

Practice	paper	Set 1
-----------------	-------	-------------------------

A Level Chemistry B H433/02 Scientific Literacy in Chemistry

MARK SCHEME

Duration: 2 hours 15 minutes

MAXIMUM MARK 100

Final

This document consists of 16 pages

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

SCORIS

- 1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: *scoris assessor Online Training*; *OCR Essential Guide to Marking*.
- 2. Make sure that you have read and understood the mark scheme and the question paper for this unit. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca
- 3. Log-in to scoris and mark the **required number** of practice responses ("scripts") and the **required number** of standardisation responses.

YOU MUST MARK 10 PRACTICE AND 10 STANDARDISATION RESPONSES BEFORE YOU CAN BE APPROVED TO MARK LIVE SCRIPTS.

MARKING

- Mark strictly to the mark scheme.
- 2. Marks awarded must relate directly to the marking criteria.
- 3. The schedule of dates is very important. It is essential that you meet the scoris 50% and 100% (traditional 50% Batch 1 and 100% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
- 4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone, email or via the scoris messaging system.

- Work crossed out:
 - a. where a candidate crosses out an answer and provides an alternative response, the crossed out response is not marked and gains no marks
 - b. if a candidate crosses out an answer to a whole question and makes no second attempt, and if the inclusion of the answer does not cause a rubric infringement, the assessor should attempt to mark the crossed out answer and award marks appropriately.
- 6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.
- 7. There is a NR (No Response) option. Award NR (No Response)
 - if there is nothing written at all in the answer space
 - OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
 - OR if there is a mark (e.g. a dash, a question mark) which isn't an attempt at the question.

Note: Award 0 marks – for an attempt that earns no credit (including copying out the question).

- 8. The scoris **comments box** is used by your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. **Do not use the comments box for any other reason.**
 - If you have any questions or comments for your Team Leader, use the phone, the scoris messaging system, or email.
- 9. Assistant Examiners will send a brief report on the performance of candidates to their Team Leader (Supervisor) via email by the end of the marking period. The report should contain notes on particular strengths displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciated.

10. For answers marked by levels of response:

Read through the whole answer from start to finish, concentrating on features that make it a stronger or weaker answer using the indicative scientific content as guidance. The indicative scientific content indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance.

Using a 'best-fit' approach based on the science content of the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, **best** describes the overall quality of the answer using the guidelines described in the level descriptors in the mark scheme.

Once the level is located, award the higher or lower mark.

The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.

The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.

In summary:

- The science content determines the level.
- The communication statement determines the mark within a level.

Level of response questions on this paper are 3di and 5g.

11. Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

12. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Que	estion	Answer	Marks	Guidance
1 (a) (i)	chloroethene	1	
	(ii)	C/ Br Br C/	1	Must be skeletal formulae BOTH structures required for the mark
	(iii	(bubble through) bromine water – decolorised	1	ALLOW 'brown/orange to colourless'
(1	b) (i)	H H ——————————————————————————————————	1	Must be full structural, showing all bonds and atoms IGNORE brackets and 'n'
	(ii)	permanent (dipole) - permanent dipole	1	no abbreviation ALLOW missing hyphen
(c) (i)	secondary amide	1	
	(ii)		1	ALLOW 'six carbon atoms'
	(iii)	no water/small molecule produced ✓ addition ✓	2	
	(iv	hydrogen bonding ✓ between NH and O/N ✓ stronger than pd-pd ✓ more energy to break ✓	4	For mpt 3, allow incorrect imb from (b)(ii)
(d) (i)		2	
	(ii)		1	ALLOW any unambiguous structure IGNORE anions
	(iii)		2	ALLOW any unambiguous structure For second mark ALLOW primary amine if carboxylic acid is shown on left of molecule.
		Total	18	

C	uest	ion	Answer	Marks	Guidance
2	(a)		2RCONH ₂ + H ₂ SO ₄ + 2H ₂ O → 2RCOOH + (NH ₄) ₂ SO ₄ species \checkmark balancing with correct species \checkmark	2	IGNORE state symbols ALLOW multiples and halves
	(b)	(i)	$NH_4^+ \Rightarrow NH_3 + H^+$ acid base	1	IGNORE 'conjugate'
		(ii)	[NH ₃] [H ⁺]/ [NH ₄ ⁺]	1	ALLOW dot or multiplication sign on top IGNORE correct state symbols. Incorrect ones are CON
		(iii)	FIRST CHECK ANSWER ON ANSWER LINE IF $K_a = 5.5 \times 10^{-10}$ mol dm ⁻³ award 3 marks IF $K_a = 5.5 \times 10^{-10}$ with incorrect or missing units, award 2 marks $[H^+] \text{ (or } H^+ = 7.4(13102) \times 10^{-6} \checkmark$ $K_a = (7.41 \times 10^{-6})^2 / 0.1) = 5.5 \times 10^{-10} \checkmark$ mol dm ⁻³ \checkmark	3	ALLOW ECF from first marking point, provided '[H ⁺] =' or 'H ⁺ =' is shown and value is smaller than 1 x 10 ⁻⁴ ALLOW 2 or more sf
		(iv)	FIRST CHECK ANSWER ON ANSWER LINE IF $K_b = 1.8 \times 10^{-5}$ (mol dm ⁻³) award 2 marks $K_a \times K_b = K_w$ OR $K_b = K_w/K_a \checkmark$ $K_b (= 1.0 \times 10^{-14}/5.5 \times 10^{-10}) = 1.8 \times 10^{-5}$ (mol dm ⁻³) \checkmark	2	ALLOW ECF from (iii) ALLOW 2 or more sf
	(c)	(i)	FIRST CHECK ANSWER ON ANSWER LINE IF answer = $0.386(g)$ award 3 marks [lactate] = $1.38 \times 10^{-4} \times 0.01/1 \times 10^{-4}$ OR $0.0138 \checkmark$ amount lactate = $0.0138/4$ OR 3.45×10^{-3} (mol) \checkmark mass sodium lactate = $(3.45 \times 10^{-3} \times 112 =) 0.386 (g) \checkmark$	3	ALLOW 2 or more sf.

Ques	tion	Answer		Guidance
	(ii)	Incorrect, because the ratio of the concentrations will remain the same (whatever the volume)	1	DO NOT ALLOW 'incorrect' without an explanation
(d)		OH/alcohol group reacts with COOH/acid group ✓ OR two molecules react/condense to lose (two molecules of) water ✓	2	ALLOW any correct representation of structure.
		Total	15	

C	Quest	ion	Answer	Marks	Guidance
3	(a)	(i)	lone pairs as shown, linking to some drawn line to represent the bond \checkmark two bonds shown as arrows from O ⁻ pointing to one Fe ³⁺ \checkmark dative covalent/co-ordinate bond labelled \checkmark	3	
		(ii)	$[Fe(C_2O_4)_3]^{3-} \checkmark$ octahedral \checkmark	2	ALLOW without square brackets ALLOW structural formula
	(b)	(i)	The E ^o of CO ₂ /(COOH) ₂ half cell is more negative/less positive that that of the Fe ³⁺ /Fe ²⁺ half cell (COOH) ₂ will release electrons/reduce Fe ³⁺ OR Fe ³⁺ will gain electrons/ oxidise (COOH) ₂ ✓	2	ALLOW abbreviated descriptions of half cells as 'Fe ³⁺ ' etc (since there are only two of them) IGNORE 'greater than', 'less than'
		(ii)	$2Fe^{3+} + (COOH)_2 \rightarrow 2Fe^{2+} + 2CO_2 + 2H^+$ species \checkmark balancing with correct species \checkmark	2	
		(iii)	Fe ²⁺ double arrow in one 3d box, single arrows (same direction) in the other 3d boxes. 4s box empty ✓ Fe ³⁺ single arrows in all 3d boxes (same direction). 4s box empty ✓	2	

Quest	tion	Answer			Marks	Guidance
(c)	(ii)	Mn oxidation states C oxidation states ✓ 1 mark for either one row or one of oxidation state increase of C is +10 oxidation state decrease of Mn is −10		Mn ²⁺ +2 CO ₂ +4 ect	1	because the oxidation state decrease of manganese must equal the increase of C
(d)	(i)*	First please read the instructions for a Response' mark-schemes on page 4 Level 3 (5 – 6 marks) Learners analyse the information from question to develop and refine the prevaluate the use of the indicator, make scientific points. The explanation is relevant and logical contains no errors. Level 2 (3 – 4 marks) Learners partially analyse the information the question to develop and refine the and evaluate the use of the indicator, scientific points. The explanation is generally relevant structured and contains few errors. Level 1 (1 – 2 marks) Learners show some ability to analyse from the stem of the question to develop and evaluate the making a few of the scientific points.	m the stem of actical processing most of ally structure ation from the practical processing sort and logical see the information and refi	of the edure and f the ed and	6	 indicative scientific points may include: titration manganate(VII) (solution) in burette pipette known/stated volume of ethanedioate OR use graduated/volumetric pipette for ethanedioate. add sulfuric acid some indication that sulfuric acid is in excess warm/heat solution/ 60°C titrate (AW) until pink colour persists/ remains (AW) add (manganate(VII)) dropwise (AW) near end repeat for concordance (AW) indicator MnO₄²⁻/manganate(VII) is only coloured reagent colour change takes place during reaction from colourless to pale pink

Questic	on	Answer	Marks	Guidance
		A partial explanation is attempted and has some structure. Level 0 (no marks) No response or no response worthy of credit		
	(ii)	FIRST CHECK ANSWER ON ANSWER LINE IF answer = 1.69(g) award 5 marks • amount KMnO₄ used = 18.4/1000 x 0.0500 OR 0.0009200 (mol) ✓ • amount potassium ethanedioate used = 5/2 x 0.0009200 OR 0.002300 (mol) ✓ • amount in 0.100 dm³ = 4 x 0.002300 OR 0.009200(mol) ✓ • mass K₂C₂O₄.H₂O = 184(.2) x 0.009200 OR 1.69() (g)	5	ALLOW ECF throughout
(e)	(i)	• answer = 1.69 (3 sf) (g)√ Ethane-1,2-diol	1	ALLOW ethanediol
	(ii)	OH group bonded to C with 2H or 1C	1	IGNORE 'it' for OH group but ALLOW 'alcohol group' for OH group
(f)	(i)	aldehyde	1	
	(ii)	EITHER Warm with Tollens' reagent / silver mirror ✓ OR Heat with Fehling's solution / Red ppt ✓ Total	30	ALLOW chemical descriptions of Tollens' or Fehling's. Second mark depends on reagent being identified

C	uest	ion	Answer	Marks	Guidance
4	(a)		temp: increased yield/ more products ✓ forward reaction [stated or implied] is endothermic (ora) ✓ pressure: no effect on yield AW ✓ same number of (gaseous) moles/ molecules on each side (of equation) AW ✓	4	ALLOW 'it increases' IGNORE 'equilibrium (position) moves to right' ALLOW 'no effect on position of equilibrium' ALLOW 'no change of yield'/'no increase of yield' NOT 'little effect on yield' etc No ecf but mark separately within each pair.
	(b)		speeds up achievement of equilibrium \mathbf{OR} speeds up both (forward and back) reactions \checkmark no effect on K_c (AW) \checkmark	2	Can score this alternative for the first marking point while explaining effect on \mathcal{K}_c
	(c)		FIRST CHECK ANSWER ON ANSWER LINE IF $K_a = 9.39 \times 10^{-7}$ (mol dm ⁻³) award 4 marks $H_2(g) + CO_2(g) \longrightarrow H_2O(g) + CO(g)$ init Both 1.16×10^{-5} eqm Both $1.16 \times 10^{-5} - x$ $x \times \sqrt{K_c} = x/(1.16 \times 10^{-5} - x) \checkmark$ $x = \sqrt{7.76} \times 10^{-3} (1.16 \times 10^{-5} - x)$ or	4	First marking point: some indication of how concentrations of products linked to remaining concentration of reactants Second: relation of concs to K _c Third: rearrangement of formula Fourth: value of x.
			$x = 0.088(1.16 \times 10^{-5} - x)$ \checkmark $(1.088x = 1.02 \times 10^{-6} \text{ so}) x = 9.39 \times 10^{-7} \text{ (mol dm}^{-3})$ \checkmark		ALLOW 9.38 x 10 ⁻⁷ from early rounding If answer is correct on answer line, award 4 marks without reference to working. 1.02 x 10 ⁻⁶ (treating initial concentrations as equilibrium ones) scores 2
	(d)	(i)	the Sun OR burning CO ✓	1	ALLOW 'uv'
		(ii)	oxygen (is formed)	1	any mention of oxygen that makes sense

(Question		Answer		Guidance
					IGNORE references to CO ₂ and/or hydrogen
	(e)		$S H_2 = (198 + 189 - 214 - 42) = +131 (J mol^{-1} K^{-1}) \checkmark$	1	
	(f)	(i)	FIRST CHECK ANSWER ON ANSWER LINE IF $\Delta_{\text{tot}}S = +10.6 \text{ (J mol}^{-1} \text{ K}^{-1})$ award 2 marks $T = 1273 \text{ K} \checkmark$ $\Delta_{\text{tot}}S = (42 - 40000/1273) = +10.6 \text{ (J mol}^{-1} \text{ K}^{-1}) \checkmark$	2	ALLOW two or more sf.(common rounding +11)
		(ii)	Reaction is feasible \checkmark Sign is positive for $\Delta_{\text{tot}} S \checkmark$	2	ALLOW 'spontaneous' or 'goes' or 'possible'
			Total	17	

(Quest	ion	Answer	Marks	Guidance
5	(a)	(i)	2,6-dichloro-3,5-diethylphenol	1	Ignore, commas, dashes and gaps
		(ii)	greater activity since longer alkyl groups OR less toxic (when taken by mouth) since more substitution	1	must have reason as well as effect to score
		(iii)	activity decreases since no halogen in 4 position $\sqrt{}$ less soluble since more substituted $\sqrt{}$	2	must have reason as well as effect to score two correct effects alone score 1 mark
	(b)		(aromatic compounds have) delocalised electrons that are lost on addition AND retained on substitution ✓ (loss of delocalisation causes) less stability AW ✓	2	
	(c)		-OH hydrogen bonds to N/N-H/O on protein	1	
	(d)		anion is more stable \checkmark overlap of p-orbital on chlorine with delocalised/ π electrons of ring \checkmark	2	Answers can be in either order Idea of negative charge of anion being spread over the delocalised system and CI side group
	(e)		(water) hydrogen bonds ✓ (non-polar) instantaneous dipole-induced dipole ✓	2	must be spelled correctly, no abbreviations
	(f)		FIRST CHECK ANSWER ON ANSWER LINE IF pH = 6.19 award 3 marks conc of PCMX = $0.330/156.6$ OR 2.1073×10^{-3} (mol dm ⁻³) \checkmark	3	ALLOW ECF from each stage
			$[H^{+}] = \sqrt{(1.99 \times 10^{-10} \times 2.1073 \times 10^{-3})}$ OR 6.4757 x 10 ⁻⁷ (mol dm ⁻³) \checkmark pH = 6.19 \checkmark		ALLOW 6.2 ALLOW 2 or more sf
	(g)		First please read the instructions for marking 'Level of Response' mark-schemes on page 4 Level 3 (5 – 6 marks) Learners show comprehension of information from the article to produce a full response containing most of the scientific points.	6	Indicative scientific points may include Soap Soap formed by reaction of ricinoleic acid with NaOH ionic head (largely) non-polar tail

Question	Answer	Marks	Guidance
	The explanation is relevant and logically structured and contains no errors. Level 2 (3 – 4 marks) Learners show some comprehension of information from the article to produce a partial response containing some of the scientific points The explanation is generally relevant and logically structured and contains few errors. Level 1 (1 – 2 marks) Learners show partial comprehension of information from the article to produce a response containing a few of the scientific points A partial explanation is attempted and has some structure. Level 0 (no marks) No response or no response worthy of credit.		 structure (eg sodium ricinoleate) Solubility PCMX low solubility in water because only the OH group can form hydrogen bonds PCMX held in micelles/ description of micelles (by soap molecules) ALLOW 'held in pine oil droplets that are made soluble(AW) by soap molecules' as an alternative held by id-id bonds in micelles ionic heads allow solubility in water/ forms hydrogen bonds with the water molecules equilibrium with free PCMX in water idea of reservoir
	Total	20	