, that is, [F ∶ FG] ≤ ∣G∣.

Note 24. Let us first review some facts from the theory of systems of linear equations.
A system of n linear equations in n+1 variables all equal to zero has an infinite number
of solutions since if we select one of the variables we can express all the other variables
in terms of it, so this selected variable can be given any value at all. For example,
consider,

2x + y + z = 0 (12.1.2)

6x − y + 3z = 0 (12.1.3)

Then (12.1.2)+(12.1.3) gives 8x + 0y + 4z = 0⇒ z = −2x.
Substituting in (12.1.2) we obtain y = 0.
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Hence the infinite number of solutions of the three equations are (x,0,−2x) for any
x ∈ R, for example (1,0,−2) and (−2,0,4).
Clearly we can then multiply or divide any solution by a constant a to get (ax,0,−2ax)
which is another solution since (substituting into (12.1.2)) 2ax + 0 − 2ax = 0.
And we can add solutions together to get further solutions, for example,

(1,0,−2) + (−2,0,4) = (−1,0,2)

Theorem 94. **** (Artin)
Let F be a field and G a subgroup of Aut(F ). Then [F ∶ FG] ≤ ∣G∣.

Proof. Let G = {φ1 = id, φ2, . . . , φn) where each φi ∈ Aut(F ).
We may regard F as a vector space over FG with dimension [F ∶ FG].
Recall Definition 61, page 149, that a set of vectors {a1, a2, . . . , an+1} in a vector space
over a field F is linearly independent only if any linear combination of them is never
trivially zero, that is if the bi ∈ F are scalars then,

a1b1 + a2b2 + . . . + an+1bn+1 ≠ 0

unless all the bi are 0.
So suppose there exist (n + 1) elements {a1, a2, . . . an+1} of F that are linearly inde-
pendent over FG. We will prove this supposition is false.
Consider the system of equations,

φ1(a1)x1 + φ1(a2)x2 + . . . + φ1(an+1)xn+1 = 0

φ2(a1)x1 + φ2(a2)x2 + . . . + φ2(an+1)xn+1 = 0

. . .

φn(a1)x1 + φn(a2)x2 + . . . + φn(an+1)xn+1 = 0

The system has n equations and n+1 unknowns so there exists at least one non-trivial
solution, say (b1, b2, . . . , bn+1) in F. We choose the solution with the smallest number
of non-zero elements and rearrange its elements if necessary so that b1 ≠ 0. Dividing

each bi by b1 gives another solution (1,
b2
b1
. . . ,

bn+1
b1

) which we may again call simply,

(1, b2, . . . , bn+1). (12.1.4)

Since φ1 = identity or φ1(ai) = ai for all (a1, a2, . . . , an+1), we have for the first equation
in the system,

φ1(a1)x1 + φ1(a2)x2 + . . . + φ1(an+1)xn+1 = 0

⇒ a1x1 + a2x2 + . . . + an+1xn+1 = 0

Now, not all of the elements bi from (12.1.4) can belong to FG since, substituting,
we have a1b1 + a2b2 + . . . + an+1bn+1 = 0 which would contradict the assumption that
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the elements {a1, a2, . . . , an+1} are linearly independent over FG, since all the bi and
specifically b1 = 1 are not zero.
We now rearrange the elements so that, say, b2 ∉ FG.
Since FG = {c ∈ F ∣ φ(c) = c for all φ ∈ G} and b2 ∉ FG, this means b2 is not fixed by
all the automorphisms in G. Let’s say φk(b2) ≠ b2.
If we apply φk to each of the elements, (b1, b2, . . . , bn+1), we do not change the elements
since multiplying each element by φk merely permutes the system.
However, noting φk(1) = 1, we do get a second solution,

(1, φk(b2), . . . , φk(bn+1)) (12.1.5)

Subtracting this second solution 12.1.5 from the first solution 12.1.4 gives a non-trivial
third solution,

(0, φk(b2) − b2, . . . , φk(bn+1) − bn+1), (12.1.6)

which is non-trivial since at least φk(b2) − b2 ≠ 0.
But this third solution has at least one fewer1 non-zero terms than (12.1.4), con-
tradicting the assumption that we chose the solution with the smallest number of
non-zero elements. Hence there do not exist n + 1 elements {a1, a2, . . . , an+1} of F
that are linearly independent over K.
So a basis for F over FG has less than n + 1 elements.
Accordingly, [F ∶ FG] ≤ n = ∣G∣.

Recall we defined in Definition 57 on page 146 that if u ∈ F is algebraic over K
then the monic polynomial p(x) of minimal degree in K[x] such that p(u) = 0 is
called the minimal polynomial of u over K.
Recall also Definition 67 on page 157 that an extension field F of K is called a splitting
field for

f(x) = anxn + an−1xn−1 + . . . + a1x + a0

over K if there exist elements r1, r2, . . . , rn such that,

� f(x) = an(x − r1)(x − r2)⋯(x − rn)

� F =K(r1, r2, . . . , rn)

Definition 76. normal extension
indexnormal extension If F is an algebraic extension of a field K then F is said to be
a normal extension of K if every irreducible polynomial in K[x] that contains a root
in F is a product of linear factors in F [x].

1Since the leading term has been changed from a ”1” to a ”0”.
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Example 94. For example, Q(
√

2) is a normal extension of Q since it is the splitting
field of x2 − 2 = (x −

√
2)(x +

√
2).

But Q( 3
√

2) is not a normal extension of Q since the minimal polynomial is

x3 − 2 = (x − 3
√

2)(x − ω 3
√

2)(x − ω2 3
√

2), ω = −1 +
√

3

2

and Q( 3
√

2) does not contain ω. ◇

Theorem 95. ****
Let F be an extension field of K. The following statements are equivalent.

(1) F is the splitting field2 over K of a separable3 polynomial.

(2) K = FG for some finite group G of automorphisms of F.

(3) F is a finite, normal4, separable5 extension6 of K.

Proof. Let F be an extension field of K. We have three parts to prove.

(1) ⇒ (2)
We need to show if F is the splitting field over K of a separable polynomial then
K = FG for some finite group G of automorphisms of F,
First we need to find a group G such that K = FG. But in Theorem 93, page 177, we
proved if F is the splitting field over K of a separable polynomial f(x) ∈K[x], then
FGal(F /K) =K, so for G we have Gal(F /K).
Second we need to show our G is finite. But by Corollary 89, page 166, we have
∣Gal(F /K)∣ = [F ∶ K], and since by Theorem 84, page 158, [F ∶ K] ≤ n! where n is
the degree of f(x) and is therefore finite, then G has a finite number of elements.

*****

(2) ⇒ (3).
We need to show if K = FG for some finite group G of automorphisms of F, then,

(a) F is a finite extension of K. This is clear since F is the splitting field over K
of a separable polynomial which can only have as many roots and therefore
extensions of K as its finite degree.

(b) F is a separable extension of K, which will be the case if the minimal polynomial
of each element of F is separable, that is, does not have multiple roots.
So let p(x) ∈ K[x] be any irreducible polynomial in K and α ∈ F be a zero of

2Definition 67, page 157
3Definition 73, page 173
4Definition 76, page 180
5Definition 74, page 173
6Definition 55, page 142
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p(x).
Let the number of distinct elements in the set {φ(α) ∣ φ ∈ G} be n. Then these
elements are the results of the φ′s acting on α which we will label α1, α2, . . . , αn.
One of the φ′s is the identity so let’s say α1 = α.
Consider the polynomial,

h(x) = (x − α1)(x − α2)⋯(x − αn) (12.1.7)

= xn + an−1xn−1 + . . . + a1x + a0, say. (12.1.8)

If α1 = α, then h(α1) = h(α) = 0. Applying any of the φ′s to (12.1.7) and
(12.1.8) we have,

(x − φ(α1))(x − φ(α2))⋯(x − φ(αn)) (12.1.9)

= xn + φ(an−1)xn−1 + . . . + φ(a1)x + φ(a0) (12.1.10)

But since by Theorem 86, page 162, φ simply permutes the αi, the product of
the (x−ai) in (12.1.7) and the (x−φ(ai)) in (12.1.9) are the same, from which
we conclude from (12.1.8) and (12.1.10) that,

xn + an−1xn−1 + . . . + a1x + a0
= xn + φ(an−1)xn−1 + . . . + φ(a1)x + φ(a0)

So φ(ai) = ai for all i, and therefore the coefficients ai of h(x) all belong to,

FG = {a ∈ F ∣ φ(a) = a for all φ ∈ G}

Since K = FG and h(x) ∈ K[x] and h(α) = 0, and since p(x) ∈ K[x] and is
irreducible and, by definition of the minimal polynomial, p(α) = 0, then we
must have p(x)∣h(x) in K[x] by Theorem 78 on page 145.
It follows that p(x) is the product of some of the (x− ai). Since all of these are
distinct, p(x) is separable and has all of its zeros in F. Then since p(x) is any
irreducible polynomial in K[x], F is a separable extension of K.

(c) F is a normal extension of K, meaning every irreducible polynomial in K[x]
that has a root in F is the product of linear factors in F.
This is true since any polynomial in K[x] with a root in F factors into irre-
ducible polynomials in K[x] and, by what we have proved, each of these is
separable and has only linear factors in F, then we have a normal7 extension.

*****

(3) ⇒ (1).
We need to show if F is a finite, normal, separable extension of K, that is, every
irreducible polynomial in K[x] that has a root in F is a product of linear factors in

7Definition 74, page 173
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F, then F is the splitting field over K of a separable polynomial,
By Theorem 91, page 173, F is a simple extension, say F = K(γ). If F is a normal
extension of K and γ has a minimal polynomial f(x) ∈ K[x], then by Definition 76,
page 180, F contains all the roots of f(x) making it a splitting field for f(x).

Definition 84. Galois extension
We define a finite extension field F of a field K to be a Galois extension if it satisfies
any and hence all of the conditions in Theorem 101. Thus a Galois extension may
also be called a normal extension.

Note 25. There are two ways for an extension not to be a Galois extension. One
is for it to not be a normal extension, which if it contains one root of a polynomial,
must contain all the roots. For instance, Q( 4

√
2) is not normal, and hence not Galois,

since it is missing the complex roots ± 4
√

2e2πi
k
4 , k = 1,2,3, of x4 − 2, and therefore is

not a splitting field for f(x) = x4 − 2.
Another possibility for a non-Galois extension is for it to be not separable. But for
us, all polynomials f(x) ∈ Q[x] are separable into distinct linear factors.

Corollary 96 is that if F is an extension field of K and,

K = FG = {a ∈ F ∣ φ(a) = a for all φ ∈ G,G < Aut(F )}

then G = Gal(F /K).

Corollary 96. ***
If F is an extension field of K such that K = FG for some finite group G of automor-
phisms of F then G = Gal(F /K).

Proof. Given

K = FG = {a ∈ F ∣ φ(a) = a for all φ ∈ G}
Gal(F /G) = {φ ∈ AutF ∣ φ(a) = a for all a ∈ G},

then G is a subgroup of Gal(F /K), so we have ∣G∣ ≤ ∣Gal(F /K)∣.
By Theorem 95 above if K = FG for some finite group G of automorphisms of F then
equivalently F is the splitting field over K of some separable polynomial.
Since this is the condition required by Corollary 89, page 166, we have
∣Gal(F /K)∣ = [F ∶K].
But by Artin’s Lemma, Theorem 94, page 179, we have [F ∶K] ≤ ∣G∣, so we conclude
∣Gal(F /K)∣ ≤ ∣G∣.
Together with the earlier statement ∣G∣ ≤ ∣Gal(F /K)∣, this means

G = Gal(F /K).



184 Chapter 12. Fundamental Theorem of Galois Theory

12.2 The Fundamental Theorem of Galois Theory

We are almost ready to prove the fundamental theorem. It requires a group theory
proof, Theorem 97, which we prove upfront. It states:

Theorem 97. Let φ ∶ G → H be a group homomorphism between groups G,H. Let
e ∈H be the identity element. Then the kernel of φ is a normal subgroup of G.

Proof. Let φ ∶ G → H be a group homomorphism between groups G,H. Let e1 ∈
G,e2 ∈H be the identity elements.
Recall the kernel of a group homomorphism φ acting on a group G is defined in
Definition 26 on page 55 by ker(φ) = {g ∈ G ∣ φ(g) = e2} where e2 is the identity
element in H.
Let k ∈ ker(φ) so that φ(k) = e2.
Then, by Definition 31, page 65, ker(φ) is a normal subgroup of G if gkg−1 ∈ ker(φ)
for all g ∈ G and k ∈ ker(φ), that is, φ(gkg−1) = e2. But,

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)e2φ(g−1) = φ(gg−1) = φ(e1) = e2

Hence, gkg−1 ∈ ker(φ) so that the kernel of φ is a normal subgroup of G.

Theorem 98. ***** Fundamental Theorem of Galois Theory
Let F be the splitting field of a separable polynomial over the field K and
G = Gal(F /K). Then we have the series of groups and fields,

G > G1 > G2 > . . . > Gi > . . . > {e}
F > F1 > F2 > . . . > Fj > . . . >K, where,

1) For H a subgroup of G, the corresponding subfield is FH and H = Gal(F /FH).

2) If FH is a subfield of F containing K, the corresponding subgroup of G is
Gal(F /FH) =H.

3) There is a one-to-one reversing correspondence between the subgroups of G and
the subfields of F that contain K.

4) For any subgroup H of G,

[F ∶ FH] = ∣H ∣, and,

[FH ∶K] = [G ∶H]

5) The subgroup H is normal if and only if the subfield FH is a normal extension
of K and in this case,

Gal(FH/K) ≅ Gal(F /K)/Gal(F /FH)
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Proof. 1) Using Corollary 96, page 183, since F is an extension field of FH and H
is a subgroup of G = Gal(F /K) and so is finite, then,

H = Gal(F /FH). (12.2.1)

2) Given a subfield FH such that F ⊇ FH ⊇K then F is also a splitting field over
FH , so by Theorem 93, page 177, FGal(F /FH) = FH giving Gal(F /FH) =H.

3) Let Ω ∶H → FH = FGal(F /FH).
Then by 1) and 2) we have an inverse function,

Ω−1 ∶ FH →H = Gal(F /FH).

By Lemma 6, page 38, the existence of an inverse means Ω defines a one-to-one
correspondence. This correspondence reverses the order in the chains of sub-
groups and subfields since if L ⊆ H are subgroups of the Galois group G then
the subfield left fixed by H is certainly contained in the subfield left fixed by L.
Put simply, the more automorphisms there are, the smaller the number of ele-
ments that will be fixed by all of them.

4) First, by Corollary 89, page 166,

∣Gal(F /FH)∣ = [F ∶ FH] (12.2.2)

By (12.2.1) above,

H = Gal(F ∶ FH) (12.2.3)

Then, combining 12.2.2 and 12.2.3,

∣H ∣ = [F ∶ FH], (12.2.4)

which proves the first statement.

*****

Second, by Theorem 83, page 154,

[F ∶K] = [F ∶ FH] ⋅ [FH ∶K] (12.2.5)

and by Corollary 89, page 166, with G = Gal(F /K),

∣G∣ = [F ∶K] (12.2.6)

Hence, using (12.2.5),

∣G∣ = [F ∶ FH][FH ∶K] (12.2.7)
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By Lagrange’s Theorem 23, page 64,

∣G∣ = ∣H ∣ ⋅ [G ∶H] (12.2.8)

Hence, (12.2.7) and (12.2.8) give,

∣H ∣[G ∶H] = [F ∶ FH][FH ∶K] (12.2.9)

Then, using (12.2.4),

[F ∶ FH][G ∶H] = [F ∶ FH][FH ∶K]

so by cancellation,

[G ∶H] = [FH ∶K]

proving the second statement.

5) We want to show the subgroup H is normal if and only if the subfield FH is a
normal extension of K and in this case,

Gal(FH/K) ≅ Gal(F /K)/Gal(F /FH)

We first claim that if a subgroup H in the chain of groups is a normal subgroup
of G = Gal(F /K), then,

Gal(FH/K) ≅ Gal(F /K)/Gal(F /FH).

We will prove this by defining a group homomorphism that leads to a normal
subgroup and then we will use it to prove the isomorphism.
We have the setup that K ⊆ FH ⊆ F is a tower of fields where F is the splitting
field of some polynomial f(x) ∈K[x] and FH is a subfield of F.
Let,

Ψ ∶ Gal(F /K) → Gal(FH/K), Ψ(φ) = φ∣FH

where φ ∈ Gal(F /K) and φ∣FH means φ is restricted to acting only on the
elements of FH .
Then Ψ is a group homomorphism under composition of functions since if
σ, τ ∈ Gal(F /K) and a ∈ FH then,

Ψ(σ ○ τ(a)) = Ψστ(a)
= (στ)∣FH(a)
= στ(a) since a ∈ FH

= σ(τ(a))
= σ∣FH(τ ∣FH(a))
= Ψ(σ)(Ψ(τ)(a))
= Ψ(σ) ○Ψ(τ)(a)
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Now by Definition 34, page 73,

ker(Ψ) = {φ ∣ φ ∈ Gal(F /K) ∣ Ψ(φ) = id}, id the identity automorphism on FH .

= {φ ∣ φ ∈ Gal(F /K) ∣ φ∣FH = id}

So φ ∈ ker(Ψ) if and only if φ∣FH is the identity automorphism on FH , that is
φ(a) = a for all a ∈ FH . But then, φ ∈ Gal(F /FH).
Hence, again by definition, ker(Ψ) = Gal(F /FH).
But by Theorem 87 above, the kernel of a group is a normal subgroup of that
group. So we are in the situation required for the assumption, namely,

H = Gal(F /FH) ⊲ Gal(F /K).

But then, since F is the splitting field of a polynomial over K by Theorem
93, page 177, each automorphism φ ∈ FH extends to an element of Gal(F /K)
and therefore ψ is onto and8 ψ(Gal(F /K)) = Gal(FH/K). We have therefore
proved the claim, since, by the First Isomorphism Theorem 33, page 73,

Gal(F /K)/Gal(F /FH) ≅ Gal(FH/K)

*****

We now proceed to prove the “if and only if” statements in (5).
First, assume H = Gal(F /FH) whose automorphisms fix all the elements of
FH , is a normal subgroup of Gal(F /K). We want to show FH is a normal
field extension of K. By Theorem 95, page 181, we only need to show FH is a
splitting field over K of a polynomial with coefficients in K.
Since H = Gal(F /FH) is a normal subgroup of Gal(F /K) then if τ ∈ Gal(F /K)
and σ ∈ H, then τ−1στ ∈ H which means τ−1στ fixes all the elements of FH , so
for all a ∈ FH ,

τ−1στ(a) = a
⇒ ττ−1στ(a) = τ(a)
⇒ στ(a) = τ(a)

or σ fixes τ(a). Therefore since,

FGal(F /FH) = {a ∈ F ∣ σ(a) = a for all σ ∈ Gal(F /FH)}, by (12.2.1)

this means,

τ(a) ∈ FGal(F /FH) = FH .

8See Note 15, page 74
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Now FH is a finite separable extension of K since F is and FH ⊆ F. So, by
Theorem 91, page 173, FH = K(γ) for some γ ∈ FH . Let p(x) be the minimal
polynomial of γ over K.
By Theorem 95, page 181, all the zeros of p(x) belong to F. If b is any zero
of p(x) then by Theorem 869, there is an automorphism τ ∈ Gal(F /K) with
b = τ(a). But we have just shown τ(a) ∈ FH for all a ∈ FH and τ ∈ Gal(F /K).
Therefore b ∈ FH .
So all the zeros of p(x) belong to FH making FH the splitting field of a poly-
nomial p(x) over K and hence FH is a normal extension of K.

*****

Second, to prove the converse, we assume FH is a normal extension of K.
We need to prove that for all φ ∈ Gal(F /K) and θ ∈ Gal(F /FH) that
φ−1θφ ∈ Gal(F /FH) so that H = Gal(F /FH) is a normal subgroup10 of
G = Gal(F /K). Let FH be a normal extension of K and let φ ∈ Gal(F /K).
If p(x) is the minimal polynomial of γ ∈ FH then φ(γ) is also a root of p(x)
and so we must have φ(γ) ∈ FH since FH is a normal extension of K.11

Thus for any θ ∈ Gal(F /FH) we have θφ(γ) = φ(γ) = γ, that is θ fixes the
elements of FH and so,

φ−1θφ(γ) = φ−1φ(γ) = γ

or φ−1θφ fixes γ and therefore φ−1θφ ∈ Gal(F /FH), making H = Gal(F /FH) a
normal subgroup of G = Gal(F /K) by Definition 31, page 65.

12.3 Examples of Fundamental Theorem of Galois

Theory

Example 95. Consider f(x) = x4 − 5x2 + 6 = (x2 − 2)(x2 − 3).
The roots are ±

√
2,±

√
3. The extension field containing all the roots is

Q(
√

2,
√

3) = {a + b
√

2 + c
√

3 + d
√

6 ∣ a, b, c, d ∈ Q}.

The Galois group of f(x) over Q is the set of automorphisms that permute
a+b

√
2+c

√
3+d

√
6 and therefore specifically

√
2,

√
3,

√
6 while leaving fixed all a ∈ Q.

9The automorphisms permute the roots - see Theorem 86, page 162
10By Definition 31 on page 65.
11That is, any polynomial with a root in FH is a product of linear factors in FH .
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As we found earlier in Example 86, page 167, they are:

i ∶
√

2→
√

2,
√

3→
√

3,
√

6→
√

6, the identity map fixing all elements

α ∶
√

2→ −
√

2,
√

3→
√

3,
√

6→ −
√

6,fixing
√

3 only

β ∶
√

2→
√

2,
√

3→ −
√

3,
√

6→ −
√

6,fixing
√

2 only

γ ∶
√

2→ −
√

2,
√

3→ −
√

3,
√

6→
√

6,fixing
√

6 only

Note, γ = αβ since,

αβ(
√

2) = α(
√

2) = −
√

2

αβ(
√

3) = α(−
√

3) = −
√

3

αβ(
√

6) = α(−
√

6) =
√

6

We conclude the Galois group Gal(Q(
√

2,
√

3)/Q) = {i, α, β,αβ}
We can set up a one-to-one reversing correspondence between the subgroups of the
Galois group and the subfields of Q(

√
2,

√
3), reversing in the sense that the larger

the subgroup, the smaller the corresponding subfield. The two lattices of groups and
fields are as shown below.

Q(
√

2,
√

3)
Ò ∣ Ó

Q(
√

2) Q
√

3) Q(
√

6)
Ó ∣ Ò

Q

Subfields

Gal(Q/Q) = {i}
Ò ∣ Ó

Gal(Q(
√

2)/Q) = {i, α} Gal(Q
√

3)/Q) = {i, β} Gal(Q(
√

6)/Q) = {i, αβ}
Ó ∣ Ò

Gal(Q(
√

2,
√

3)/Q) = {i, α, β,αβ}

Subgroups

In the language of the theorem, there is a one-to-one reversing correspondence between
the subgroups of the Galois group Gal(Q(

√
2,

√
3) and the subfields of the splitting

field F = Q(
√

2,
√

3) of the polynomial f(x) = x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) over Q.
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Recall that the symbol FG is the G−fixed subfield of F, that is,

FG = {a ∈ F ∣ φ(a) = a for all φ ∈ G}

Then, in particular, we have the theorem statements demonstrated in our example as
shown.

a. Theorem statements (1) and (2):
If H is a subgroup of G then the corresponding subfield is FH and conversely,
if FH is a subfield of F that contains K then the corresponding subgroup of G
is Gal(F /FH) and FH = FGal(F /FH).

In our example G = {i, α, β,αβ} and we have,

1) {i} is a subgroup of G and the corresponding subfield is
F {i} = {a ∈ F ∣ φ(a) = a for all φ ∈ G} which is simply F or Q(

√
2,

√
3)

and {i} = Gal(F /F {i}).
2) G = {i, α, β,αβ} is a subgroup of G and the corresponding subfield is FG

which is just Q since only Q is fixed by all the automorphisms.

3) {i, α} is a subgroup of G and the corresponding subfield is F {i,α} which is
Q(

√
2) since only Q(

√
2) is fixed by all the automorphisms in {i, α}

4) {i, β} is a subgroup of G and the corresponding subfield is F {i,β} which is
Q(

√
3) since only

√
3 is fixed by all the automorphisms in {i, β}

5) {i, αβ} is a subgroup of G and the corresponding subfield is F {i,αβ} which
is Q(

√
6) since only

√
6 is fixed by all the automorphisms in {i, αβ}

b. Theorem statement (4):
For any subgroup H of G, [F ∶ FH] = ∣H ∣ and [FH ∶K] = [G ∶H].

To illustrate [F ∶ FH] = ∣H ∣ in our example consider the case H = {i, α}. Then
[Q(

√
2,

√
3) ∶ Q(

√
2)] = 2 since for this the minimal polynomial is x2 − 2 which

has degree 2 and ∣H ∣ = ∣{i, α}∣ = 2.

*****

To illustrate [FH ∶ K] = [G ∶ H] in our example, first note [Q(
√

2) ∶ Q] = 2
since the minimal polynomial x2 − 2 has degree 2. Now the factor group,

{i, α, β,αβ}/{i, α} = {i{i, α}, α{i, α}, β{i, α}, αβ{i, α}}
= {{i, α},{α,α2},{β,αβ},{αβ,α2β}
= {i, α},{β,αβ}} since α2 = i.

So the number of cosets,

[{i, α, β,αβ} ∶ {i, α}] = 2 also.

The other cases are similar.
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c. Theorem statement (5):
The subgroup H is normal if and only if the subfield FH is a normal extension
of K and in this case, Gal(FH/K) ≅ Gal(F /K)/Gal(F /FH).
First, recall a subgroup H of a group G is a normal subgroup if ghg−1 ∈H for all
h ∈ H and g ∈ G. In particular, by Theorem 30, page 69, all abelian subgroups
are normal subgroups.
Second, F is a normal extension of a field K if F is the splitting field over K
of a separable polynomial, that is a polynomial which factors in F into simple
factors (read, degree one polynomials).
In our example H = {i, α} is a normal subgroup by Theorem 30 since all groups
of order 2 are abelian. The subfield FH = Q(

√
2) is a normal extension of Q

since the minimal polynomial x2−2 splits in Q(
√

2) into two degree one factors,
namely, x −

√
2, x +

√
2. ◇

Example 96. Consider f(x) = x3 − 2 ∈ Q[x].
Since by the usual factoring of the difference of two cubes,

f(x) = x3 − 2 = (x 1
3 − (2 1

3 )3) = (x − 2
1
3 )(x2 + 2

1
3x + 2

2
3 )

and, by the quadratic formula,

x2 + 2
1
3x + 2

2
3 = 0⇒ x = −2

1
3 ±

√
2

2
3 − 4 ⋅ 2 2

3

2
= 2

1
3 ⋅ −1 ±

√
3i

2

= 2
1
3ω,2

1
3ω2, ω = −1 ±

√
3i

2
,

so we can write

f(x) = (x − 2
1
3 )(x − 2

1
3ω)(x − 2

1
3ω2)

where ω,ω2 are the roots of the monic polynomial x2 + x + 1. The three roots of f(x)
are therefore 2

1
3 ,2

1
3ω,2

1
3ω2.

The splitting field of f(x) over Q is the smallest extension field that contains all the
roots. We can construct it in two steps in two different ways, showing the respective
minimal polynomials, thus:

Q

Q( 3
√

2)

Q( 3
√

2, ω)

p1(x) = x3 − 2

p2(x) = x2 + x + 1

Q

Q(ω)

Q( 3
√

2, ω)

p1(x) = x2 + x + 1

p2(x) = x3 − 2



192 Chapter 12. Fundamental Theorem of Galois Theory

While in the previous example, Q(
√

2) = {a+b
√

2 ∣ a, b ∈ Q} this is not that simple

for Q(2 1
3 ) since for F = {a + b 2

1
3 ∣ a, b ∈ Q}, as we saw in a previous example, we do

not have closure under multiplication as required for a field. Thus,

(a + b 2
1
3 )(c + d 2

1
3 ) = A +B 2

1
3 +C 2

2
3 ∉ F = {a + b2 1

3 ∣ a, b ∈ Q}

In any case, this would mean a basis B for F over Q has just two elements,
B = {1,2

1
3}, but the minimal polynomial has degree 3 so the basis for F over Q must

contain 3 elements. Prompted by the result of the multiplication, we choose the basis
{1,2

1
3 ,2

2
3} and identify,

Q(2 1
3 ) = {a + b 2

1
3 + c 2

2
3 ∣ a, b, c ∈ Q}

Then,

Q(2 1
3 , ω) = {X + Y ω ∣ X,Y ∈ Q(2 1

3 )}
= {a + b 2

1
3 + c 2

2
3 + ω(d + e 2

1
3 + f 2

2
3 ) ∣ a, b, c, d, e, f ∈ Q}

= {a + b 2
1
3 + c 2

2
3 + dω + e 2

1
3ω + f 2

2
3ω) ∣ a, b, c, d, e, f ∈ Q}

Therefore a basis for Q(2 1
3 , ω) over Q is,

B = {1,2
1
3 ,2

2
3 , ω,2

1
3ω,2

2
3ω}

and ∣B∣ = 6 which agrees with,

[Q(2 1
3 , ω) ∶ Q] = [Q(2 1

3 , ω) ∶ Q(2 1
3 ] ⋅ [Q(2 1

3 ∶ Q] = 2 ⋅ 3 = 6

since the respective minimal polynomials have degrees 2,3 as noted above.
Further, since the order of the Galois group is given by the relationship,

∣Gal(Q(2 1
3 , ω)/Q∣ = [Q(2 1

3 , ω) ∶ Q] = 6,

the Galois group has 6 elements.
They may be identified by their action on the generating elements 2

1
3 , ω as follows.

i ∶ 2 1
3 → 2

1
3 , ω → ω

f ∶ 2 1
3 → 2

1
3ω, ω → ω

g ∶ 2 1
3 → 2

1
3 , ω → ω2

f 2 ∶ 2 1
3 → 2

1
3ω2, ω → ω

gf 2 ∶ 2 1
3 → 2

1
3ω, ω → ω2

gf ∶ 2 1
3 → 2

1
3ω2, ω → ω2
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Note we have replaced the six identifiers φ0 to φ5 with the identity i, the letters f, g
and combinations of these letters. You can easily see for example that the last auto-
morphism is gf since,

g ○ f(2 1
3 ) = g(2 1

3ω) = g(2 1
3 )g(ω) = 2

1
3ω2;

g ○ f(ω) = g(ω) = ω2

We conclude,

Gal(Q(2 1
3 , ω)/Q) = {i, f, f 2, g, gf, gf 2}

Let us now consider the two lattices of subgroups and field extensions. We have,

Q( 3
√

2, ω)
Ò ∣ Ó Ó

Q(ω) Q( 3
√

2) Q( 3
√

2ω) Q( 3
√

2ω2)
Ó ∣ Ò Ò

Q

Subfields

{i}
Ò ∣ Ó Ó

{i, f, f 2} {i, g} {i, gf} {i, gf 2}
Ó ∣ Ò Ò

{i, f, g, f 2, gf, gf 2}

Subgroups

The subgroups of the Galois group G and the corresponding subfields are as follows:

1. G→ Q

2. {i} → Q( 3
√

2, ω)

3. There is a unique subgroup of order 3, namely, {i, f, f 2}, which is cyclic since
f 3 = i and therefore normal by Theorem 30, page 69. This is so since if,

(a) f 3( 3
√

2) = f 2(f( 3
√

2)) = f 2( 3
√

2ω) = f(f( 3
√

2)f(ω))
= f( 3

√
2ω ⋅ ω) = 3

√
2ω3 = 3

√
2

(b) f 3(ω) = f 2(ω) = f(ω) = ω

then f 3 = i, the identity.
This corresponds to the fact that the corresponding subfield Q(ω) is a normal
or Galois extension12 of Q since the minimal polynomial x2 + x + 1 factors into
linear factors as x2 + x + 1 = (x + ω)(x + ω2).

12See Definition 71, page 172
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4. There are three subgroups of order 2, namely {i, g},{i, gf},{i, gf 2} correspond-
ing to the three subfields Q( 3

√
2),Q( 3

√
2ω),Q( 3

√
2ω2). These subgroups are not

normal in the Galois group and this corresponds to the fact that the subfields
are neither normal nor separable.
For example, to show {i, g} is not normal in {i, f, g, f 2, gf, gf 2} it suffices to
show αβα−1 ∉ {i, g} for any α ∈ {i, f, g, f 2, gf, gf 2} and β ∈ {i, g}.
Given f 3 = f 2 ⋅ f = 1 we choose α = f 2 so that α−1 = f and then,

f 2gf( 3
√

2) = f 2g( 3
√

2ω) = f 2( 3
√

2ω2) = f( 3
√

2 ω ⋅ ω ⋅ ω) = f( 3
√

2) = 3
√

2ω ≠ g( 3
√

2)
or the identity, so f 2gf ∉ {i, g}.
The other two arguments are similar. The reason why the corresponding sub-
fields are not normal extensions is that each contains only a single root of its
monic polynomial x3 − 2. To be a normal extension any polynomial with roots
in Q( 3

√
2) must split completely in Q( 3

√
2).

*****

Finally, we have the theorem statement that if the subgroup H is normal, then,

Gal(FH/K) ≅ Gal(F /K)/Gal(F /FH)
In our example K = Q. We have already shown in 3. above that H = {i, f, f 2} is a
normal subgroup of Gal(Q( 3

√
2, ω)/Q). Then, given FH = Q(ω), it remains to show,

Gal(Q(ω)/Q) ≅ Gal(Q( 3
√

2, ω)/Q)/Gal(Q( 3
√

2, ω)/Q(ω))

We first note Gal(Q( 3
√

2, ω) is non-abelian. We only need one counter example so
consider,

f ∶ 3
√

2→ 3
√

2ω, ω → ω;

g ∶ 3
√

2→ 3
√

2, ω → ω2

Then,

f ○ g( 3
√

2) = f( 3
√

2) = 3
√

2ω

but

g ○ f( 3
√

2) = g( 3
√

2, ω) = 3
√

2ω2 ≠ f ○ g( 3
√

2),

so Gal(Q( 3
√

2, ω) is non-abelian.
Since the Galois group is of order 6 and is non-abelian, we conclude it is isomorphic
to the symmetric group S3 which is also non-abelian and of order 6. That S3 is
non-abelian can also be shown by a single counter example, say,

(12)(13)(2) = 1

but

(13)(12)(2) = 3

Let us again consider the tower of fields and respective minimal polynomials,
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Q

Q(ω)

Q( 3
√

2, ω)

p1(x) = x2 + x + 1

p2(x) = x3 − 2

Since Q( 3
√

2, ω) is the splitting field of the degree 3 polynomial x3 − 2 over Q(ω) and,

∣Gal(Q( 3
√

2, ω)/Q(ω))∣ = [Q( 3
√

2, ω) ∶ Q(ω)] = 3,

then,

Gal(Q( 3
√

2, ω)/Q(ω)) ≅ A3

where A3 is the alternating group of three elements and is a normal subgroup of S3.
Similarly, Q(ω) is the splitting field of the degree 2 polynomial x2 + x + 1 over Q so,

∣Gal(Q(ω)/Q))∣ = [Q(ω) ∶ Q] = 2

making,

Gal(Q(ω)/Q) ≅ Z2.

Then, since we already know from Theorem 36 on page 78 that S3/A3 ≅ Z2, we have
shown,

Gal(Q(ω)/Q) ≅ Gal(Q( 3
√

2, ω)/Q)/Gal(Q( 3
√

2, ω)/Q(ω))



Chapter 13

Insolvability of Higher Degree
Polynomials

Which brings us to our goal, to prove the quintic, and in general, polynomials of
degree ≥ 5, are not solvable by radicals.

13.1 Preamble to the Main Theorem

The two roots of the irreducible polynomial equation f(x) = ax2 + bx + c = 0,
a, b, c ∈ Q are,

x1 = −
b

2a
+

√
b2 − 4ac

2a
, x2 = −

b

2a
−

√
b2 − 4ac

2a

Let u be such that u2 = b2 − 4ac ∈ Q. If we construct the tower of fields,

u2 ∈ Q

Q(u)

then Q(u) = {c + du ∣ c, d ∈ Q} contains the splitting field (all solutions) of f(x) as

we easily see by letting c = − b

2a
, d = ±1

2a
. Note the extension field is obtained by

adjoining an element whose square belongs to the field below it. Of course we may
have b2 − 4ac < 0 in which case we write

√
b2 − 4ac =

√
−(b2 − 4ac)i and the splitting

field needs to be Q(u, i) where i =
√
−1 is a second root of unity giving for full

completeness the tower,

u2 ∈ Q

Q(u)

Q(u, i)

196
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Similarly, we found on page 16 a formula for the three roots of the cubic
f(y) = y3 + py + q, namely,

y1 = 3
√
Q, y2 = 3

√
Qω, y3 = 3

√
Qω2

where ω = e 2πi
3 , Q = −q

2
+
√

(q
2
)
2

+ (p
3
)
2

Let u1, u2 be such that u21 = (q
2
)
2

+ (p
3
)
2

∈ Q, u32 = −(q
2
) + u1 ∈ Q(u1).

If we construct the tower of fields,

u21 ∈ Q

u32 ∈ Q(u1) = {a + bu1 ∣ a, b ∈ Q}

Q(u1, u2) = {c + du2 ∣ c, d ∈ Q(u1)}

Q(u1, u2, ω) = {e + fω ∣ e, f ∈ Q(u1, u2)}

then Q(u1, u2, ω) contains the splitting field of f(y). Note each extension field is ob-
tained by adjoining an element whose square or cube belongs to the field below it.
Finally we create the top extension field by adding the third roots of unity.

In both of the polynomials f(x) = ax2 + bx + c, f(y) = x3 + px + q, we found an
extension field which contains the elements that could be assembled as a formula for
the roots of the polynomial. The formulas contained only rational numbers combined
by the field operations (addition, multiplication, inverses) and taking nth roots as well
as the nth roots of unity where n is the degree of the respective minimal polynomials
linking the subfields. Accordingly we say the two equations can be solved by radicals.
Hence to show no such formulas exist for polynomials of degree ≥ 5 we need to show,
for polynomials of degree ≥ 5, we cannot have an extension field that contains the
elements that could be assembled as a formula for the roots of the polynomial.

Formally, we define,
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Definition 78. radical extension field
An extension field F of the base field Q is a radical extension of Q if there exist

elements u1, u2, . . . , um ∈ F such that,

1. F = Q(u1, u2, . . . , um)

2. un1 ∈ Q and unii ∈ Q(u1, u2, . . . , ui−1) for ni ∈ Z for 1 ≤ i ≤m.

In essence each extension field contains one more nth root of an element taken
from u1, u2, . . . , un ∈ F. Accordingly we define,

Definition 79. solvable by radicals
For a polynomial f(x) ∈ Q[x], the equation f(x) = 0 is said to be solvable by radicals

if there exists a radical extension F of Q that contains all the roots of f(x).

The key idea in building the radical extension is the adding in of roots of the
polynomial xn − a for suitable values of a since p(x) = xn − a is the minimal polyno-
mial of each n

√
a. Finally we find we need to add in only one root of unity carefully

constructed.
Accordingly, we first need to determine the structure of the Galois Group of the

polynomial of the form xn − a and then use the Fundamental Theorem of Galois
Theory to see what happens when we one-by-one adjoin the roots of xn − a to the
base field Q.

We start with xn − 1 ∈ Q[x]. There are n solutions of the equation xn = 1, we call
them the nth roots of unity.1

Making use of Euler’s result, (see the Appendix),

eπi = −1⇒ e2πi = 1,

we have

n
√

1 = (e2πi)
1
n = e 2πi

n

but we can extend this into n different roots of unity by noting e
2πi
n
k = (e 2πi

n )
k
= 1 and

that for k = 0,1, . . . , n − 1 each value of e
2πi
n
k is different but then repetition begins

and continues.

Example 97. Thus, for example, the fifth roots of unity are the set
{e0, e 2πi

5
⋅1, e

2πi
5
⋅2, e

2πi
5
⋅3, e

2πi
5
⋅4} and there are no more since, for example,

e
2πi
5
⋅7 = e 2πi

5
⋅2 × e 2πi

5
⋅2 = e 2πi

5
⋅2. ◇

We prove in Theorem 99 that the roots of unity form a group under multiplication.

1See the appendix for the discussion of the roots of unity resulting from the equation
xn − 1 = 0⇒ xn = 1⇒ x = n

√
1.
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Theorem 99. **
The nth roots of unity form a cyclic group under multiplication modulo n.

Proof. The nth roots of unity are,

{e2πi kn ∣ 1 ≤ k ≤ n} = {e2πi 1n , e2πi 2n , . . . , e2πinn = 1} =< {e2πi 1n >

Clearly this satisfies Definition 11, page 32, of a cyclic group generated by an element
a, namely < a > ∣ a ∈ Z}. It remains to be proved it is a group. But we have,

� Closure: Consider e2πi
k
n ⋅e2πi jn = e2πi j+kn . Under multiplication modulo n we can

have j + k ≤ n so the product is an element of the set.

� Identity: e2πi
n
n = 1.

� Inverses: e2πi
k
n ⋅ e2πin−kn = 1 so e2πi

k
n has the inverse e2πi

n−k
n .

� Associativity: Obvious.

So the nth roots of unity are a group.

We then prove in Theorem 100 that if F is the splitting field of f(x) = xn − 1 over
Q then the Galois group Gal(F /Q) is abelian

Theorem 100. **
Let F be the spitting field of xn − 1 over Q. Then Gal(F /K) is an abelian group.

Proof. The distinct roots of xn − 1 are the nth roots of unity,

ω0 = 1, ω, ω2, . . . , ωn−1 = 1, or ω = e2πi kn , k = 0,1, . . . , n − 1.

Therefore, the splitting field of xn − 1 over Q is F = Q(ω).
Since the elements φi of the Galois group permute the group of roots, (Theorem 86,
page 162), we only need to observe their possible actions on the group generator ω.
The only possibilities are the n automorphisms,

φi(ω) = ωk, 0 ≤ k ≤ n − 1.

Then,

φj(ω)φk(ω) = ωjωk = ωj+k

φk(ω)φj(ω) = ωkωj = ωj+k

shows the Galois group is abelian.

We prove for F the splitting field of xn−a over Q that Gal(F /Q) is a cyclic group.

Theorem 101. ***
Let a ∈ Q and F be the spitting field of xn − a over Q. Then Gal(F /Q) is a cyclic
group whose order is a divisor of n.
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Proof. The n distinct roots of xn−a are n
√
a = a 1

n multiplied by the nth roots of unity,
namely,

a
1
nω, ω = e 2kπi

n , 0 ≤ k ≤ n − 1.

Therefore, the splitting field of xn − a over Q is F = Q(a 1
n , ω).

Since the elements φk of the Galois group permute the roots, we only need to observe
their possible actions on a

1
nω. The only possibilities are the n automorphisms,

φk(a
1
nω) = a 1

nωk, 0 ≤ k ≤ n − 1.

Consider,

Ω ∶ Gal(F /Q) → Zn where Ω(φk(a
1
nω)) = k, 0 ≤ k ≤ n − 1.

The homomorphism step is as follows.

Ω(φk ○ φj)(a
1
nω) = Ω(φk(a

1
nωj))

= Ω(a 1
nωjk)

= jk
= Ω(φj(a

1
nω))Ω(φk(a

1
nω))

So Ω is a homomorphism. Clearly Ω is a one-to-one correspondence since each element
of Gal(F /K) is numbered exactly the same as an element of Zn.
Then, Gal(F /Q) ≅ Zn and since Zn is cyclic then, by Theorem 20, page 58, so is
Gal(F /Q).

13.2 Main Theorem

We are almost ready for our main theorem where we find the conditions under which
a polynomial equation has or does not have a formula for determining its roots.
First, in Theorem 102 we prove that if E is a radical extension of Q then there exists
an extension F of E that is a normal2 radical extension of Q.

2For F /K, F is a normal extension of K if every irreducible polynomial in K[x] that contains a
root in F is the product of linear factors in F [x].
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Theorem 102. ***
If E is a radical extension of Q then there exists an extension F of E that is a normal,
radical extension of Q.

Proof. Let E be a radical extension of Q with elements u1, u2, . . . , um ∈ E such that,

1. F = Q(u1, u2, . . . , um)

2. un1 ∈ Q and unii ∈ Q(u1, u2, . . . , ui−1) for ni ∈ Z for 1 ≤ i ≤m.

Then, diagrammatically, Definition 78, page 198 of a radical extension is shown in
Tower A of fields,

un1
1 ∈ Q

un2
2 ∈ Q(u1)

un3
3 ∈ Q(u1, u2)

⋮

unmm ∈ Q(u1, . . . , um−1)

E = Q(u1, . . . , um)

Tower A

Let,

f(x) = (x − u1)(x − u2)⋯(x − um) (13.2.1)

Let F be the splitting field of f(x) over Q. This gives the tower of fields,

Q

Q(u1)

⋮

Q(u1, . . . , um−1)

F = Q(u1, . . . , um)

Tower B

But we can then form Tower C below.
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un1
1 ∈ Q

un2
2 ∈ Q(u1)

⋮

unmm ∈ Q(u1, . . . , um−1)

F = Q(u1, . . . , um)

Tower C

Now, with respect to f(x), every automorphism φ ∈ Gal(F /Q) permutes the roots of
f(x) so we can write,

f(x) = (x − φ(u1))(x − φ(u2))⋯(x − φ(um)) (13.2.2)

where the factors in (13.2.2) are a permutation or rearrangement of the factors in
(13.2.1).
Then each root of f(x) has the form φ(ui) for some integer i and some automorphism
φ ∈ Gal(F /Q),
Since for any φ ∈ Gal(F /Q) we have φ(unii ) = φ(ui)ni , we can replace each of the unii
elements in Tower C with φ(ui)ni .
Then we have φ(ui)ni ∈ Q(φ(u1), . . . , φ(un−i)) for i = 2, . . . ,m, thus enabling us to
create Tower D.

φ(u1)n1 ∈ Q

φ(u2)n2 ∈ Q(φ(u1))

⋮

φ(um)nm ∈ Q(φ(u1), . . . , φ(um−1))

F = Q(φ(u1), . . . , φ(um))

Tower D

Accordingly, as is clear by comparing Tower D with the diagrammatic definition
of a radical extension shown in Tower A, if Gal(F /Q) = {φ1, φ2, . . . , φk} then the
elements {φj(ui)} for i = 1,2, . . . ,m and j = 1,2, . . . , k satisfy the conditions of the
definition of a radical extension showing F is a radical extension of Q.
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Finally, we need Theorem 103 from group theory that proves a factor group of a
cyclic group is cyclic and also the definition of a primitive root of unity.

Theorem 103. **
The factor group of a cyclic group is cyclic.

Proof. Suppose G =< a >= {an ∣ n ∈ Z}.
Let G/H be any factor group of G.
We need to prove G/H = {(aH)n ∣ n ∈ Z} =< aH > .
Now, any element of G/H is of the form gH where g ∈ G.
Since G is cyclic, there is an integer n such that g = an.
So gH = anH.
Now anH = (aH)n according to Definition 32, page 68, of coset multiplication.
Therefore gH = (aH)n, n ∈ Z for any coset gH making,

G/H = {gH ∣ g ∈ G} ⇔ G/H = {(aH)n ∣ n ∈ Z} =< aH >

or G/H is cyclic.

We further discuss roots of unity in the appendix. We distinguish the following.

Definition 80. primitive root of unity
ω is a primitive nth root of unity if ωn = 1 but ωr ≠ 1 for all r < n.

Example 98. For example, consider the 6th roots of unity given by
e2πi

k
6 , k = 0,1,2,3,4,5. Clearly

(e2πi 56)
6
= e2πi 51 = (e2πi)5 = 1

but (e2πi 56)
r
≠ 1 for any r < 6, making e2πi

5
6 a primitive 6th root of unity.

But not all the roots of unity are primitive, since, for example,

(e2πi 36)
2
= e2πi = 1 but 2 < 6. ◇

A simple investigation soon makes it clear that e2πi
k
n is a primitive nth root if and

only if the fraction
k

n
is in lowest terms, i.e. that is gcd(k,n) = 1.

We have done a lot of preparation. We are now ready for the main theorem,
Galois’ masterpiece, from which we can easily show the insolvability of polynomial
equations of degree 5 and above.
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Theorem 104. ***** (Main Theorem)
Let f(x) ∈ Q[x]. If the equation f(x) = 0 is solvable by radicals then the Galois group,
Gal(E/Q), of E over Q is solvable where E is the splitting field of f(x) over Q.

Proof. Let f(x) ∈ Q[x].
Let E be the splitting field of f(x) over Q. Note that E exists by Theorem 84, page
158.
We need to show G = Gal(E/Q) is solvable, where, using Definition 37, page 82, a
group G is solvable if we can form a finite chain of subgroups,

{e} = G0 ≤ G1 ≤ G2 ≤ . . . ≤ Gn = G

such that Gi ⊴ Gi+1, or Gi is a normal subgroup of Gi+1, and the factor groups Gi+1/Gi

are all abelian.

*****

Assume f(x) = 0 is solvable by radicals, that is, by Definition 79 on page 198, there
exists a radical extension F of Q that contains all the roots of f(x).
So let F be a radical extension of Q that contains the splitting field E of f(x) over
Q. We have the tower of fields,

Q

E

F

*****

First we show, for a given root of unity, ζ,

Gal(E/Q) ≅ Gal(F (ζ)/Q)/Gal(F (ζ)/E) (13.2.3)

We first note a normal radical extension field of Q exists by Theorem 102, page 201.
We construct this normal radical extension field as follows.
By Definition 79, page 198, of a radical extension we know F is a splitting field over
Q with elements u1, u2, . . . , um ∈ F such that,

1. F = Q(u1, u2, . . . , um)

2. un1 ∈ Q and unii ∈ Q(u1, u2, . . . , ui−1) for ni ∈ Z for 1 ≤ i ≤m.

Let n be the least common multiple of the exponents ni so that ni∣n for all
i = 1, . . . ,m.
By adjoining a primitive nth root of unity ζ we obtain a normal radical extension
F (ζ) of Q, that is, every irreducible polynomial in Q[x] that contains a root in F (ζ)
is a product of linear factors in F (ζ).
This is true since successive powers of a primitive nth root of unity generate all the
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mth roots of unity for any m∣n so3 F (ζ) contains all the primitive nthi roots of unity
ωi for all i and therefore elements of the form ni

√
ui(ωi)k, k = 0, . . . , ni − 1.

***

Therefore4 by the Fundamental Theorem 98, (5), page 184, since F (ζ) is a normal ex-
tension of E we have for the corresponding groups that Gal(F (ζ)/E)◁Gal(F (ζ)/Q).
Further, by Theorem 95, (1) ⇔ (3), page 181, since E is a splitting field over Q means
E is also a normal extension of Q then again by the Fundamental Theorem we also
have Gal(E/Q) ◁Gal(F (ζ)/E). We have the tower of fields,

3For example, a primitive 6th root of unity is e
2πi
6 5 since gcd(5,6) = 1 and it generates all the

2nd (±1) and 3rd roots of unity as follows:

2nd ∶ (e 2πi
6 5)

3
= (eπi)5 = −1;

(e 2πi
6 5)

5
= (e2πi)4(e2πi) = +1;

3rd ∶ (e 2πi
6 5)

2
= (e 2πi

3 3) (e 2πi
3 2) = e 4πi

3 ;

(e 2πi
6 5)

4
= e 2πi

3 10 = (e 2πi
3 3)

3
(e 2πi

3 ) = e 2πi
3

4We will be using the Fundamental Theorem 98 several times, specifically part (5). We proved,
Let F be the splitting field of a separable polynomial over the field K and G = Gal(F /K).
Then we have the series of groups and fields,

G > G1 > G2 > . . . > Gi > . . . > {e}
F > F1 > F2 > . . . > Fj > . . . >K, where,

1) For H a subgroup of G, the corresponding subfield is FH and H = Gal(F /FH).

2) If FH is a subfield of F containing K, the corresponding subgroup of G is Gal(F /FH) =H.

3) There is a one-to-one reversing correspondence between the subgroups of G and the subfields
of F that contain K.

4) For any subgroup H of G,

[F ∶ FH] = ∣H ∣, and,

[FH ∶K] = [G ∶H]

5) The subgroup H is normal if and only if the subfield FH is a normal extension of K and in
this case,

Gal(FH/K) ≅ Gal(F /K)/Gal(F /FH)
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Q

E

F (ζ)

and the chain of subgroups,

Gal(E/Q) ◁Gal(F (ζ)/E) ◁Gal(F (ζ)/Q)

satisfying the conditions of the Fundamental Theorem 98 (5), page 184, of Galois
Theory. Hence,

Gal(E/Q) ≅ Gal(F (ζ)/Q)/Gal(F (ζ)/E)

or in other words, Gal(E/Q) is isomorphic to the factor group of Gal(F (ζ)/Q) de-
termined by Gal(F (ζ)/E).

*****

Next we show Gal(F (ζ)/Q) is solvable. Let Q(ζ, u1, . . . , ui) = Fi. Since Fi−1 con-
tains all the nthi roots of unity, Fi is the splitting field of xni − ai for some ai ∈ Fi−1.
We have developed, in the usual inverse sense, the corresponding towers of fields and
groups as shown below. The minimal polynomials that are of the form xni − ai, are
shown for three of the linkages and the minimal polynomial xn − 1 applying to the
first linkage.

Q

Q(ζ)

Q(ζ, u1) = F1

Q(ζ, u1, u2) = F2

⋮

Q(ζ, u1, u2, . . . , ui−1) = Fi−1

Q(ζ, u1, u2, . . . , ui) = Fi

⋮

Q(ζ, u1, u2, . . . , um)

p0(x) = xn − 1

p1(x) = xn1 − u2

pi(x) = xni − ui

Gal(F (ζ)/Q)

Gal(F (ζ)/Q(ζ))

Gal(F (ζ)/F1)

Gal(F (ζ)/F2)

⋮

Gal(F (ζ)/Fi−1)

Gal(F (ζ)/Fi)

⋮

Gal(F (ζ)/Fm) = {e}

Tower of subfields Tower of Subgroups
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Now Fi−1 contains all the nthi roots of unity, so Fi is the splitting field of xni − ai
for some ai ∈ Fi−1. Therefore by Theorem 95, (1) ⇔ (3), page 181, Fi is a normal
extension of Fi−1 and and therefore by the Fundamental Theorem 98 (5), page 184,
the Galois group Gal(F (ζ)/Fi) is a normal subgroup of Gal(F (ζ)/Fi−1) and,

Gal(Fi/Fi−1) ≅ Gal(F (ζ)/Fi−1)/Gal(F (ζ)/Fi) (13.2.4)

But also by Theorem 101, page 199, Gal(Fi/Fi−1) is cyclic so that, by Theorem
4, page 33, it is also abelian. Therefore by (13.2.4) the isomorphic factor groups
Gal(F (ζ)/Fi−1)/Gal(F (ζ)/Fi) are also abelian.
By the same argument Gal(F (ζ)/Q)) is normal in Gal(F /Q) since F (ζ) is the split-
ting field of the minimal polynomial of ζ which is xn − 1. Hence,

Gal(F (ζ)/Q)/Gal(F (ζ)/Q(ζ)) ≅ Gal(Q(ζ)/Q)

which is abelian by Theorem 100 on page 199.

The descending chain of normal subgroups,

Gal(F (ζ)/Q) ⊇ Gal(F (ζ)/Q(ζ)) ⊇ Gal(F (ζ)/Q(ζ, u1)) ⊇
. . . ⊇ Gal(F (ζ)/Q(ζ, u1, . . . , um)) = {e}

with each factor group abelian, shows that Gal(F (ζ)/Q) is a solvable group.

*****

Finally, by the Fundamental Theorem 98, page 184, of Galois Theory, Gal(F (ζ)/E)
is a normal subgroup of Gal(F (ζ)/Q).
Hence the factor group Gal(F (ζ)/Q)/Gal(F (ζ)/E) is solvable by Theorem 42, page
85.
But then, using (13.2.3), the isomorphic group Gal(E/Q) is solvable, concluding the
proof of the theorem.

Note 26. The conditions of the Fundamental Theorem of Galois Theory require the
extension field F to be the splitting field of a separable polynomial over a base field
K. This means whenever we use this theorem we are assuming any related f(x) is
separable or has no repeated roots. This requirement also follows from Theorems 88,
91 and 95 as well as Corollary 89, all of which lead on to the Fundamental Theorem.

13.3 Insolvable Quintic Equations

We are ready to conclude. Theorem 39, page 81, proved Sn is not solvable for n ≥ 5
so we only need to find a polynomial of degree ≥ 5 whose Galois group is (isomorphic
to) Sn. We will apply the contrapositive statement of Theorem 104, namely, if the
Galois group of f(x) over Q is not solvable, then the equation f(x) = 0 is not solvable
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by radicals.
So let’s find an actual polynomial that is not solvable by radicals. We need the
following two theorems.

Theorem 105. **** (Cauchy - this version due to Pinter)
Let G be a finite group of order n and let p be a prime divisor of n. Then G has an
element of order p and subsequently a subgroup of order p.

Proof. Let G be a finite group of order n and let p be a prime divisor of n.
Consider all the p−tuples (a1, a2, . . . , ap−1, ap) of elements of G whose product
a1a2,⋯ap−1ap = e.
If we select the p− 1 elements (a1, a2, . . . , ap−1) at random, and note a group contains
the inverse of each element, then there is a unique ap such that ap = a−1p−1a−1p−2⋯a−12 a−11 ,
making,

a1a2⋯ap−2ap−1a−1p−1a−1p−2⋯a−12 a−11 = e.

Noting they are not necessarily all distinct, given G has order n, there are n choices
for each of the p − 1 elements of ap = a−1p−1a−1p−2⋯a−12 a−11 , and therefore we can obtain
np−1 tuples.
We call two p−tuples equivalent if one is merely a cyclic permutation of the other.
Thus (a1, a2, . . . , ap−1, ap) is equivalent to exactly p distinct tuples, namely5,

(a1, a2, . . . , ap−1, ap), (a2, a3, . . . , ap−1, ap, a1), (a3, a4, . . . , ap−1, ap, a1, a2),
. . . , (ap, a1, . . . , ap−2, ap−1)

But we cannot say p divides np−1 since, provided6 p is a prime, a p−tuple of the form
(a, a, . . . , a) with a.a.⋯.a = e is equivalent only to itself.
In order to prove the theorem we assume there are no p−tuples of the form (a, a, . . . , a)
other than obviously (e, e, . . . , e). Removing (e, e, . . . , e), under this assumption there
are p equivalence classes for each (a1, a2, . . . , ap) in the remaining total of np−1 − 1
p−tuples.
Hence,

p ∣ np−1 − 1⇒ np−1 ≡ 1(modp)

But in the statement of the theorem we have

p ∣ n⇒ p ∣ np−1⇒ np−1 ≡ 0(modp).
5You can imagine this as the elements (a1, a2, . . . , ap) placed on a “clock with p hours” with a1

in the “12” position and so on all the way around to ap in the “11” position. Then rotate the clock
clockwise for one “hour” to obtain the first cyclic permutation and so on.

6If p is not a prime, say p = jk, then tuples of the form (a, a, . . . , a, b, a, a, . . . , a, b) where
(a, a, . . . , a, b) has length j (or k) will not yield p equivalence classes, since rotating the “clock”
will result in the same form after just j rotations of one “hour”.
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This contradiction proves there must be a p−tuple of the form (a, a, . . . , a) with
a.a.⋯a = ap = e, that is, there is an element a ∈ G of order p.
Finally, the cyclic group < a > is a subgroup of G of order p since if a ∈ G then so
does every power of a and if p is prime then the only powers of a that survive are
a, a2, . . . , ap = 1 which is the definition of the cyclic group < a > .

Note 27. Let us review the relationship between Sn and the Gal(F /K) where F is
the splitting field of a polynomial f(x) ∈K[x] of degree n.
The Gal(F /K) is the set of automorphisms that, by Theorem 86, page 162, permute
the roots of f(x), degree n, and ∣Gal(F /K)∣ ≤ n!, by Corollary 89, page 166 and
Theorem 84, page 158.
Sn is the set of automorphisms from {1,2, . . . , n} to {1,2, . . . , n} that, by definition,
permute the set {1,2, . . . , n} and, by Theorem 7, page 40, ∣Sn∣ = n!
Accordingly, if we label the roots of f(x) as {1,2, . . . , n} we can regard Gal(F /K) as
a subgroup of Sn.

Theorem 106. ***
Let f(x) ∈ Q[x] be an irreducible quintic7 having exactly three real zeros. Then f(x)
is not solvable by radicals over Q.

Proof. Let F ⊆ C be the splitting field of a polynomial f(x) over Q and let u1, u2, u3
be the three real zeros. Then the other two8 zeros u4, u5 must be complex conjugates
of each other. This is so, since given the three real zeros, f(x) must factor as,

f(x) = (x − u1)(x − u2)(x − u3)(ax2 + bx + c)

and by the quadratic formula, the roots of (ax2 + bx + c) are x = −b ±
√
b2 − 4ac

2a
so

when b2−4ac < 0 the roots are complex conjugates are complex conjugates, say c±di.
So we have the roots {u1, u2, u3, c + di, c − di}.
The Galois group of F /Q consists of automorphisms which permute these roots. We
have already met complex conjugation which interchanges complex conjugates thus,

φ ∶ c + di→ c − di
φ ∶ c − di→ c + di

And we noted φ does not change u1, u2, u3 ∈ R which can be written as,

φ ∶ u ± 0i→ u ∓ 0i

So, since complex conjugation is an automorphism fixing the base field Q, then its
restriction to F is an element of Gal(F /Q).

7By Note 26, page 207, this f(x) must be separable or have no multiple roots.
8Note by Corollary 50, page 99, a degree 5 polynomial cannot have more than 5 roots, so if it is

separable then it has exactly 5 roots.
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So, when Gal(F /Q) is viewed as a subgroup of S5, φ will be precisely the 2-cycle

(4,5) = (1 2 3 4 5
1 2 3 5 4

) which interchanges the two complex roots 4 and 5 according

to,

φ(c + di) = c − di, φ(c − di) = c + di

Also, since f(x) is irreducible by assumption and has degree 5, then [F ∶ Q] = 5 and
so ∣Gal(F /Q)∣ = [F ∶ Q] is divisible by 5.
Hence by Cauchy’s Theorem 105 above, Gal(F /Q) has an element of order 5.
Again, viewing Gal(F /Q) as a subgroup of S5, then Gal(F /Q) has an element of
order 5. But the elements of S5 of order 5 are precisely the 5-cycles.
Therefore Gal(F /Q), viewed as a subgroup of S5, contains both a 2-cycle and a 5-
cycle. Then9 by Theorem 14, Gal(F /Q) = S5 which, by Theorem 40, page 83, is not
a solvable group.
We conclude, by Theorem 104, page 204, this irreducible quintic f(x) ∈ Q is not
solvable by radicals.

Now let’s find a specific quintic polynomial not solvable by radicals. There are
many of them and various algebra textbooks quote different ones but they all mostly
use the same method of proof, namely, they show their particular polynomial is
irreducible (by applying the Eisenstein criterion) and that the polynomial has exactly
three real roots (by using differential calculus). Per Note 26, page 207, we must show
our f(x) is separable or has no multiple roots. The conclusion of insolvability follows
from Theorem 106.

Example 99. f(x) = x5 − 4x + 2 is not solvable by radicals.
Proof: Note, if f(x) = x5 − 4x+ 2 = a5x5 +a4x4 +a3x3 +a2x2 +a1x+a0 then a5 = 1, a4 =
0, a3 = 0, a2 = 0, a1 = −4, a0 = 2.
Then f(x) = x5 − 4x + 2 is irreducible by Eisenstein’s criterion10 since the prime 2
divides a0 = 2 and also divides a4 = a3 = a2 = 0 but 22

��∣a0 and 2∣a1 = −4 but 2��∣a5 = 1.
(OK, we need differential Calculus or just study the graph below.)
Next, according to Note 26, page 207 we need to show this f(x) is separable. We use
Theorem 90, page 172 to show gcd(f(x), f ′(x)) = 1.
Now f(x) = x5 − 4x + 2⇒ f ′(x) = 5x4 − 4. The roots of 5x4 − 4 = 0 are given by,

f ′(x) = 5x4 − 4 = 0⇒ x2 =
√

4

5
or x2 = −

√
4

5
⇒ x = ± 4

√
4

5
,

and when substituted into f(x) none of them yield a value of 0.
Hence gcd(f(x), f ′(x)) = 1 so f(x) has no multiple roots.

9Theorem 14, page 50, proved that every element in S5 can be written as the product of powers
of (1,2,3,4,5) and (1,2), that is the cycles (1,2,3,4,5) and (1,2) generate S5.

10Eisenstein’s criterion, Theorem 70B, 125, for factoring f(x) = anxn+an−1xn−1+. . .+a1x+a0, an >
0, ai ∈ Z is that if there is a prime p that may divide a0 but p2 ��∣a0 and which divides all the other
coefficients except an, then f(x) is irreducible over Q.
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Let us proceed to show f(x) has three real roots and two complex ones. We use dif-
ferential calculus again.

Since f ′′(x) = 20x3 there is a maximum point at (− 4

√
4
5 ≈ −0.95, f (− 4

√
4
5) ≈ 5) and a

minimum point at ( 4

√
4
5 ≈ 0.95, f ( 4

√
4
5) ≈ −1) .

These two critical points, combined with the observations that,

f(x > 2) = x(x4 − 4) + 2∣x>2 > 26,

f(2) = 26, f(1) = −1, f(0) = 2, f(−1) = 5, f(−2) = −22,

f(x < −2) = x(x4 − 4) + 2∣x<−2 < −22

show f(x) has exactly three real roots since the graph crosses the x−axis exactly three
times, specifically between 1 and 2, 0 and 1 and -1 and -2. See the graph below.
Hence, by Theorem 106, f(x) = x5 − 4x + 2 is insolvable by radicals.

x5 − 4x + 2

−2 −1 1 2

−40

−32

−24

−16

−8

8

16

24

32

40

◇



Appendix A

Taylor Series and Roots of Unity

In this appendix we assume the reader has studied differential calculus for at least
one semester.

A.1 Mean Value Theorem

The mean value theorem of Calculus states that if a line segment is drawn joining the
end points of a smooth curve then there is at least one point (c, f(c)) on the curve
where the tangent at that point and the line segment are parallel or have the same
slope. The diagram below illustrates the theorem. If the line segment has a slope of
zero then there are an infinite number of such points with x−coordinate c. Otherwise,
the number of c points depends upon the number of maximum and minimum points
between the two end points.

c−1 1 2 3 4 5 6

1

2

3

4

5

6

7

8

Let us now consider a general theorem that can be used to express “nice” or smooth
functions as a polynomial-type infinite series called, after their discoverer, Taylor
Series.

212
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A.2 Taylor Series

Definition 81. smooth function
A smooth function at a point is a function that can be differentiated an infinite

number of times at that point.

Theorem 107. **
Suppose a smooth function has the representation f(x) = c0 + c1x + c2x2 + . . . for all
values of x near 0. Then,

cn =
f (n)(0)
n!

, for all n ∈ Z+ ∪ {0}

Proof.

f(x) = c0 + c1x + c2x2 + c3x3 + c4x4 + . . . + cnxn + . . .
f ′(x) = 1!c1 + 2c2x + 3c3x

2 + 4c4x
3 + . . . + ncnxn−1 + . . .

f ′′(x) = 2!c2 + 3 ⋅ 2c3x + 4 ⋅ 3c4x2 + . . . + n(n − 1)xn−2 + . . .
f ′′′(x) = 3!c3 + 4 ⋅ 3 ⋅ 2c4x + . . . + n(n − 1)(n − 2)cnxn−3 + . . .

⋮

Substituting x = 0 into these equations yields,

c0 = f(0), c1 =
f ′(0)

1!
, c2 =

f ′′(0)
2!

, c3 =
f ′′′(0)

3!
, c4 =

f (4)(0)
4!

, . . .⇒ cn =
f (n)(0)
n!

Theorem 108. **
Suppose a function is smooth for all points in an interval about x = 0. Then for all x
in that interval, we can write,

f(x) = f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn +Rn(x),

where the remainder Rn(x) =
f (n+1)(c)
(n + 1)! x

n+1 and c is some point between x and 0.

Proof. Define,

Rn(x) = f(x) − f(0) −
f ′(0)

1!
x − f

′′(0)
2!

x2 − f
′′′(0)
3!

x3 − . . . − f
(n)(0)
n!

xn

Define,

g(t) = f(x) − f(t) − f
′(t)
1!

(x − t) − f
′′(t)
2!

(x − t)2 − f
′′′(t)
3!

(x − t)3

− . . . − f
(n)(t)
n!

(x − t)n −Rn(x)
(x − t)n+1
xn+1
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where we regard x as a constant. Then,

g(x) = f(x) − f(x) − f
′(x)
1!

(x − x) − f
′′(x)
2!

(x − x)2 − f
′′′(x)
3!

(x − x)3

− . . . − f
(n)(x)
n!

(x − x)n −Rn(x)
(x − x)n+1
xn+1

= 0

and,

g(0) = f(x) − f(0) − f
′(0)
1!

x − f
′′()x)
2!

x2 − f
′′′(0)
3!

x3

− . . . − f
(n)(0)
n!

xn −Rn(x)
xn+1

xn+1
= Rn(x) −Rn(x) = 0

Since g(x) = g(0) = 0, making the slope of the line segment joining them equal to 0,
by the Mean Value Theorem1 there is a point on the curve with x−coordinate c such
that g′(c) = 0. Now, using the product and chain rules,

g′(t) = 0 −���f ′(t) −
�
��

�
��
�

f ′′(t)
1!

(x − t) +
�
�
�f ′(t)

1!
−����

���
�XXXXXXXX

f ′′′(t)
2!

(x − t)2 +
��

��
��
�

f ′′(t)
1!

(x − t) − . . .

− f
n+1(t)
n!

(x − t)n +
��

���
���

��XXXXXXXXXX

fn+1(t)
(n − 1)!(x − t)

n−1 +Rn(x)
(n + 1)(x − t)n

xn+1

= −f
n+1(t)
n!

(x − t)n +Rn(x)
(n + 1)(x − t)n

xn+1

Then, substituting x = c,

0 = g′(c) = −f
(n+1)(c)
n!

(x − c)n +Rn(x)
(n + 1)(x − c)n

xn+1

⇒Rn(x)
(n + 1)(x − c)n

xn+1
= f

(n+1)(c)
n!

(x − c)n

⇒Rn(x) =
f (n+1)(c)
(n + 1)n!

xn+1

⇒Rn(x) =
f (n+1)(c)
(n + 1)! x

n+1

1The mean value theorem states that for any continous curve g(x) joining two points A,B with
x−coordinates x = a, x = b there is a point (c, g(c)) on the curve such that a ≤ c ≤ b and the slope of
the curve at this point, (c, g(c)), is the same as the slope of the line segment joining A and B, that

is, g′(c) = g(b) − g(a)
b − a .
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Theorem 109. ** (Taylor’s Theorem)
Let f(x) be a smooth function for all points in an interval (−r, r) about 0. The Taylor
series defined by

f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn + . . . ,

converges to f(x) on the interval (−r, r) as n→∞ if and only if,

lim
n→∞

Rn(x) = 0 where Rn(x) =
f (n+1)(c)
(n + 1)! x

n+1

and c is some point between x and 0.
That is, we have

f(x) = f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn + . . . ,

for any point x in (−r, r) if and only if,

lim
n→∞

f (n+1)(c)
(n + 1)! x

n+1 = 0

for some point c between x and 0.

Proof. Assume

lim
n→∞

Rn(x) = lim
x→∞

f (n+1)(c)
(n + 1)! x

n+1 = 0

We want to show that

f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn + . . . ,

converges to f(x) as n→∞. Let,

pn(x) = f(0) +
f ′(0)

1!
x + f

′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn

Note the Taylor series is lim
n→∞

pn(x). Then, using the result of Theorem 108 above,

pn(x) = f(x) −Rn(x) ⇒ lim
n→∞

pn(x) = lim
n→∞

f(x) − lim
n→∞

Rn(x) = f(x) − 0

⇒ f(x) = lim
n→∞

pn(x) = f(0) +
f ′(0)

1!
x + f

′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn + . . .

Conversely, assume the Taylor series converges to f(x) on (−r, r), that is,

f(x) = lim
x→∞

pn(x).

Then,

0 = f(x) − lim
n→∞

pn(x) = lim
n→∞

(f(x) − pn(x)) = lim
n→∞

Rn(x)
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A.3 Taylor Series of the Exponential Function

Theorem 110. **
The Taylor series for the natural exponential function is,

ex = 1 + x + x
2

2!
+ x

3

3!
+ . . . + x

n

n!
+ . . . =

∞

∑
n=0

xn

n!

Proof. Let f(x) = ex. Then the nth derivative f (n)(x) = ex for all n and
f (n)(0) = e0 = 1 for all n. Then the general Taylor series,

f(x) = f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn + . . . ,

gives,

ex = 1 + x + x
2

2!
+ x

3

3!
+ . . . + x

n

n!
+ . . . =

∞

∑
n=0

xn

n!
,

since,

lim
n→∞

Rn(x) = lim
n→∞

fn+1(c)
(n + 1)!x

n+1 = lim
n→∞

ec

(n + 1)!x
n+1 = 0

since the denominator is approaching infinity much more rapidly that the numerator.

A.4 Taylor Series for Sine and Cosine Functions

Theorem 111. **
For all values of x,

sinx = x − x
3

3!
+ x

5

5!
− x

7

7!
+ . . . =

∞

∑
n=1

(−1)n+1 x2n−1

(2n − 1)!

cosx = 1 − x
2

2!
+ x

4

4!
− x

6

6!
+ . . . =

∞

∑
n=0

(−1)n x2n

(2n)!

Proof. Let,

f(x) = sinx

⇒ f ′(x) = cosx

⇒ f ′′(x) = − sinx

⇒ f ′′′(x) = − cosx

⇒ f (4)(x) = sinx
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Clearly this pattern repeats every four derivatives. Then we have these four terms
repeated,

f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1.

Thus,

f(x) = f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn + . . . ,

gives

sinx = x − x
3

3!
+ x

5

5!
− x

7

7!
+ . . . =

∞

∑
n=1

(−1)n+1 x2n−1

(2n − 1)!

provided lim
n→∞

Rn = lim
n→∞

f (n+1)(c)
(n + 1)! = 0. But f (n+1)(c) is one of ± sin c,± cos c which take

values between −1 and +1. So we have,

−1 ≤ f (n)(c) ≤ +1⇒ − x(n+1)

(n + 1)! ≤ f
(n)(c) x(n+1)

(n + 1)! ≤
x(n+1)

(n + 1)!

Now both of lim
n→∞

± x(n+1)

(n + 1)! = 0 since2 (n + 1)! → ∞ much much more rapidly than

does the numerator x(n+1).
Hence,

lim
n→∞

Rn = lim
n→∞

f (n+1)(c)
(n + 1)! = 0.

We could repeat this argument for cosx but it is easier to use
d sinx

dx
= cosx. So, if

we differentiate sinx = x − x
3

3!
+ x

5

5!
− x

7

7!
+ . . . with respect to x, we obtain,

cosx = 1 − x
2

2!
+ x

4

4!
− x

6

6!
+ . . . =

∞

∑
n=0

(−1)n x2n

(2n)!

A.5 Euler’s Formulas

We reach two of the most famous and most useful formulas in the whole of mathe-
matics. The second one is wonderful, combining two transcendental numbers with a
complex number to produce an integer!

2Strictly speaking we should invoke the Squeeze Theorem, which says if at a given point a function
is squeezed between two other functions both approaching the same limit at that point then it must
also be approaching that same limit at that point.
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Theorem 112. * (Euler)

eix = cosx + i sinx, where i =
√
−1

eπi = −1

Proof.

ex = 1 + x + x
2

2!
+ x

3

3!
+ . . . + x

n

n!
+ . . .

⇒ eix = 1 + ix + (ix)2
2!

+ (ix)3
3!

+ (ix)4
4!

+ (ix)5
5!

+ (ix)6
6!

+ (ix)7
7!

+ (ix)8
8!

+ . . .

= 1 + ix − x
2

2!
− ix

3

3!
+ x

4

4!
+ ix

5

5!
− x

6

6!
− ix

7

7!
+ x

8

8!
+ . . .

= 1 − x
2

2!
+ x

4

4!
− x

6

6!
+ x

8

8!
+ . . . + i(x − x

3

3!
+ x

5

5!
− x

7

7!
+ . . .)

= cosx + i sinx

Put x = π, then,

eπi = cosπ + i sinπ = −1 + i ⋅ 0 = −1

Here are two examples of the usefulness of these results.

Corollary 113. (De Moivre’s Formula)

(cosx + i sinx)n = cosnx + i sinnx

Proof.

(cosx + i sinx)n = (eix)n = einx = cosnx + i sinnx

Corollary 114. Complex Formulas for sinx and cosx.

sinx = e
ix − e−ix

2i

cosx = e
ix + e−ix

2

Proof.

eix = cosx + i sinx
⇒ e−ix = ei(−x) = cos(−x) + i sin(−x) = cosx − i sinx
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Add and subtract the two equations to obtain,

sinx = e
ix − e−ix

2i

cosx = e
ix + e−ix

2

A.6 Roots of Unity

Complex numbers are defined by C = {a + bi ∣ a, b ∈ R, i =
√
−1}.

Now the solution of x2 − 1 = 0⇒ x2 = 1 is x = ±1. We say ±1 are the second roots of
unity.
We can also solve, say, x4 − 1 = 0 ⇒ x4 = 1 by noting (eπi)4 = (−1)4 = 1 so that one
solution is clearly x = eπi.
However, since this is an equation of degree 4, we expect 4 solutions. They are,

x = e 2kπi
4 , k = 1,2,3,4 or x = e 2πi

4 , x = e 4πi
4 , x = e 6πi

4 , x = e 8πi
4 ,

since,

x4 = (e 2kπi
4 )

4
= (e2kπi) = (eπi)2k = (−1)2k = 1

The numbers x = e 2πi
4 , x = e 4πi

4 , x = e 6πi
4 , x = e 8πi

4 , are called the 4th roots of unity.

Definition 82. roots of unity
The nth roots of unity are the solutions of the equation xn = 1. They are

e
2kπi
n , 0 ≤ k ≤ (n − 1).
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ring isomorphism, 91
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primitive, 203
third, 17

separable field, 173
separable polynomials, 173
simple extension, 147
simple roots, 172
smooth function, 213
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solvable group, 82
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proper, 29
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symmetric
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