Question	Marking Guidance	Mark	Comments
1(a)	To prevent it coming into contact/reacting with oxygen/air	1	Allow because it reacts with air/oxygen And because with air/oxygen it forms an oxide. (Oxide, if identified, must be correct :- $\left.\mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{P}_{4} \mathrm{O}_{6}, \mathrm{P}_{2} \mathrm{O}_{6}\right)$
1(b)	One molecule contains 4P and 100/the molecular formula is $\mathrm{P}_{4} \mathrm{O}_{10}$	1	Allow exists as $\mathrm{P}_{4} \mathrm{O}_{10}$ Do not allow reference to combination of two $\mathrm{P}_{2} \mathrm{O}_{5}$ molecules Ignore any reference to stability
1(c)	$\mathrm{P}_{4} \mathrm{O}_{10}$ is a bigger molecule (than SO_{3})/greater $\mathrm{M}_{\mathrm{r}} /$ more electrons/ greater surface area Van der Waals / vdW forces between molecules are stronger/require more energy to break		Penalise SO_{2} for one mark $(\max 1)$ $\mathrm{CE}=0$ if mention of hydrogen bonding/ionic/ giant molecule/breaking of covalent bonds Do not allow just more vdW forces Ignore any reference to dipole-dipole forces
1(d)	$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$ pH must be in the range -1 to +2	1	Allow correct ionic equations Ignore state symbols Allow -1 to +2 Mark independently

1(e)(i)	$3 \mathrm{MgO}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{OR} \mathrm{MgO}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{OR} \mathrm{MgO}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{MgHPO}_{4}+\mathrm{H}_{2} \mathrm{O}$	1	Allow MgO $+2 \mathrm{H}^{+} \rightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2} \mathrm{O}$ Allow magnesium phosphates shown as ions and ionic equations Ignore state symbols
1(e)(ii)	MgO is sparingly soluble/insoluble/weakly alkaline	1	Excess/unreacted MgO can be filtered off/separated
1(e)(iii)	An excess of NaOH would make the lake alkaline/toxic/kill wildlife	1	Allow pH increases

Question	Marking Guidance	Mark	Comments
2(a)	$\Delta G=\Delta H-T \Delta S$	1	Ignore θ
2(b)	0.098 or 98 $\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $-\Delta S / \Delta S$	1 1 1	Allow 0.097 to $0.099 / 97$ to 99 Allow 0.1 only if 0.098 shown in working Allow in any order Unless slope is approx. 100(90-110) accept only $\mathrm{kJ} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$. If no slope value given, allow either units
2(c)	ΔG becomes negative So reaction becomes spontaneous/feasible	1 1	Mark independently unless $\Delta G+$ ve then CE $=0$ Or reaction can occur below this temperature Or reaction is not feasible above this temperature
2(d)	Ammonia liquefies (so entropy data wrong/different)	1	Allow any mention of change in state or implied change in state even if incorrect eg freezing/boiling

Question Marking Guidance Mark Comments 3(a) Enthalpy change/heat energy change when one mole of gaseous atoms Form (one mole of) gaseous negative ions (with a single charge) 1 Allow explanation with an equation that includes state symbols If ionisation/ionisation energy implied, CE=0 for both marks Ignore conditions 3(b) Fluorine (atom) is smaller than chlorine/shielding is less/ outer electrons closer to nucleus (Bond pair of) electrons attracted more strongly to the nucleus/protons 1 1Fluorine molecules/ions/charge density CE=0 for both marks
3(c)

3(d)(i)	ΔH (solution) $=$ LE $+\Sigma$ (hydration enthalpies) $/$ correct cycle $\begin{aligned} & L E=-20-(-464+-506) \\ & =(+) 950 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	1 1 1	AgF_{2} or other wrong formula $\mathrm{CE}=0$ Ignore state symbols in cycle Ignore no units, penalise M3 for wrong units -950 scores max 1 mark out of 3 990 loses M3 but M1 and M2 may be correct 808 is transfer error (AE) scores 2 marks 848 max 1 if M1 correct 1456 CE=0 (results from AgF_{2})
3(d)(ii)	There is an increase in the number of particles / more disorder / less order	1	Allow incorrect formulae and numbers provided number increases Do not penalise reference to atoms/molecules Ignore incorrect reference to liquid rather than solution
3(d)(iii)	Entropy change is positive/entropy increases and enthalpy change negative/exothermic So ΔG is (always) negative	1 1	

Question	Marking Guidance	Mark	Comments
4(a)	$\begin{aligned} & \Delta H=\Sigma\left(\Delta H_{\mathrm{f}} \text { products }\right)-\Sigma\left(\Delta H_{\mathrm{f}} \text { reactants }\right) \\ & I=+34-+90 \\ & =-56 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	1 1	Allow correct cycle Ignore no units, penalise incorrect units
4(b)	$\begin{aligned} & \Delta S=\Sigma(S \text { products })-\Sigma(S \text { reactants }) \\ & I=240-(205+211 / 2) \\ & =-70.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} /-0.0705 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$	1 1	Ignore no units, penalise incorrect units Allow -70 to -71/-. 070 to -. 071
4(c)	$\begin{aligned} & T=\Delta H / \Delta S \quad / \quad T=(\text { Ans to } \operatorname{part}(\mathrm{a}) \times 1000) / \text { ans to } \operatorname{part}(\mathrm{b}) \\ & I=-56 /(-70.5 \div 1000) \\ & =794 \mathrm{~K}(789 \text { to } 800 \mathrm{~K}) \end{aligned}$	1 1	Mark consequentially on answers to parts (a) and (b) Must have correct units Ignore signs; allow + or - and -ve temps
4(d)	Temperatures exceed this value	1	
4(e)	$\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$	1	Allow multiples
4(f)	there is no change in the number of moles (of gases) So entropy/disorder stays (approximately) constant / entropy/disorder change is very small / $\Delta S=0 / T \Delta S=0$	1 1	Can only score these marks if the equation in (e) has equal number of moles on each side Numbers, if stated must match equation

Question	Marking Guidance	Mark	Comments
5(a)	Electron acceptor / gains electrons / takes electrons away	1	Do not allow electron pair acceptor / gain of electrons / definition of redox (QWC)
5(b)	$\mathrm{Cd}(\mathrm{OH})_{2}$ Species (on LHS) with the least positive/most negative electrode potential / lowest E / smallest E	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Do not allow ' $\mathrm{Cd}(\mathrm{OH})_{2} / \mathrm{Cd}$ ' Only allow this mark if M1 answer given correctly or blank Do not allow negative emf
5(c)(i)	1.5 (V) / 1.50	1	
5(c)(ii)	$2 \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Zn} \rightarrow 2 \mathrm{MnO}(\mathrm{OH})+2 \mathrm{OH}^{-}+\mathrm{Zn}^{2+}$	1	Ignore state symbols e- must be cancelled (take care that Zn^{2+} is on RHS)
5(c)(iii)	Allows ions to pass (through it) or words to that effect	1	Penalise passage of electrons Allow mention of particular ions
5(c)(iv)	Allows electrons to flow / makes electrical contact / conductor	1	Allow acts as an (inert) electrode / anode / cathode
5(c)(v)	Zn is 'used up' / has reacted / oxidised	1	Allow idea that zinc reacts Do not allow just zinc corrodes

5(d)(i)	$\begin{aligned} & 3 /+3 / \mathrm{III} \\ & 2 \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{Cd}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{NiO}(\mathrm{OH})+\mathrm{Cd}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1	For correct nickel and cadmium species in correct order (allow $\mathrm{H}_{2} \mathrm{O}$ missing and OH^{-}not cancelled) For balanced equation (also scores M2) Allow max 1 for M2 and M3 if correct balanced equation but reversed. Ignore state symbols
5(d)(ii)	Metal / metal compounds are re-used / supplies are not depleted / It (the cell) can be re-used	1	Allow does not leak / no landfill problems / less mining / less energy to extract metals / less waste Do not allow less CO_{2} unless explained
5(e)(i)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$	1	Allow $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
5(e)(ii)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CO}_{2}+12 \mathrm{H}^{+}+12 \mathrm{e}^{-}$	1	Allow $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
5(e)(iii)	$(+) 0.23$ (V)	1	
5(e)(iv)	CO_{2} released by combustion / fermentation / fuel cell / reaction with water (atmospheric) $\underline{\mathrm{CO}}_{2}$ taken up in photosynthesis	1 1	Can be answered with the aid of equations

Question	Marking Guidance	Mark	Comments
6(a)	Co-ordinate / dative / dative covalent / dative co-ordinate	1	Do not allow covalent alone
6(b)	(lone) pair of electrons on oxygen/O forms co-ordinate bond with Fe / donates electron pair to Fe	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	If co-ordination to $\mathrm{O}^{2-}, \mathrm{CE}=0$ 'Pair of electrons on O donated to Fe' scores M1 and M2
6(c)	180 $/ 180$ / 90	1	Allow any angle between 85 and 95 Do not allow 120 or any other incorrect angle Ignore units eg ${ }^{\circ} \mathrm{C}$
6(d)(i)	$3: 5 / 5 \mathrm{FeC}_{2} \mathrm{O}_{4}$ reacts with $3 \mathrm{MnO}_{4}{ }^{-}$	1	Can be equation showing correct ratio

\begin{tabular}{|c|c|c|c|}
\hline 6(d)(ii) \& \begin{tabular}{l}
M1 Moles of \(\mathrm{MnO}_{4}{ }^{-}\)per titration \(=22.35 \times 0.0193 / 1000=\underline{4.31 \times 10^{-4}}\) \\
Method marks for each of the next steps (no arithmetic error allowed for M2): \\
M2 moles of \(\mathrm{FeC}_{2} \mathrm{O}_{4}=\) ratio from (d)(i) used correctly \(\times 4.31 \times 10^{-4}\) \\
M3 moles of \(\mathrm{FeC}_{2} \mathrm{O}_{4}\) in \(250 \mathrm{~cm}^{3}=\mathrm{M} 2\) ans \(\times 10\) \\
M4 Mass of \(\mathrm{FeC}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}=\mathrm{M} 3\) ans \(\times 179.8\) \\
M5 \% of \(\mathrm{FeC}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}=(\mathrm{M} 4 \mathrm{ans} / 1.381) \times 100\) \\
(OR for M4 max moles of \(\mathrm{FeC}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}=1.381 / 179.8\left(=7.68 \times 10^{-3}\right.\)) \\
for M5 \% of \(\mathrm{FeC}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=(\mathrm{M} 3\) ans/above M4ans \(\left.) \times 100\right)\) \\
eg using correct ratio \(5 / 3\) : \\
Moles of \(\mathrm{FeC}_{2} \mathrm{O}_{4}=5 / 3 \times 4.31 \times 10^{-4}=7.19 \times 10^{-4}\) \\
Moles of \(\mathrm{FeC}_{2} \mathrm{O}_{4}\) in \(250 \mathrm{~cm}^{3}=7.19 \times 10^{-4} \times 10=7.19 \times 10^{-3}\) \\
Mass of \(\mathrm{FeC}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}=7.19 \times 10^{-3} \times 179.8=1.29 \mathrm{~g}\) \\
\(\%\) of \(\mathrm{FeC}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}=1.29 \times 100 / 1.381=93.4\) (allow 92.4 to 94.4) \\
Note correct answer (92.4 to 94.4) scores 5 marks
\end{tabular} \& 1

1
1
1

1 \& | Allow 4.3×10^{-4} (2 sig figs) |
| :--- |
| Allow other ratios as follows: eg from given ratio of $7 / 3$ $\begin{aligned} & \text { M2 }=7 / 3 \times 4.31 \times 10^{-4}=1.006 \times 10^{-3} \\ & \text { M3 }=1.006 \times 10^{-3} \times 10=1.006 \times 10^{-2} \\ & \text { M4 }=1.006 \times 10^{-2} \times 179.8=1.81 \mathrm{~g} \\ & \text { M5 }=1.81 \times 100 / 1.381=131 \%(130 \text { to } \\ & \text { 132) } \end{aligned}$ |
| Allow consequentially on candidates ratio eg M2 $=5 / 2 \times 4.31 \times 10^{-4}=1.078 \times 10^{-3}$ |
| M3 $\quad=1.0078 \times 10^{-3} \times 10=1.078 \times 10^{-2}$ |
| M4 $\quad=1.078 \times 10^{-2} \times 179.8=1.94 \mathrm{~g}$ |
| M5 $\quad=1.94 \times 100 / 1.381=140 \%(139$ to 141) |
| Other ratios give the following final \% values |
| 1:1 gives 56.1\% (55.6 to 56.6) |
| 5:1 gives 281\% (278 to 284) |
| 5:4 gives 70.2% (69.2 to 71.2) | \\

\hline
\end{tabular}

Question	Marking Guidance	Mark	Comments
7(a)	Orange dichromate Changes to purple / green / ruby / red-violet / violet Chromium(III) (Note green complex can be $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+}$ etc) That changes further to blue Chromium(II) $\begin{aligned} & {\left[\mathrm{Cr}_{2} \mathrm{O}_{7}\right]^{2-}+14 \mathrm{H}^{+}+3 \mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Zn}^{2+}+7 \mathrm{H}_{2} \mathrm{O}} \\ & 2 \mathrm{Cr}^{3+}+\mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{2+}+\mathrm{Zn}^{2+} / \\ & {\left[\mathrm{Cr}_{2} \mathrm{O}_{7}\right]^{2-}+14 \mathrm{H}^{+}+4 \mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{2+}+4 \mathrm{Zn}^{2+}+7 \mathrm{H}_{2} \mathrm{O}} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow max 2 for three correct colours not identified to species but in correct order Do not allow green with another colour Allow max 1 for two correct colours not identified but in correct order Ignore any further reduction of Cr^{2+} Ignore additional steps e.g. formation of $\mathrm{CrO}_{4}{ }^{2-}$
7(b)	Green precipitate (Dissolves to form a) green solution $\begin{aligned} & {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}} \\ & \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Solution can be implied if 'dissolves' stated Penalise $\mathrm{Cr}(\mathrm{OH})_{3}$ once only Allow $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{OH}^{-} \rightarrow$ $\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+6 \mathrm{H}_{2} \mathrm{O}$ Allow formation of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]^{-}$and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})_{5}\right]^{2-}$ in balanced equations Ignore state symbols, mark independently

7(c)	(ligand) substitution / replacement / exchange The energy levels/gaps of the \underline{d} electrons are different (for each complex) So a different wavelength/frequency/colour/energy of light is absorbed (when d electrons are excited) OR light is absorbed and a different wavelength/frequency/colour/energy (of light) is transmitted/reflected	1 1 1	Allow nucleophilic substitution Ignore any reference to emission of light
7(d)	$E \mathrm{O}_{2}\left(/ \mathrm{H}_{2} \mathrm{O}\right)>E \mathrm{Cr}^{3+}\left(/ \mathrm{Cr}^{2+}\right) / \text { e.m.f }=1.67 \mathrm{~V}$ So Cr^{2+} ions are oxidised by oxygen/air With $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ get CrCO_{3} with $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ get $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3} / \mathrm{Cr}(\mathrm{OH})_{3}$ and CO_{2} Cr (III) differs from $\mathrm{Cr}\left(\right.$ II) because it is acidic / forms H^{+}ions because Cr^{3+} ion polarises water	1 1 1 1 1 1 1 1	Allow E(cell) $=1.67$ Allow any equation of the form: $\mathrm{Cr}^{2+}+\mathrm{O}_{2} \rightarrow \mathrm{Cr}^{3+}$ If named must be chromium(II) carbonate Allow 0 to 3 waters in the complex Can score M3, M4, M5 in equations even if unbalanced Ignore charge/size ratio and mass/charge

	Reaction 4 Or $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CoCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Na}^{+}$	1 1 1	Do not allow CaCO_{3} as a reagent but mark on Allow waters to stay co-ordinated to Co. This mark also previous mark Allow $\mathrm{Co}^{2+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{CoCO}_{3}$
8(b)	$\mathrm{SO}_{3}{ }^{2-}+{ }^{1} / \mathrm{O}_{2} \rightarrow \mathrm{SO}_{4}{ }^{2-}$ The activation energy is lower (for the catalysed route) $\begin{aligned} & 1 / 2 \mathrm{O}_{2}+2 \mathrm{Co}^{2+}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Co}^{3+} \\ & 2 \mathrm{Co}^{3+}+\mathrm{SO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Co}^{2+}+\mathrm{SO}_{4}^{2-}+2 \mathrm{H}^{+} \end{aligned}$	1 1 1 1	Allow multiples Or Co ${ }^{3+}$ attracts $\mathrm{SO}_{3}{ }^{2-} / \mathrm{Co}^{2+}$ attracts $\mathrm{SO}_{3}{ }^{2-}$ /oppositely charged ions attract Allow these equations in either order

