Question	Marking Guidance	Mark	Comments
1(a)	To prevent it coming into contact/reacting with oxygen/air	1	Allow because it reacts with air/oxygen And because with air/oxygen it forms an oxide. (Oxide, if identified, must be correct :- P_4O_{10} , P_2O_5 , P_4O_6 , P_2O_6)
1(b)	One molecule contains 4P and 10O/the molecular formula is P_4O_{10}	1	Allow exists as P_4O_{10} Do not allow reference to combination of two P_2O_5 molecules Ignore any reference to stability
1(c)	P ₄ O ₁₀ is a bigger molecule (than SO ₃)/greater M _r /more electrons/ greater surface area <u>Van der Waals</u> / vdW <u>forces between molecules</u> are <u>stronger</u> /require <u>more energy to break</u>	1	Penalise SO ₂ for one mark (max 1) CE = 0 if mention of hydrogen bonding/ionic/ giant molecule/breaking of covalent bonds Do not allow just more vdW forces Ignore any reference to dipole-dipole forces
1(d)	$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$ pH must be in the range -1 to +2	1	Allow correct ionic equations Ignore state symbols Allow -1 to +2 Mark independently

1(e)(i)	$\begin{split} & 3\text{MgO} + 2\text{H}_3\text{PO}_4 \rightarrow \text{Mg}_3(\text{PO}_4)_2 + 3\text{H}_2\text{O} \\ & \text{OR MgO} + 2\text{H}_3\text{PO}_4 \rightarrow \text{Mg}(\text{H}_2\text{PO}_4)_2 + \text{H}_2\text{O} \\ & \text{OR MgO} + \text{H}_3\text{PO}_4 \rightarrow \text{MgHPO}_4 + \text{H}_2\text{O} \end{split}$	1	Allow MgO + $2H^+ \rightarrow Mg^{2+} + H_2O$ Allow magnesium phosphates shown as ions and ionic equations Ignore state symbols
1(e)(ii)	MgO is sparingly soluble/insoluble/weakly alkaline	1	Excess/unreacted MgO can be filtered off/separated
1(e)(iii)	An excess of NaOH would make the lake alkaline/toxic/kill wildlife	1	Allow pH increases

Question	Marking Guidance	Mark	Comments
2(a)	$\Delta G = \Delta H - T \Delta S$	1	Ignore o
2(b)	0.098 or 98	1	Allow 0.097 to 0.099/97 to 99 Allow 0.1 only if 0.098 shown in working
	kJ K ⁻¹ mol ⁻¹ J K ⁻¹ mol ⁻¹	1	Allow in any order
			Unless slope is approx. 100(90-110) accept only kJ K ⁻¹ mol ⁻¹ . If no slope value given, allow either units
	$-\Delta S / \Delta S$	1	
2(c)	ΔG becomes <u>negative</u>	1	Mark independently unless ΔG +ve then CE = 0
	So reaction becomes spontaneous/feasible	1	Or reaction can occur below this temperature
			Or reaction is not feasible above this temperature
2(d)	Ammonia liquefies (so entropy data wrong/different)	1	Allow any mention of <u>change</u> in state or implied change in state even if incorrect eg freezing/boiling

Question	Marking Guidance	Mark	Comments
3(a)	Enthalpy change/heat energy change when <u>one mole</u> of <u>gaseous</u> atoms Form (one mole of) gaseous negative ions (with a single charge)	1	Allow explanation with an equation that includes state symbols If ionisation/ionisation energy implied, CE=0 for both marks
			Ignore conditions
3(b)	Fluorine (atom) is smaller than chlorine/shielding is less/ outer electrons closer to nucleus	1	Fluorine molecules/ions/charge density CE=0 for both marks
	(Bond pair of) electrons attracted more strongly to the nucleus/protons	1	
3(c)	Fluor <u>ide</u> (ions) smaller (than chloride) / have larger charge density	1	Any reference to electronegativity CE=0
	So (negative charge) attracts (δ + hydrogen on) water more strongly	1	Allow H on water, do not allow O on water
			Allow F ⁻ hydrogen bonds to water, chloride ion does not
			Mark independently

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 20 MARK SCHEME

3(d)(i)	ΔH (solution) = LE + Σ (hydration enthalpies) / correct cycle	1	AgF ₂ or other wrong formula CE = 0 Ignore state symbols in cycle
	LE = -20 - (-464 + -506)	1	
	$= (+) 950 \text{ kJ mol}^{-1}$	1	Ignore no units, penalise M3 for wrong units
			-950 scores max 1 mark out of 3
			990 loses M3 but M1 and M2 may be correct
			808 is transfer error (AE) scores 2 marks
			848 max 1 if M1 correct
			1456 CE=0 (results from AgF ₂)
3(d)(ii)	There is an increase in the number of particles / more disorder / less order	1	Allow incorrect formulae and numbers provided number increases
			Do not penalise reference to atoms/molecules
			Ignore incorrect reference to liquid rather than solution
3(d)(iii)	Entropy change is positive/entropy increases and enthalpy change negative/exothermic	1	
	So ΔG is (always) negative	1	

Question	Marking Guidance	Mark	Comments
4(a)	$\Delta H = \Sigma (\Delta H_{\rm f} \text{ products}) - \Sigma (\Delta H_{\rm f} \text{ reactants})$	1	Allow correct cycle
	/= +34 - +90		
	$= -56 \text{ kJ mol}^{-1}$	1	Ignore no units, penalise incorrect units
4(b)	$\Delta S = \Sigma(S \text{ products}) - \Sigma(S \text{ reactants})$	1	
	/= 240 - (205 +211/2)		
	= -70.5 J K ⁻¹ mol ⁻¹ / -0.0705 kJ K ⁻¹ mol ⁻¹	1	Ignore no units, penalise incorrect units
			Allow -70 to -71/070 to071
4(c)	$T = \Delta H / \Delta S$ / $T = (Ans to part(a) \times 1000) / ans to part(b)$	1	Mark consequentially on answers to parts (a) and (b)
	/= -56/(-70.5 ÷ 1000)		Must have correct units
	= 794 K (789 to 800 K)	1	
			Ignore signs; allow + or – and –ve temps
4(d)	Temperatures exceed this value	1	
4(e)	$N_2 + O_2 \rightarrow 2NO$	1	Allow multiples
4(f)	there is no change in the number of moles (of gases)	1	Can only score these marks if the equation in (e) has equal number of moles on each side
	So entropy/disorder stays (approximately) constant / entropy/disorder change is very small / ΔS =0 / $T\Delta S$ =0	1	Numbers, if stated must match equation

Question	Marking Guidance	Mark	Comments
5(a)	Electron acceptor / gains electrons / takes electrons away	1	Do not allow electron pair acceptor / gain of electrons / definition of redox (QWC)
5(b)	Cd(OH) ₂ Species (on LHS) with the least positive/most negative electrode potential / lowest E / smallest E	1	Do not allow 'Cd(OH) ₂ /Cd' Only allow this mark if M1 answer given correctly or blank Do not allow negative emf
5(c)(i)	1.5 (V) / 1.50	1	
5(c)(ii)	2MnO ₂ + 2H ₂ O + Zn →2MnO(OH) + 2OH ⁻ + Zn ²⁺	1	Ignore state symbols e ⁻ must be cancelled (take care that Zn ²⁺ is on RHS)
5(c)(iii)	Allows ions to pass (through it) or words to that effect	1	Penalise passage of electrons Allow mention of particular ions
5(c)(iv)	Allows electrons to flow / makes electrical contact / conductor	1	Allow acts as an (inert) electrode / anode / cathode
5(c)(v)	Zn is 'used up' / has reacted / oxidised	1	Allow idea that zinc <u>reacts</u> Do not allow just zinc corrodes

5(d)(i)	3 / +3 / III	1	
	$2Ni(OH)_2 + Cd(OH)_2 \rightarrow 2NiO(OH) + Cd + 2H_2O$	1	For correct nickel and cadmium species in correct order (allow H_2O missing and OH^- not cancelled)
		1	For balanced equation (also scores M2)
			Allow max 1 for M2 and M3 if correct balanced equation but reversed.
			Ignore state symbols
5(d)(ii)	Metal / metal compounds are re-used / supplies are not depleted / It (the cell) can be re-used	1	Allow does not leak / no landfill problems / less mining / less energy to extract metals / less waste Do not allow less CO ₂ unless explained
5(e)(i)	$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$	1	Allow C ₂ H ₆ O
5(e)(ii)	$C_2H_5OH + 3H_2O \rightarrow 2CO_2 + 12H^+ + 12e^-$	1	Allow C ₂ H ₆ O
5(e)(iii)	(+)0.23 (V)	1	
5(e)(iv)	CO_2 released by combustion / fermentation / fuel cell / reaction with water	1	Can be answered with the aid of equations
	(atmospheric) <u>CO</u> ₂ taken up in <u>photosynthesis</u>	1	

Question	Marking Guidance	Mark	Comments
6(a)	Co-ordinate / dative / dative covalent / dative co-ordinate	1	Do not allow covalent alone
6(b)	(lone) pair of electrons on <u>oxygen/O</u> forms co-ordinate bond with <u>Fe</u> / donates electron pair to <u>Fe</u>	1 1	If co-ordination to O ²⁻ , CE=0 'Pair of electrons on O donated to Fe' scores M1 and M2
6(c)	180° / 180 / 90	1	Allow any angle between 85 and 95 Do not allow 120 or any other incorrect angle Ignore units eg °C
6(d)(i)	3:5/5 FeC ₂ O ₄ reacts with 3 MnO ₄	1	Can be equation showing correct ratio

	Allow 4.3×10^{-4} (2 sig figs)	1	6(d)(ii) M1 Moles of MnO ₄ ⁻ per titration = $22.35 \times 0.0193/1000 = \frac{4.31 \times 10^{-4}}{10^{-4}}$	6(d)(ii)
	Allow other ratios as follows:		Method marks for each of the next steps (no arithmetic error allowed	
	eg from given ratio of 7/3		for M2):	
		1	M2 moles of FeC ₂ O ₄ = ratio from (d)(i) used correctly $\times 4.31 \times 10^{-4}$	
პ × 10 ⁻³	$M2 = 7/3 \times 4.31 \times 10^{-4} = 1.006 \times 10^{-3}$	1	M3 moles of FeC_2O_4 in 250 cm ³ = M2 ans \times 10	
δ × 10⁻²	M3 = $1.006 \times 10^{-3} \times 10 = 1.006 \times 10^{-2}$	1	M4 Mass of $FeC_2O_4.2H_2O = M3$ ans \times 179.8	
81 g	M4 = $1.006 \times 10^{-2} \times 179.8 = 1.81$ g	1	M5 % of FeC ₂ O ₄ .2H ₂ O = (M4 ans/1.381) \times 100	
% (130 to	M5 = 1.81 × 100/1.381 = 131 % (130 to		(OR for M4 max moles of $FeC_2O_4.2H_2O = 1.381/179.8 (= 7.68 \times 10^{-3})$	
X	132)		for M5 % of $FeC_2O_4.2H_2O = (M3 \text{ ans/above M4ans}) \times 100)$	
			eg using correct ratio 5/3:	
ates ratio	Allow consequentially on candidates ratio		Moles of $FeC_2O_4 = 5/3 \times 4.31 \times 10^{-4} = 7.19 \times 10^{-4}$	
)78 × 10 ⁻³	eg M2 = $5/2 \times 4.31 \times 10^{-4}$ = 1.078×10^{-3}		Moles of FeC ₂ O ₄ in 250 cm ³ = $7.19 \times 10^{-4} \times 10 = 7.19 \times 10^{-3}$	
1.078×10^{-2}	M3 = $1.0078 \times 10^{-3} \times 10 = 1.078 \times 10^{-3}$		Mass of FeC ₂ O ₄ .2H ₂ O = $7.19 \times 10^{-3} \times 179.8 = 1.29$ g	
= 1.94 g	M4 = $1.078 \times 10^{-2} \times 179.8 = 1.94$ g		% of $FeC_2O_4.2H_2O_1 = 1.29 \times 100/1.381 = 93.4$ (allow 92.4 to 94.4)	
40 % (139 to	M5 = 1.94 × 100/1.381 = 140 % (139) 141)		Note correct answer (92.4 to 94.4) scores 5 marks	
nal % values	Other ratios give the following final % value			
	1:1 gives 56.1% (55.6 to 56.6)			
	5:1 gives 281% (278 to 284)			
	5:4 gives 70.2% (69.2 to 71.2)			
	5:1 gives 281% (278 to 284)			

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 20 MARK SCHEME

Question	Marking Guidance	Mark	Comments
7(a)	$\begin{array}{l} \label{eq:charge} Orange dichromate \\ Changes to purple / green / ruby / red-violet / violet Chromium(III) \\ (Note green complex can be [Cr(H_2O)_5CI]^{2+} etc) \\ That changes further to blue Chromium(II) \\ [Cr_2O_7]^{2-} + 14H^+ + 3Zn \rightarrow 2Cr^{3+} + 3Zn^{2+} + 7H_2O \\ 2Cr^{3+} + Zn \rightarrow 2Cr^{2+} + Zn^{2+} / \\ [Cr_2O_7]^{2-} + 14H^+ + 4Zn \rightarrow 2Cr^{2+} + 4Zn^{2+} + 7H_2O \end{array}$	1 1 1 1 1	Allow max 2 for three correct colours not identified to species but in correct order Do not allow green with another colour Allow max 1 for two correct colours not identified but in correct order Ignore any further reduction of Cr ²⁺ Ignore additional steps e.g. formation of CrO ₄ ²⁻
7(b)	Green precipitate (Dissolves to form a) green solution $[Cr(H_2O)_6]^{3+} + 3OH^- \rightarrow Cr(H_2O)_3(OH)_3 + 3H_2O$ $Cr(H_2O)_3(OH)_3 + 3OH^- \rightarrow [Cr(OH)_6]^{3-} + 3H_2O$	1 1 1 1	Solution can be implied if 'dissolves' stated Penalise $Cr(OH)_3$ once only Allow $[Cr(H_2O)_6]^{3+} + 6OH^- \rightarrow$ $[Cr(OH)_6]^{3-} + 6H_2O$ Allow formation of $[Cr(H_2O)_2(OH)_4]^-$ and $[Cr(H_2O)(OH)_5]^{2-}$ in balanced equations Ignore state symbols, mark independently

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 20 MARK SCHEME

7(c)	 (ligand) substitution / replacement / exchange The energy levels/gaps of the <u>d</u> electrons are <u>different</u> (for each complex) So a <u>different</u> wavelength/frequency/colour/energy of light is absorbed (when d electrons are excited) OR light is absorbed and a different wavelength/frequency/colour/energy (of light) is transmitted/reflected 	1 1 1	Allow nucleophilic substitution Ignore any reference to emission of light
7(d)	$E O_2 (/ H_2 O) > E Cr^{3+} (/ Cr^{2+}) / e.m.f = 1.67 V$ So Cr^{2+} ions are oxidised by oxygen/air	1 1	Allow E(cell) = 1.67 Allow any equation of the form: $Cr^{2+} + O_2 \rightarrow Cr^{3+}$
	With $[Cr(H_2O)_6]^{2+}$ get $CrCO_3$	1	If named must be chromium(II) carbonate
	with $[Cr(H_2O)_6]^{3+}$ get $Cr(H_2O)_3(OH)_3$ / $Cr(OH)_3$	1	Allow 0 to 3 waters in the complex
	and CO ₂	1	Can score M3, M4, M5 in equations even if unbalanced
	Cr(III) differs from Cr(II) because it is acidic / forms H ⁺ ions because Cr^{3+} ion polarises <u>water</u>	1	Ignore charge/size ratio and mass/charge

Question	Marking Guidance	Mark	Comments
8(a)			For reactions 1 to 3 must show complex ions as reactants and products
			Take care to look for possible identification on flow chart
	Reaction 1		
	ammonia solution	1	
	W is $[Co(NH_3)_6]^{2+}$	1	Correct equation scores all 3 marks
	$[Co(H_2O)_6]^{2+} + 6NH_3 \rightarrow [Co(NH_3)_6]^{2+} + 6H_2O$	1	
	Reaction 2		Allow oxygen, Do not allow air
	H ₂ O ₂	1	Allow oxygen, Do not allow all
	X is [Co(NH ₃) ₆] ³⁺	1	Allow 2[Co(NH ₃) ₆] ²⁺ + $^{1}/_{2}O_{2}$ +H ₂ O → 2[Co(NH ₃) ₆] ³⁺ + 2OH ⁻
	$2[Co(NH_3)_6]^{2+} + H_2O_2 \rightarrow 2[Co(NH_3)_6]^{3+} + 2OH^{-1}$	1	$2[Co(NH_3)_6]^{3+} + 2OH^{-}$
			Correct equations score all 3 marks
	Reaction 3		
	HCI	1	Do not allow Cl ⁻ but mark on
	Y is [CoCl ₄] ²⁻	1	
	$[Co(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CoCl_4]^{2-} + 6H_2O/$	1	Correct equation scores previous mark
	$[Co(H_2O)_6]^{2+} + 4HCI \rightarrow [CoCI_4]^{2-} + 6H_2O + 4H^+$		This equation scores all three marks

	Reaction 4			
	2 0	Or NaOH/NH₃	1	Do not allow $CaCO_3$ as a reagent but mark on
	Z is $CoCO_3$ $[Co(H_2O)_6]^{2+} + CO_3^{2-} \rightarrow CoCO_3 + 6H_2O$	Co(OH) ₂ /Co(H ₂ O) ₄ (OH) ₂ [Co(H ₂ O) ₆] ²⁺ +2OH ⁻ → Co(H ₂ O) ₄ (OH) ₂ +2H ₂ O etc	1	Allow waters to stay co-ordinated to Co. This mark also previous mark
	$Or \left[Co(H_2O)_6\right]^{2+} + Na_2CO_3 \rightarrow CoCO_3 + 6H_2O + 2Na^+$			Allow $\text{Co}^{2+} + \text{CO}_3^{2-} \rightarrow \text{CoCO}_3$
8(b)	$\begin{split} & SO_3^{2^-} + {}^1\!/_2O_2 \rightarrow SO_4^{2^-} \\ & \text{The activation energy is lower (for the catalysed route)} \\ & {}^1\!/_2O_2 + 2Co^{2^+} + 2H^+ \rightarrow H_2O + 2Co^{3^+} \\ & 2Co^{3^+} + SO_3^{2^-} + H_2O \rightarrow 2Co^{2^+} + SO_4^{2^-} + 2H^+ \end{split}$		1 1 1 1	Allow multiples Or Co ³⁺ attracts SO ₃ ²⁻ /Co ²⁺ attracts SO ₃ ²⁻ /oppositely charged ions attract Allow these equations in either order