CHERRY HILL TUITION AQA CHEMISTRY AS PAPER 2 MARK SCHEME

1)				
Part	Sub Part	Marking Guidance	Mark	Comments
(a)	(i)	M _r = 132.1	1	132
		0.0238	1	Allow 0.024 Allow 0.0237 Penalise less than 2 sig fig once in (a)
(a)	(ii)	0.0476	1	0.0474-0.0476 Allow (a) (i) x 2
(a)	(iii)	1.21	1	Allow consequential from (a) (ii) ie allow (a) (ii) x 1000 / 39.30 Ignore units even if wrong
(b)		<u>34 × 100</u> 212.1 = 16.0(3)%	1	Allow mass or Mr of desired product times one hundred divided by total mass or Mr of reactants/products If 34/212.1 seen correctly award M1 Allow 16%
				16 scores 2 marks
(C)		100(%)	1	Ignore all working
(d)		$PV = nRT \text{ or } n = \frac{PV}{RT}$	1	If rearranged incorrectly lose M1 and M3
		n = $\frac{100000 \times 1.53 \times 10^{-2}}{8.31 \times 310}$	1	M2 for mark for converting P and T into correct units in any expression
		= 0.59(4)	1	Allow 0.593 M3 consequential on transcription error only not on incorrect P and T
(e)	1	(Na ₂ SO ₄) H ₂ O		1
		(44.1%) 55.9%	1	M1 is for 55.9
		44.1/142.1 55.9/18 0.310 3.11 =1 =10	1	Alternative method gives180 for water part =2 marks
		<i>x</i> = 10	1	X = 10 = 3 marks 10.02 = 2 marks

Part	Sub Part	Marking Guidance	Mark	Comments
(a)		Hydrogen/H bonds	1	Not just hydrogen
		van der Waals/vdw/ dipole-dipole/London/temporarily induced dipole/dispersion forces	1	Not just dipole
(b)		н н в+ ⁶⁻ н н	3	M1 for partial charges as indicated in diagram (correct minimum) M2 for all four lone pairs M3 for H bond from the lp to the H $(\delta+)$ on the other molecule Lone pair on hydrogen CE = 0 OHO CE = 0 If only one molecule of water shown CE = 0
(c)		Hydrogen bonds/IMF (in water) stronger OR IMF / VDW / dipole-dipole forces (in H ₂ S) are weaker OR	1	Ignore energy references Comparison must be stated or implied
		H bonding is the strongest IMF		
(d)		Atoms/molecules get larger/more shells/more electrons/ more surface area	1	Not heavier/greater Mr
		therefore increased Van der Waals/IMF forces	1	Ignore references to dipole-dipole forces

CHERRY HILL TUITION AQA CHEMISTRY AS PAPER 2 MARK SCHEME

(e)	Dative (covalent)/ coordinate	1	If not dative/coordinate CE = 0/2 If covalent or blank read on
	(Lone) pair/both electrons/two electrons on $O(H_2)$ donated (to $H^{\rm +})$ OR pair/both electrons come from $O(H_2)$	1	Explanation of a coordinate bond specific to oxygen or water required Not just H+ attracted to lone pair since that is nearer to a H bond
(f)	ionic	1	if not ionic CE = 0
	oppositely charged \underline{ions} /+ and $-\underline{ions\ or\ particles}$	1	atoms or molecules loses M2 and M3
	ions attract strongly OR strong/many (ionic) bonds must be broken	1	S ⁻ loses M2 Reference to IMF loses M2 and M3

Part	Sub Part	Marking Guidance	Mark	Comments
(a)		Average/mean mass of (1) atom(s) (of an element) 1/12 mass of one atom of ¹² C	1 1	If moles and atoms mixes Max = 1
		OR		
		(Average) mass of one mole of atoms 1/12 mass of one mole of ¹² C		
		OR		
		(Weighted) average mass of all the isotopes 1/12 mass of one atom of ¹² C		
		OR		
		Average mass of an atom/isotope compared to C-12 on a scale in which an atom of C-12 has a mass of 12		This expression = 2 marks
(b)		d block	1	Allow 3d/D Other numbers lose M1
		[Ar] 3d ² 4s ²	1	Ignore transition metals Can be written in full Allow subscripts
		27	1	3d ² and 4s ² can be in either order

(C)	(90x9) + (91x2) + (92x3) + (94x3) (= 1550)	1	If one graph reading error lose M1
	17 (or ∑ their abundances)	1	and allow consequential M2 and
			M3.
			If 2 GR errors penalise M1 and M2
			but allow consequential M3
			If not 17 or ∑ their abundances lose
			M2 and M3
	=91.2	1	91.2 = 3 marks provided working
	0.12	1.	shown
	Zr/ Zirconium	1	M4 -allow nearest consequential
		1.	element from M3
			accept Zr in any circumstance
(d)	High energy electrons/bombarded or hit with electrons	1	accept electron gun
	knocks out electron(s) (to form ions)	1	
	Z ⁺ = <u>90</u> deflected most	1	If not 90 lose M3 and M4
			If charge is wrong on 90 isotope
			lose M3 only
			Accept any symbol in place of Z
	since lowest mass/lowest m/z	1	Allow lightest
(e)	(ions hit detector and) cause current/(ions) accept electrons/cause	1	QWC
(0)	electron flow	1.	4.10
	bigger current = more of that isotope/current proportional to	1	Implication that current depends on
	abundance	1.	the number of ions
	cover refer to o	1	the number of long

Part	Sub Part	Marking Guidance	Mark	Comments
		F As F F F	1	Mark M1 – M5 independently M1 for 5 bond pairs around As Do not penalise A for As or FI for F
		trigonal / triangular bipyramid(al)	1	Allow trigonal dipyramid
		FF	1	M3 for 2 bond pairs to F and 2 lone pairs Lone pairs can be shown as lobes with or without electrons or as xx or x x
		Bent / V shape / non-linear / triangular / angular	1	Bent-linear = contradiction Do not allow trigonal
		104° - 106°	1	Do not allow trigonal
		(For candidates who thought this was CIF ₂ ⁺ which contained iodine allow		
		Trigonal / triangular <u>planar</u>		Not just triangular
		120°		

stion	Marking	Guidance	Mark	Comments	
(a)	$\begin{tabular}{ c c c c c c } \hline Method 1 \\ \hline Mass of H_2O = 4.38-2.46 \\ (= 1.92 g) \\ \hline ZnSO_4 & H_2O \\ \hline 2.46 & 1.92 \\ \hline 161.5 & 18 \\ \hline (0.0152 & 0.107) \\ (1 & : 7 \\ \end{tabular}$	Method 2 Percentage of $H_2O = 44\%$ ZnSO4 H2O <u>56</u> <u>44</u> 161.5 18 (0.347 2.444) (1 : 7	1	If there is an AE in M1 then can score M2 and M3 If <i>M</i> , incorrect can only score M1	
	x = 7	x = 7	1	If x = 7 with working then award 3 marks. Allow alternative methods. If M1 incorrect due to AE, M3 must be an integer.	
(b)	Moles HCl = $0.12(0)$ mol ZnCl ₂ = $0.06(0)$ OR 0.12	112	1 1	If M2 incorrect then CE and cannot score M2, M3 and M4.	
	mass ZnCl ₂ = 0.06 × 136.4		1	Allow 65.4 + (2 × 35.5) for 136.4	
	= <u>8.18(4)</u> (g) OF	₹ <u>8.2</u> (g)	1	Must be to 2 significant figures or more. Ignore units.	

CHERRY HILL TUITION AQA CHEMISTRY AS PAPER 2 MARK SCHEME

(c)	Moles ZnCl ₂ = <u>10.7</u> (= 0.0784) 136.4	1	
	<i>OR</i> moles Zn = 0.0784		
	Mass Zn reacting = 0.0784 × 65.4 = (5.13 g)	1	M2 is for their M1 × 65.4
	% purity of Zn = $\frac{5.13}{5.68}$ × 100	1	M3 is M2 × 100 / 5.68 provided M2 is < 5.68
	= <u>90.2</u> % <i>OR</i> <u>90.3</u> %	1	Allow alternative methods.
			M1 = Moles ZnCl ₂ = <u>10.7</u> (= 0.0784) 136.4
			M2 = Theoretical moles Zn = <u>5.68</u> (= 0.0869) 65.4
			M3 = M1 × 100 / M2 = (0.0784 × 100 / 0.0869)
			M4 = <u>90.2%</u> OR <u>90.3</u> %
(d)	lonic	1	If not ionic CE = 0/3
	Strong (electrostatic) attraction (between ions)	1	
	between oppositely charged ions / + and – ions / $\ensuremath{F}^{\text{-}}$ and $\ensuremath{Zn}^{\text{2+}}$ ions	1	If IMF, molecules, metallic bonding implied CE = 0/3

Question	Marking Guidance	Mark	Comments
(a)	M1 The activation energy is the minimum / least / lowest energy	2	Mark independently
			Ignore "heat" and ignore "enthalpy"
	M2 (energy) for a reaction to occur / to go / to start		Ignore "breaking the bonds"
	OR (energy) for a <u>successful / effective collision</u>		
(b)	M1 Catalysts provide an alternative route OR an alternative	2	Mark independently
	mechanism OR alternative / different path(way)		Ignore reference to "surface"
	M2 Lowers the activation energy		
(c)(i)	Stay(s) the same	1	
(c)(ii)	Increases	1	Credit "increase" or "increased"
(c)(iii)	Increases	1	Credit "increase" or "increased"
(c)(iv)	Stay(s) the same	1	
(d)(i)	M1 yeast or zymase	2	Ignore "enzyme"
	M2 <u>ethanol</u>		In M2, ignore "alcohol" and ignore any formula
(d)(ii)	M1 (Concentrated) H ₃ PO ₄ OR (Concentrated) H ₂ SO ₄	2	Credit correct names
			Ignore "hydrogenphosphate or hydrogensulfate"
	M2 butan-2-ol		Ignore "dilute" or "aq"
			Do not penalise absence of hyphens in name.
			In M2, ignore any formula