

ADVANCED SUBSIDIARY GCE CHEMISTRY A

OCR supplied materials:

Data Sheet for Chemistry A (inserted)

Other materials required:

Scientific calculator

Duration: 1 hour

Candidate forename					Candidate surname					
Centre numb	er						Candidate nu	ımber		

INSTRUCTIONS TO CANDIDATES

- The insert will be found in the centre of this document.
- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. If additional space is required, you should
 use the lined pages at the end of this booklet. The question number(s) must be clearly shown.
- Answer **all** the questions.
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Where you see this icon you will be awarded marks for the quality of written communication in your answer.

This means for example you should:

- ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear;
- organise information clearly and coherently, using specialist vocabulary when appropriate.
- You may use a scientific calculator.
- A copy of the Data Sheet for Chemistry A is provided as an insert with this question paper.
- You are advised to show all the steps in any calculations.
- The total number of marks for this paper is 60.
- This document consists of 16 pages. Any blank pages are indicated.

Answer **all** the questions.

- 1 This question is about a model of the structure of the atom.
 - (a) A model used by chemists includes the relative charges, the relative masses and the distribution of the sub-atomic particles making up the atom.

Complete the table below.

particle	relative charge	relative mass	position within the atom
proton			
neutron			
electron		1/2000	shell

[1]

(b)	Early studies of ionisation energies helped scientists to develop a model for the electron structure of the atom.
	Define the term first ionisation energy.
	[3]

(c) A modern model of the atom arranges electrons into orbitals, sub-shells and shells.

Complete the following table showing the maximum number of electrons which can be found within each region.

region	number of electrons
a 2p orbital	
the 3s sub-shell	
the 4th shell	

(d)		The modern Periodic Table arranges the elements in order of their atomic number. When arranged in this order the elements show periodicity.						
	Ехр	lain what is m	neant by the	e term <i>perio</i>	odicity.			
								[1]
(e)		his part, you emistry A.	need to re	efer to the I	Periodic Tab	le of the Ele	<i>ments</i> in the	Data Sheet for
	Fror	m the first 18	elements c	only, choose	e an elemen	t which fits th	e following d	escriptions.
	(i)	An element	with an isot	tope that ca	n be represe	ented as $^{14}_{6}$ X.		[1]
	(ii)	The element	which has	the stronge	est metallic b	onding in Pe	riod 3	[1]
	(iii)	The element	which forn	ns a 3– ion	with the san	ne electron st	ructure as N	e [1]
	(iv)	The element	which has	the smalle	st third ionis	ation energy.		[1]
	(v)	The element	with the fire	rst six succe	essive ionisa	tion energies	shown belov	w, in kJ mol ⁻¹ .
		738	1451	7733	10541	13629	17995	
								[1]
								[Total: 13]

[Total: 13]

_

Δ

2

		um is the eighth most abundant element in the Earth's crust and many rocks are a source esium compounds.
Mag Italy		um carbonate, MgCO ₃ , is present in dolomite, a rock found in the Dolomite mountains in
test	-tube	It collected two equal-sized samples of dolomite. These samples were put into two labelled is, $\bf A$ and $\bf B$. Tube $\bf A$ was heated until there was no further change in mass and was then to cool. Tube $\bf B$ was left unheated.
(a)		e the equation for the action of heat on the magnesium carbonate present in tube A . [1]
(b)		student wanted to make magnesium chloride crystals. The student added an excess of m dilute hydrochloric acid to tube A and to tube B .
	(i)	Write the equation for the reaction of magnesium carbonate in tube ${\bf B}$ with dilute hydrochloric acid.
		Include state symbols. [2]
	(ii)	State one similarity and one difference the student would see between the reactions in the two tubes.
		similarity
		difference
((iii)	From the solution in each tube, the student obtained crystals with the formula ${\rm MgC}\it{l}_{\rm 2}{}^{\bullet}{\rm 6H}_{\rm 2}{\rm O}.$
		Calculate the relative formula mass of MgCl ₂ •6H ₂ O.
		Give your answer to one decimal place.
		relative formula mass =[1]

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 4	
5	

	(iv)	Draw a 'dot-and-c	<i>ross'</i> diagran	to show the	bonding in N	${ m MgC}l_2.$		
		Show outer electr	ons only.					
								[2]
(c)	A s	ompound containin ample of this comp	g magnesiun ound weighi	n, silicon and ng 5.27g was	oxygen is al s found to ha	so present in vove the followir	rock types in It	taly
	mas	SS:	Mg, 1.82g;	Si, 1.05g;	O, 2.40 g.			
	Cal	culate the empirica	I formula of th	ne compound	l.			
	Sho	w your working.						
			em	ipirical formu	la =			[2]

Cherry Hill	Tuition A Level	Chemistry	OCR (A) Paper 4
-------------	------------------------	-----------	--------	-----------

(d)	Pharmacists sell	tablets containing	magnesium hydroxide,	Ma(OH) _a , to	o combat indigestion.

A student carried out an investigation to find the percentage by mass of ${\rm Mg(OH)}_2$ in an indigestion tablet. The student reacted the tablet with dilute hydrochloric acid.

$$\mathrm{Mg}(\mathrm{OH})_2(\mathrm{s}) + 2\mathrm{HC}\mathit{l}(\mathrm{aq}) \longrightarrow \mathrm{MgC}\mathit{l}_2(\mathrm{aq}) + 2\mathrm{H}_2\mathrm{O}(\mathrm{I})$$

The student found that $32.00 \, \text{cm}^3$ of $0.500 \, \text{mol dm}^{-3} \, \text{HC} \, l$ was needed to react with the Mg(OH)₂ in a 500 mg tablet. [1 g = 1000 mg].

(i) Calculate the amount, in mol, of HCl used.

(ii) Determine the amount, in mol, of Mg(OH)₂ present in the tablet.

(iii) Determine the percentage by mass of ${\rm Mg(OH)}_2$ present in the tablet.

[Total: 15]

7 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

T.....

3 The chlor-alkali industry is an important part of the UK chemical industry.

The raw material is brine, a concentrated aqueous solution of sodium chloride, NaC *l*(aq). Two products that can be manufactured from brine are chlorine and sodium hydroxide — hence the name chlor-alkali.

(a)) Bleach can be made by reacting chlorine with cold aqueous sodium hydroxide. A solution of bleach contains the chlorate compound NaC1O.				
	Writ	e the equation for the reaction taking place.			
		[1]			
(b)		systematic name for NaClO is sodium chlorate(I). Other chlorate compounds exist, such laClO $_3.$			
	(i)	Give the systematic name for NaC IO3.			
		[1]			
	(ii)	When heated, NaC ${\rm IO_3}$ disproportionates as shown in the equation below.			
		$4NaClO_3 \rightarrow 3NaClO_4 + NaCl$			
		Using oxidation numbers, explain why this is a disproportionation reaction.			
		[3]			

(c)	put	orine has been added to drinking water for over a century. Recently, some scientists have forward the case for not chlorinating drinking water. This is because chlorine may react a organic compounds in the water to form CH ₃ Cl.
	(i)	State one valid reason that supports the scientists' case and state one reason why chlorine should be added to drinking water.
		[2]
	(ii)	Draw a ' dot -and- $cross$ ' diagram to show the bonding in a molecule of CH_3Cl . Show outer electrons only.
		Show outer elections only.
		[1]
	(iii)	Name the shape of a molecule of $\mathrm{CH_3C}\mathit{l}$.
(d)	A sa	ample of brine is a concentrated aqueous solution of sodium chloride, NaC <i>l</i> (aq).
		scribe a simple chemical test that you could carry out to show that brine contains aqueous oride ions. How would you confirm that no other halide ions are present?
	Incl	ude an ionic equation in your answer.
		[4]

[Total: 13]

- 4 Many metallic elements react with dilute hydrochloric acid to form a solution containing a salt.
 - (a) Zinc reacts with dilute hydrochloric acid to form a solution of the salt, zinc chloride, ZnCl₂.

$${\rm Zn}({\rm s}) \ + \ 2{\rm HC}{\it l}({\rm aq}) \ \longrightarrow \ {\rm ZnC}{\it l}_{2}({\rm aq}) \ + \ {\rm H}_{2}({\rm g})$$

(i) Explain why $ZnCl_2$ is a salt.

 	 	 	 	 [1]
				- .

- (ii) Predict the formula of the zinc salt that could be formed by adding an excess of zinc to phosphoric(V) acid, H₃PO₄.
 -[1]

(b) Group 2 elements also react with dilute hydrochloric acid.

Describe **and** explain the trend in reactivity of the Group 2 elements with dilute hydrochloric acid as the group is descended.

	•••
••	
••	
	•
	•

[Total: 7]

Solids exist as lattice structures.

(a)		nt metallic lattices conduct electricity. Giant ionic lattices do not. If a giant ionic lattice is ted, the molten ionic compound will conduct electricity.					
	Explain these observations in terms of bonding, structure and particles present.						
		[3]					
(b)	The	solid lattice structure of ammonia, NH ₃ , contains hydrogen bonds.					
	(i)	Draw a diagram to show hydrogen bonding between \boldsymbol{two} molecules of NH_3 in a solid lattice.					
		Include relevant dipoles and lone pairs.					
		[2]					
	(ii)	Suggest why ice has a higher melting point than solid ammonia.					

......[2]

(c) Solid SiO $_2$ melts at 2230 °C. Solid SiC l_4 melts at -70 °C. Neither of the liquids formed conducts electricity.

Suggest the type of lattice structure in solid SiO_2 and in solid $SiCl_4$ and explain the difference in melting points in terms of bonding and structure .
In your answer you should use appropriate technical terms, spelled correctly.
[5]

[Total: 12]