

LET ME INTRODUEE MYSELF

AND YES.... I LOVE STATS!

This is me

Taryn Hallam
"Director" - Women's Health Training Associates Pty Ltd
"BITMOJI ME"

and WELCOME to

"STATS SIMPLIFIED"

A GUIDE FOR BUSY CLINICIANS TRYING TO UNDERSTAND RESEARCH!

7

A LITTLE DISCLAIMER

- I am going to deliberately OVERSIMPLIFY this series.

But...... this is no different to what we do with patients everyday.

- Patients need enough information to understand their condition
- They don't need a full health degree
- You are not trying to be a biostatistician
- You just need 'enough understanding' to understand the research you are reading
- So I acknowledge I am oversimplifying, but with the hope that
- You have enough information to get the general idea
- You don't have so much information that you get confused

6 SECTIONS TO THIS SERIES

1. Basics Maths

Fractions
Percentages (\%, \%, \%oo)
Decimals
Converting decimals!

Why is converting decimals so important?

6 Examples

To be able to realise when reading research that:

- When p-value is 0.67 there is a $\mathbf{6 7 \%}$ chance the result is a fluke
- When the p-value is $\mathbf{< 0 . 0 0 1}$ there is a $<1 / 1000$ chance the result is a fluke
- When the ODDs ratio is 0.21 the group is $\mathbf{7 9 \%}$ less likely to have the condition
- When the RR is 2.1 the group is just over twice as likely to have the condition.
- When an ODDs ratio $\mathbf{C I}$ is $0.89 \mathbf{- 1 . 3 2}$ the result is insignificant because the real result could be anything from a 11% reduced chance to an 32% increased chance
- When the r-value between two variables is only $-\mathbf{0 . 1 4}$, there is only a 14% correlation that as one value goes up (eg strength) the rate of the condition (eg POP) goes down

9

6 SECTIONS TO THIS SERIES

1. Basics Maths

Fractions
Percentages (\%, \%, \%oo)
Decimals
Converting decimals!
(but you can skip this if you are fine with maths)

DON'T LET THIS SCARE YOU!!!!
we are getting ahead of ourselves

And I'm going to make this easy!!

6 SECTIONS TO THIS SERIES

4. Risk Comparison

Relative Risks - 'RR'
Odds Ratios - 'OR'
2. Averages and Distribution
Mean vs Median
Standard Deviation
95\% Confidence Intervals
3. Significance
P - value
Statistical significance?
Clinical significance?
5. Correlations
Intra-class Correlation Co-efficient- ‘ICC'
Rank Correlation - 'r-value'
6. Other
Intention to Treat - ITT
Number needed to treat - NNT

11

LET'S START!!

THE BASICS

1. Fractions
2. Percentages \% , Permille \% and Permyriad \%oo
3. Decimals
4. Converting Decimals

BASIC MATHS ... FRACTIONS eg $\frac{3}{70}$

- Fractions simply represent the portion you have, compared to the total

$$
\begin{array}{ll}
\text { - Portion you have } & =\text { TOP NUMBER } \\
\text { - Total number } & =\text { BOTOM NUMBER }
\end{array}
$$

EXAMPLES

eg 1. If $\mathbf{8 0}$ women give birth, and $\mathbf{1 0}$ of them have an avulsion 10 is how many we have with an avulsion 80 is the total number of women giving birth \quad So $\boldsymbol{\rightarrow} \mathbf{1 0 / 8 0}$ women who gave birth had an avulsion

Eg 2. Amongst a group of 200 women with a BMI > 30, $\mathbf{7 0}$ have urinary incontinence
70 is how many we have with incontinence
200 is the total number of q with BMI > 30
So $\boldsymbol{\rightarrow} \mathbf{7 0 / 2 0 0} \uparrow$ with a BMI > 30 had UI

13

In our examples on the previous slide

$\frac{10}{80}$
women who gave birth had an avulsion

This is called raw data

Where are we up to?

THE BASICS

1. Fractions
2. Percentages \% , Permille \% and Permyriad \%oo
3. Decimals
4. Converting Decimals

BASIC MATHS ... PERCENTAGES eg64\%

- A percentage is just another way to write a fraction.
- There is nothing more to it (sort of like writing 'Hello' in Japanese is "Konnichi wa". They mean the same thing)
- To understand percentages, just count the zeroes in the symbol, and put them with the number 1 in the bottom of the fraction.
- Put simply...... \% is just a fraction / 100
- Even the word "percent" says this: \qquad per "cent" (cent = hundred)

EXAMPLES

eg 1. If $\mathbf{2 3 \%}$ of women have Stage 2 POP
$23 / 100$ women have stage 2 prolapse
Eg 2. If $\mathbf{6 0 \%}$ of women have stage $\mathbf{1 , 2}$, or 3 prolapse
60/100 women have stage 1-3 prolapse

19

\% , \% and \% \% 000

FYI..... \% , \% AND \%

People only occasionally use these..... But they sometimes come up in research (usually in population research)

Percent	$\%$	$=$	2 zeroes $=$	$/ 00$
Permille	$\%$	$=$	3 zeroes $=$	$/ 000$
Permyriad	$\%$	$=$ per 100		
	$=$	4 zeroes $=$	$/ 0000$	$=$ per $\mathbf{1 , 0 0 0}$

Examples: in a research paper it is quoted that
$\rightarrow 6$ / 1000 women have complications
$\rightarrow 94$ / 10,000 women have Stage IV POP
\rightarrow Aust has a maternal mortality rate of
6.8 deaths per 100,000

$$
7 \text { Rust inas a mateman montanty late of }
$$

NOW WHERE ARE WE UP TO?

THE BASICS

1. Fractions
2. Percentages \% , Permille \% and Permyriad \%oo
3. Decimals

4. Converting Decimals

- Cons
-

etc.

- 6\% of women have complications after LSCS
- 94\%oo of women in a country have stage 4 POP
- The maternal mortality rate in Australia is $\mathbf{6 . 8 \%} \%$

BASIC MATHS ... DECIMALS eg 0.64

Let's think.....
Percentage symbols were just another way to express a fraction

- with \%, \%, \%oo \rightarrow the number of zeroes told you what number to put at the bottom of the fraction.

$$
\%=2 \text { zeroes }=/ 100 \quad \%=3 \text { zeroes }=/ 1000 \quad \% o 0=4 \text { zeroes }=/ 10,000
$$

DECIMALS

- Decimals are also just a different way to express a fraction, but this time the number of decimal places (numbers after the decimal point) tell you how many zeroes in the bottom of the fraction (/100; $/ 1,000 ; / 10,000$)

Examples

0.64	$\rightarrow 2$ decimal places $\rightarrow 2$ zeroes	\rightarrow	$64 / 100$
0.009	$\rightarrow 3$ decimal places $\rightarrow 3$ zeroes	\rightarrow	$9 / 1000$
0.1	$\rightarrow 1$ decimal place $\rightarrow 1$ zero	\rightarrow	$1 / 10$

BASIC MATHS ... DECIMALS eg 0.64

This is where it gets important!

DECIMALS

- Decimals are also just a different way to express a fraction, but this time the number of decimal places (numbers after the decimal point) tell you how many zeroes in the bottom of the fraction (/100; /1,000; /10,000)

Examples

0.64	$\rightarrow 2$ decimal places $\rightarrow 2$ zeroes	\rightarrow	$64 / 100$
0.009	$\rightarrow 3$ decimal places $\rightarrow 3$ zeroes	\rightarrow	$9 / 1000$
0.1	$\rightarrow 1$ decimal place $\rightarrow 1$ zero	\rightarrow	$1 / 10$

DECIMALS IN RESEARCH

eg 0.64

DECIMALS are used All the Time！！！

－Unfortunately ．．．．Decimals are a bit abstract to think about．
－But if you convert them to a percentage or fraction they often seem more REAL！！！！
－Let＇s first practice changing them to percentages and fractions and then we will look at some real examples．．．．．

25

CONVERTIMG DEEIMAIS

Let＇s start by converting．．．．．

Decimal	first to a fraction $/ 100$	then to a percentage	
0.67	$67 / 100$		
0.05	$5 / 100$		
0.21	$21 / 100$		
0.4	$4 / 10$	$=40 / 100$	
0.1	$1 / 10$	$=10 / 100$	

Now let＇s convert．．．．．

Decimal	Percentage
0.34	
0.02	
0.7	

26

NOW WHERE ARE WE UP TO？

THE BASICS

1．Fractions
2．Percentages \％，Permille \％and Permyriad \％oo
3．Decimals
4．Converting Decimals to percentages

Final Step Applying this knowledge

APPIYING YOUR KNOWLEDGE！

In a sample of $\underline{500}$ women aged 50－80 years，$\underline{120}$ are found to have stage 1 prolapse，$\underline{150}$ are found to have stage 2 prolapse，$\underline{30}$ are found to have stage 3 prolapse and $\underline{5}$ are found to have stage 4 prolapse．

QUESTIONS WE WANT TO ANSWER：

1．What fraction of women had stage $\mathbf{1}$ or $\mathbf{2}$ prolapse？
2．What fraction of women were found to have stage 4 prolapse？
3．What percentage of women had stage 4 prolapse？（hint：you needed to simplify your fraction in 2）
4．What percentage of women had no prolapse or stage 1 prolapse？

aNSWERS

In a sample of 500 women aged $50-80$ years, 120 are found to have stage 1 prolapse, 150 are found to have stage 2 prolapse, 30 are found to have stage 3 prolapse and 5 are found to have stage 4 prolapse

1. What fraction of women had stage 1 or 2 prolapse?
2. What fraction of women were found to have stage 4 prolapse?
3. What is the percentage of women with stage 4 prolapse? (hint: you needed to simplify your fraction in 2)
4. What percentage of women had no prolapse or stage 1 prolapse?

No Prolapse $=195 \quad$ Stage 1 Prolapse $=120 \quad$ Total $=315 / 500 \quad$ divide by $5 \quad=63 / 100 \quad=63 \%$
NOTE: there is an error in the recording here !!! SORRY
(I was obviously too busy working out the slide dynamics to check my numbers!

29

SECTIONS TO THIS SERIES

1. The Basics.
Fractions
Percentages (\%, \%o, \%oo)
Decimals
Percentages!
2. Risk Comparison

Relative Risks - 'RR'
Odds Ratios - 'OR'
2. Averages and Distribution

3. Significance

Statistical significance?
Clinical significance?
P-value

30

