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Chapter 5
Trigonometric Functions
5.1 Angle Measurement

The standard way to draw an angle on the Cartesian plane is to draw two rays or half-

lines out from the origin.
initial side

=<V

terminal side

terminal side

o

(0,0) initial side X

v

Figure 5.1 Positive angles Figure 5.2 Negative angles

One of the rays is the positive x—axis. We call this the initial side of the angle. The

other is called the terminal side. The terminal side starts also on the positive x—axis and

rotates counterclockwise to form positive angles (Figure 5.1) and clockwise to form
negative angles (Figure 5.2).

5.2 Degrees

Definition. If the terminal side rotates counterclockwise to finish on the positive
y —axis , we measure the angle as 90 degrees or 90°. See the first diagram below.

This leads to the following examples of angles measured in degrees.

1} A 4&

90° \ > < 180"\ . 1@:\'; ,éao"\
v

W -45°
N
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A

A

Figure 5.3
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Angles can be formed by more than one rotation. Hence we have:

, 630’

R //\ ;
% -/

v
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e
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Figure 5.4
5.3 Radians

If we draw a circle of radius r centered at the origin, its circumference is 2zr . We use
the symbol s for the length of an arc of the circle.

Definition. An angle of measure one radian is the angle subtended? at the origin of a
circle of radius r by an arc of the circle of length s=r. See Figure 5.5.

y y
A A

Figure 5.5 Angle of 1 radian Figure 5.6 Angle of 2z radians

A

<V

Algebraically, thismeans s=rf < 6= 3 since if s=2r, =2 radians, if s=3r,
r

¢ =3 radians and so on.

If we take one complete revolution, then the arc length is simply the circumference of the

circle, thatis, s=2zr. Then 6= 3. 2rr = 2 radians or the angle subtended by the
rr

whole circle at the center is 27 radians. See Figure 5.6.

! “Subtended ” means formed by the rays drawn from the ends of the arc to the center.
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5.4 Radians and Degrees

Since the angle subtended by the whole circle at the center is also 360°, it follows that

27 radians =360°, hence,
180°

T

1 radian =

T .
1° =~ radians.

The common angles are related as follows. Note, when we write an angle in radians, we
normally omit the word “radians”, that is 7 = 7 radians.

Degrees | Q° 30° 45° 60° 90° 180° 270° 360°
Radians 0 7l6 zl4 7l3 wl2 T 32 27
Example 1
Convert (a) 135° (b) 540° (c) —210° to radians
Solution
(a) 135° =135 % = 3%
180 4

(b) 540° =540 =37
180

(¢) —210°= 210 % =17
180 6

Example 2

Convert (a) —% (b)%z (c) 2 to degrees.

Solution

7 180°

4 0
a)——=——e =-90
(a) >3

0
(b) i _ 7?72.180

— =420°
3

180°

(c)2=2e ~114.59°

5.5 Arc Length

From 0 = 3 , the formula for the length of an arc that subtends an angle of & radians at

r

the center of a circle of radius r is: s=r@&. See Figure5.7.
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A
<V

Figure 5.7 Arc Length Figure 5.8 Area of Sector

Example 3

A circle has radius 3. What is the length of an arc that subtends an angle of 330°at the
origin?

Solution

330° =330~ =17
180 6

s:r9:3ollﬂzﬁz17.31
6 2

5.6 Area of a sector of a circle

A sector of a circle is the region bounded by an arc that subtends an angle & at the center
and the two radii from the center to the ends of the arc. Since the area of the circle

subtended by the angle 27 is A=7zr’ = % r?2z , then proportionally, the area of the

sector subtend by the angle & is A:%rze . See Figure 5.8.
Warning: Some calculators need radians as the input, others use degrees.
Example 4

What is the area of the sector of the circle that subtends an angle of 20° at the origin if the
radius of the circle is 5?

Solution
20° =200~ -~
180 9
A=lrzg_Lleoge 27 44
2 2 9 18
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5.7 Two Special Triangles

There are two special triangles that will prove very useful in our study of trigonometric
functions.

5.7.1 Isosceles Right Triangle or 45° —45° —90° triangle.

45 45

1 — 5 1 N2 — 22

_] 45 _] 4B

1 1 N2/2
Figure 5.9

By the Pythagorean Theorem, (in a right triangle, the square on the hypotenuse is equal to
the sum of the squares on the other two sides), if two equal sides of a right triangle are

both 1 unit, then the hypotenuse is J2 . In the final step we simply multiplied each side

V2

by the same factor, namely -

5.7.2 The 30° -60° Right Triangle

If we add on a mirror image of a 30° —60° —90° triangle, we get an equilateral triangle
with all angles equal to 60°- see Figure 5.10. Hence all the sides are also equal, say to 2.
Then we have Figure 5.11, again by using the Pythagorean Theorem, and proportionally,
Figure 5.12.

0| 30%. 0| 30°
—_—) \\\ 2
. 3 N
60 o lso 60 o lso
1 1
Figure 5.10 Figure 5.11
30°
e N3/2
60 Figure 5.12
1/2

5.8 The Trigonometric Functions
82



5.8.1 The Unit Circle

The unit circle is centered at the origin and has radius 1. It has equation x*+ y* =1.

Y y
1) 4 02)

(-1, (1,0) )

A
N
N
)

~1)

Figure 5.13 The Unit Circle
Figure 5.14

Now, an angle of one radian is defined to be the angle subtended at the origin by an arc of
length 1. If therefore, we wrap a number line around the unit circle so that its origin or 0
is at (1,0), its positive part is wrapped counterclockwise and its negative part is wrapped
clockwise, then any real numbers on the number line from —oo to +o0, say, € and —¢,
correspond to a subtended angle with the same radian measures of 8 or—¢ . Figure 5.14.

This remains true if we wrap the number line multiple times around the unit circle. For
example, the number 19.37 =6 +0.5204 on the number line will end up on the
circumference of the unit circle and be in the first quadrant. As we wrap the number line
around three times and a bit more, the terminal side of the angle goes three times and a
bit more around the origin and ends up forming an angle of 6 +0.5204 =19.37 radians.

Note, it overlays the angle 0.5204 =29.82° in the first quadrant as shown in Figure 5.15.

Figure 5.15 The angle 19.27 overlaying the angle 0.5204

5.8.2 Definitions of Trigonometric Functions
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Let @ be areal number and P(X,y) be the point on the (wrapped) unit circle
corresponding to a subtended angle 8.

y A

0,1)

P(x,y)

1
y
- 0 y X
(-1,0) X (1,0)

v (0-1)
Figure 5.16

We define the trigonometric functions sine, cosine and tangent by,

Definitions

sind=y, cosé=x, tanezﬂzz (x=0)
coséd X

5.8.3 Pythagorean Trigonometric Identity

Since the equation of the unit circle is x* + y* =1, it follows that,
sin®@+cos” §=1

This is called the Pythagorean trigonometric identity.

5.8.4 Domain and Range

The domain of the sine and cosine functions is all real numbers since we wrap the whole
real number line around the unit circle.

The range of the sine and cosine functions is [-1,+1] since X, yare values of the
coordinates of points on the unit circle where —1<x,y<1.
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The tangent function tan @ = sind is not defined if
cosé

cos@=x=0<:>¢9:%+2n7z or 3?”+2n7z:%+n7r, neZ.?
We write the domain of y=tan@ as

{9:9¢%+nﬂ, neZ}@{HO:9°¢90°+n0180°,neZ}. Its range is (—oo0,+o0).

5.8.5 Periodicity of the Sine and Cosine Functions

If we wrap the positive half of the real number line around the unit circle with the origin
0 of the number line placed on the point (1,0) on the unit circle, then the origin gets

overlaid successively by 27,47,67,.....,2n;z where n is any positive integer. If we wrap

the other negative half of the real number line around the unit circle in a clockwise
direction, then the origin is overlaid successively by —27z,—47x,—6x,.....,2n7z where n is

any negative integer. In other words, the origin is overlaid by 2nz,neZ.

This occurs at every point on the circumference of the unit circle. The general point 4 is
overlaid by @+2nz,neZ. Refer back to Figure 5.15 as an example.

It follows that if P(x, y) is any point on the unit circle and 8+2nz,neZ is the
subtended angle, then,

sin(@+2nxz) =sin@

cos(@+2nrx) =cosd
We use this property when you want to find values of these functions outside [0, 2r]. For
example, from Figure 5.15, sin19.27 =sin(6z +0.5204) =sin0.5204. We say sine and
cosine are periodic functions with period 27z. More generally,

Definition

A function y = f(x) is called periodic if there exists a number p such that

f(x+p)=T1(x)
for all xinthe domain of f . The smallest such number p is called the period of the
function.

In the case of the sine function, for example,
sin(@+2x) =sin @,

sin(@+4rx) =sin(0+2x) =sin@

. T 3 V4 . .
2You should convince yourself that 5 +2n7 or > +2n7 = 5 +Nz, N€Z by writing out the first
few terms of each of the three sequences.
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5.8.6 Evaluating Trigonometric Functions at common values of the variable.

With hypotenuse equal to 1 for
both, if we superimpose the

45° —45° —90° triangle and the
30° —60° —90° triangle on the unit
circle and rotate them through the
four quadrants, we obtain the two
diagrams shown in Figure 5.17.

We can use these figures and
periodicity to evaluate
trigonometric functions at

0+27zn,neZ for (V2/2,V2/2)

0=0°30°45%60°,
90°,180°,270°,360°
or,

0=0,7/6,714,713,
ml2,7,3712,27x

y

A

(N2/2,N2/2)

(-1/2,-V3/2)

(1/2,-V3/2)
Figure 5.17
You should memorize this table. We use these values all the time.
0° 0° 30° 45° 60° 90° 180° 270°
0 0 il s il il d sz
6 4 3 2 2
sin@ 0 1 \/E \/§ 1 0 -1
2 2 2
cosd@ 1 \/§ \/E 1 0 -1 0
2 2 2
tan @ 0 i 1 \/§ undef. 0 undef.
3
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In addition, as we saw earlier, wrapping €+ 2nz around the unit circle results in angles
overlaying &, so we have,

sin(@ +2nx) =sin @ or  sin(@°+n360°) =sin#°
cos(6 + 2nz) = cos & or  cos(8°+n360°) =cos 6’
tan(@ +2nz) =tan @ or  tan(6°+n360°) = tan 6°

Example 5
Evaluate the sine and cosine functions at z/6,z,37/2,2x

Solution Read the answers off from Figure 5.17 or the Table below it.
sinz/6=1/2,sinz=0,sin3z/2=-1,sin27 =0

cos/6=+/3/2, cosz=-1 cos3z/2=0,cos2z =1

Example 6
Evaluate sin13z/6, cos(—7z/2)

Solution
sinl3z /6 =sin(2x+x/6) =sinz/6=1/2

cos(—7z/2)=cos(—4r+ml2)=cos(z/2)=0
5.8.7 Values of Trigonometric Functions of Any Real Number

Definition Reference Angle

Consider any angle in the standard position. We define its reference angle to be the
acute angle @' formed by its terminal side and the x—axis.

P(x.y)

P(-x,y)

180+6 360-9
¥© or V' X

P(x,-y)

Xy

P(-x,-y)

Figure 5.18
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In the above figures, we start with an acute angle @ in the first quadrant of the unit circle.
If its terminal side meets the unit circle at P(x,y), by definition,

sind=y, co0sé=x, tanezz
X

In the second figure we consider the angle 180° — & which will be in the second quadrant.
Its reference angle €' is equal to &. Therefore its terminal side meets the unit circle at
(=%, y). Hence, by definition,

sin(180° — @) = y =sin @
cos(180° — @) = —x = —cos @

sin(180° - 9) = Y _ _tano
-X

In the third figure we consider the angle 180° + & which will be in the third quadrant. Its
reference angle @' is again equal to 8. Therefore its terminal side meets the unit circle at
(—x,—y). Hence, by definition,

sin(180° + 0) =—y =—siné

cos(180° + @) = —x = —cos @

tan(180° + ) = =Y _tano
-X

In the fourth figure we consider the angles 360° —@ or —@which will be in the fourth
quadrant. Their reference angle @' is also equal to 8. Therefore their terminal side meets
the unit circle at (x,—y). Hence, by definition,

sin(360° — @) = —y = —sin @ sin(-0) = -y =-sind
c0s(360° — ) = x = cos & cos(—6) = x = cos &
- -y
tan(360° —0) = —Y = —tan @ tan(-0) =— =—tan 0
X
We summarize this information in Figure 5.19.
y y
A A
180-6 8 S A
< < :X
T C

Figure 5.19
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Generations of students remember the second diagram as “All Students Take Calculus”
or “All Stations To Central”. It means, for angles in the first quadrant, All trig functions
take positive values; for angles in the second only Sine is positive; for angles in the third
only Tangent is positive and for angles in the fourth quadrant only Cosine is positive.

For radian measure, the formulas are,

sin(x—6)=sind sin(r+6)=-sin@ sin(2z—-0)=-sin@ sin(-0) =—-sing
cos(r—6)=—-cos@ cos(r+60)=-cos@d cos(2rx—0)=cosd  cos(—0)=cosé
tan(z—¢)=—tan@d tan(r+6)=tand tan(2r—0)=—-tan@d tan(-0)=-tané

A A
{ : | .
Q 211-0 T C

-6

Figure 5.20

To evaluate the trigonometric value of any angle, the method is to express the given angle
in the form 6,180° —0,180° + @ or 360° @ or —@, (or O, 7—0, etc). where @ is an
acute angle. You may need to subtract or add multiples of 360° (or 2) first. Then the

trigonometric value of the angle is the same as the trigonometric value of the acute angle
6, with the sign given by ASTC.

Example 7

Evaluate sin210°

Solution We write the angle in the one of the forms in the first diagram of Figure 5.19.

In this case, sin210° =sin(180° +30°) placing the angle in the third quadrant where only

tan is positive. Hence sin210° =sin(180° +30°) = —sin30° = —%

Example 8
Evaluate cos135°
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Solution cos135° = cos(180° —45°) = —cos45° = —
Example 9
Evaluate tan %ﬁ

Solution
Working in radians rather than degrees and using Figure 5.20,

T 1 \/§

tans—ﬂ:tan(zz—z) =—tan=—=-——==-
6 6

6 3 3

Exercises 5A

Determine the quadrant in which (a) —200° and (b) —17° lie.
Sketch (a) 180° and (b) 135° in the standard position.
Change to radian measure: (a) 315°, (b) 120°

M wbhe

Change to degree measure: (a) —%, (b) %

5. Change to degree measure: (a) —S—ﬂ, (b) 14z

3 15
6. Convert from degrees to radians, rounding to 3 decimal places: (a) 69.3°,
(b) —101.1°

7. Find the length of the arc of a circle of radius 9 feet and central angle 60°.

In each of 8 and 9, find the angle & in radians.
8.

25

60
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10. A sprinkler on a golf course is set to spray water over a distance of 15 meters and
to rotate through an angle of 140°. Draw a diagram that shows the region that can
be irrigated with the sprinkler. Find the area of the region.

11. Determine the exact values of the six trigonometric functions of the real number
6.

P

In 12 and 13 find the point on the unit circle that corresponds to the real number t.
12. 0=nr

13. 9:3—77
4

In 14, 15, 16 and 17 find the sine, cosine and tangent of the real number.

14. =2
3

15. ==
4

16. =27
3

17. ="
3

In 18, 19, 20 and 21, evaluate, if possible, the six trigonometric functions of the real
number.

18. 9=5—”
6
19. 9=7—ﬂ
4
20. 6’=3—ﬂ
2
21. 6=—rx

22. Evaluate cos3z using periodicity.

23. Evaluate sin 97” using periodicity.

24. If sin(-6) :g,find (@) sin@ (b) csco
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25. If tan(—6) =2 find cotd
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5.8.8 Solving trigonometric equations
To solve equations, we need to reverse our thinking.

Example 10
Solve sinezé, feR

Solution Since sine is positive in both the first and second quadrants, both sin%:% and

Y/

sin(;z—%) = sin? = % This gives solutions in the domain [0, 2] as %5{ Then we

use sin(@+2zn) =sin@, neZ to obtain the general solutions %+27rn, 5?7:+27m' neZ.

Example 11

Solve cosaz—%, feR

Solution Cosine is negative in both the second and third quadrants. The first quadrant
solution to cos@ :% is 0= % .

This gives solutions in the domain [0, 2] as 7[—%, 7z+z or 2—774—7[ The general

3 3

solutions are 2?7[+2n7z, 4?7[+2n7z, neZz.

Example 12
Solve tan@ =1 for £ [0, 2x]

Solution The tangent function is positive in the first and third quadrants where angles
have the format 6, 7+ 6

Since tan z =1, the solutions are Z, 7z+Z = 5,5—”.
4 4 4 4 4

Example 13

Find all solutions for 2sin>@+sin@—-1=0

Solution

2sin@+sind-1=0

= (2sin@-1)(sin@+1) =0
=sin@=1/2,sinfd=-1
=0=r/6+2n7,57/6+2n7,37x/12+2nz,NneZ

93



Exercises 5B

In 1 to 14 find all solutions of the given equation.

1.

2.

w

NG

Solve sin@=—
2

Solve tan@ = —\/§

Solve cosez—g

Solve «/Esin 0+1=0

Solve v2cos#-1=0

Solve tan’#-1=0

Solve 4cos® #—4cosf+1=0
Solve 2sin?@—-sin@-1=0
Solve 2sinx+1=0

. Solve tan x+\/§:0

. Solve (3tan®x—1)(tan® x—3)=0
. Solve tan®3x =3

. Solve sec’ x—1=0

. Solve 2sin® x+3sinx+1=0
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Chapter 6
Graphs of the Trigonometric Functions
6.1 Graphs of sine and cosine functions

We will use x as the independent variable rather than €. As we saw, the domain of the
sine and cosine functions is (—oo,0), the range is [-1,1] and the functions are periodic

with period 27 . Moving counterclockwise around the unit circle from (1,0), the graph
of y=sinx startsat y=0 and x=0, increasesto y=1 at x=x/2, decreases back to
y=0 at x=x, then decreases furtherto y=-1at x=3x/2, before returningto y=0
at x=2x. See Figure 6.1. Similarly, for the graph of y =cosx which takes the values
(0,2), (#/2,0), (—=,-1), (37/2,0), (27,1) . See Figure 6.2.

We call the section of each graph from 0 < x <27z the fundamental cycle of the graph.
This cycle is repeated infinitely in both the positive and negative directions. (Figure 6.3).

y y
1.0 1.0
0.5 E/\ 0.5 E /
* * * X X * * P
-0.5 E 3 n z 2 g5 E 3 ™ 7 27
-1.0 -1.0

Figure 6.1 Fundamental cycle of y=sinx Figure 6.2 Fundamental cycle of y =cosx

y y

L

I I | x
Sm 1
U ? 3 T

0.5

I
9

T —S5Sf—
2 2

Figure 6.3 Extended graphs of y=sinx and y =cosx

Notes: (1) y =sinxintercepts the x—axisat nz, neZ

(2) y=sinx has maxima at %iZﬂn, neZ

(3) y=sinx has minima at 3?”127:& neZ
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i . .n )
(5) y=cosxintercepts the x—axis at 77[ nan odd integer

(6) y=cosx has maximaat 0+27zn, neZ
(7) y=cosx has minimaat z+2zn, neZ

Definitions

Amplitude: The amplitude of the sine and cosine graphs is 1. In general, it is half the
distance between the maximum and minimum values of .

Period: The period is the length of the fundamental cycle. Itis 2z for both y=sinx
and y=COoSX.

6.2 Transformations of the sine and cosine graphs

We can use our transformation rules for the translation, reflection, stretching and
shrinking of the basic sine and cosine graphs. Let’s recall the summary rules.

Transformation Summary Rule
The graph of y—k =af (b(x—h))is obtained from the basic graph of y = f (x) as follows.

(@) If a<0, reflect the basic graph in the x—axis. If |a| <1, the basic graph is shrunk
vertically by that factor, if |a| >1 the basic graph is stretched vertically by that factor. In
the case of sine and cosine functions, the amplitude will therefore be |a].

(b) If b <O, reflect the graph in the y—axis. If |b| >1, the basic graph is shrunk
horizontally by a factor of b. If |b| <1, the basic graph is stretched horizontally by a

factor of b. In the case of sine and cosine functions, the length of the fundamental cycle
or the period becomes 2z/|b|.

(c) The basic graph is translated so (0,0) — (h,k), the whole graph moves accordingly.
Example 1
Sketch the graph of y =2sinx on the interval [-7,37]

Solution The basic graph y =sin x is vertically stretched by a factor of 2, the amplitude
becomes 2. The period remains 2.

1.0’/\ 1
ost/
R ‘ ‘ ‘ ‘ ‘ X
. . . . — x z 3 T 37 3
/ x -

N N 4 : :
\ —o5f /
J \J

1.0k —f

Figure 6.4a y =sinx Figure 6.4b y=2sinx
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As noted in Chapter 3, we can avoid what may be complicated applications of the
stretching and shrinking rules for transformations by plotting the intercepts with the axes,
in particular the intercepts of the fundamental cycle with the x —axis. We can also
include, for sine and cosine, the maximum and minimum points of the fundamental cycle
as shown in Method 2 of Example 2.

Example 2

Sketch the graph of y=sin2x, xe[-x,27]

Solution

Method 1: Using the shrinking and stretching rules, the basic graph of y =sin x is shrunk

horizontally so the period becomes 27” =z . Shrink the fundamental cycle to period =

(Figure 6.5a) and then extend the graph in either direction (Figure 6.5b).
y

y 1.0

1.0t

05¢

-1.0+ 0

Figure 6.5a y=sin2x, [0, 7] Figure 6.5b y=sin2x, [-x,27]

Method 2: Using the intercepts and turning points for the fundamental cycle, we argue as
follows. The values for the fundamental cycle of sin&, namely,

0 0 7l2 | & 3712 | 2x
singd | 0 1 0 -1 0

become these values for the fundamental cycle of sin2x by putting 8 =2x = x =§ .

X 0 7ld | 712 | 3714 | «
sin2x | 0 1 0 -1 0

Simply draw the fundamental cycle of y =sin2x using these points, as in Figure 6.53,
and then extend it as in Figure 6.5b.

Example 3
Sketch the graphs of y = %cos X, y=3cosX, Xe[-x,3x].
Solution The basic graph is that of y =cosx. We need to vertically shrink it for

y= %cos X (amplitude % ) and vertically stretch it for y=3cosx (amplitude 3).
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The intercepts do not change.
y

3cos x

ST

=3+
: 1
Figure 6.6 y=cosx, yzzcosx, y =3C0S X

Example 4

Sketch y:3sin%x, X e[-2rx,4rx]

Solution
Method 1: The basic graph is y
y =sinx. The new graph >5 sinty/
y=3sin % X is stretched vertically 2 ,
lf sSin X
to have amplitude 3 and /\ N
horizontally to have period dp-Z ozl
2 _ 7
1/2 _2§,
af

Figure 6.7 y =sinx, y:3sin%x

Method 2: The values for the fundamental cycle of 3sinéd

0 0 zl2 s 3712 | 27
3 0 3 0 -3 0
sin@

become these values for the fundamental cycle of 3sin§ by putting @ =x/2=x=26.

X 0 V4 27 | 3« A
3 0 3 0 -3 0
sinl/2x

So we simply draw the new fundamental cycle and then extend.

Example 5 (Reflections)
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Sketch y=-2sinx, x e[-x,37]

Solution The basic graph is y =sinx. The new graph y =-2sinx has amplitude 2 and

period 2z and is reflected in the x—axis.
y
2 [

=2+
Figure 6.8 y=sinx, y=-2sinXx
Example 6 (Translations)
Sketch y:sin(x—%), x e[-712,37]

Solution
Method 1: Comparing with y—k =af (b(x—h)), the required graph is a shift of y=sinx
so that (0,0) — (/2,0) and the rest of the fundamental cycle shifts accordingly. Draw
the repositioned fundamental cycle (Fig. 6.9), and then fill in the rest (Fig. 6.10).

4 y

1.0+ 1.0
05 0.5 A /
. ) . - ) ) ) Loy
r m
5 g 2 2r > - T or 3 2 &~ 3x
DL 20.5 2 2 2
-1.0*+ -1

Figure 6.9 y=sin(x—7x/2) Figure 6.10 y=sin(x—%), [-712,3r]

Method 2:

The values for the fundamental cycle of sin@

0 0 |#/12| o |3xl2]| 2«
sind | 0 1 0 -1 0

become these values for the fundamental cycle of sin(x—7/2) by putting 6 =x-7/2.

X 7l2 |\ 7 | 3712 | 27 | 572/2
sin(x—z/2) | O 1 0 -1 0
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Use this data to draw the fundamental cycle (Figure 6.9) and then extend to Figure 6.10.
Example 7

Sketch y=2cos(3x+7), xe[-z, 7]

Solution

Method 1: The basic graph is y =cos x. Rewrite as y = 2003[3(x+%)] . This graph has
amplitude 2, period 2?”and is translated so that (0,0) > (—%,O) or the whole graph is

translated %to the left. Itis then stretched by a factor of 3. The five graphs show the

steps to be taken, beginning with cos x.

y
1.0
0.5 \ / 1r
. -ox * - X

il - 3 I z 2x
2 2 2

=05+ -1r

-1.0+ 2t

Figure 6.11 y=cosX Figure 6.12 y=2cos x

y y
2,

\2
1% 1L

I
N
b

Bl
N

B
>
N

v

N

2+

—1F

win b

Figure 6.13 y:2cos(x+%) Figure 6.14 y=2cos3(x+z/3), [-x/3,7/3]

y

2+
) A /
. . Lox
T 2T
- - n
3 3

Figure 6.15 y=2cos(3x+7x), [, 7]
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Method 2: (is much simpler!)

The values for the fundamental cycle of cosé

0 0 | #l2| n |3xl2| 2x
cosd | 1 0 -1 0 1

become these values for the fundamental cycle of 2cos(3x+ ) by putting & =3x+ 7.

X —7l3 | -x/6|0 | 72/6| /3
2C0S(3x+ ) 2 0 21 0 2

Draw the fundamental cycle of y=2cos(3x+ ) as shown in Figure 6.14 and then
extend it to get Figure 6.15.

Example 8
Sketch y =sinx+2, X e[-27,27]
Solution Write as y—2=sinx. The
basic graph of y =sin x which oscillates '

30t
around the line y =0 (the x—axis) is A Z'SA
translated so (0,0) —(0,2). 2.0

Accordingly, the new graph oscillates 15 \/

around the line y =2, but otherwise has 10¢
the same shape (period and amplitude) as 05}
y=sinx. on - . on

Figure 6.16 y=sinx+2

Example 9
Sketch y=1+3cos(2x—x), xe€[0,27]
Solution

Method 1: Rewrite as y—1= 3003[2(x—£)] . The basic graph is y =cosx with
2

amplitude 1 and period 27. First, the new graph is stretched vertically to amplitude 3 and

translated so that (0,0) — (z/2,1) to become y=1+3cos(x—x/2)).
Yy Yy

I g " 7" 2 ‘ ‘ 3‘;1 ‘ S‘n

2 -1f z n - 2n >

-3 )

3

[

._.
[ N

N
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Figure 6.17 y=3cosx Figure 6.18 y =1+3cos(x—/2))

Then it is shrunk horizontally to period 27” = . Finally we fill in the required remainder
of the domain [0, 27].
Yy Yy

AV FAWA
:lg"%x ;/V\

Figure 6.19 y =1+3cos[2(x—x/2)] Figure 6.20 y =1+3cos[2(x—x/2)],[0,27].

- N W A
- N W A

—_

Method 2:

The values for the fundamental cycle of 3cosé
% 0 |#nl2 | n |37/2| 2%
3 3 0 -3 0 3
cosé

become these values for the fundamental cycle of 3cos(2x— ) by putting 8 =2x—r.

X 712 | 3714 | n | 5714 | 3712
3cos(2x—z) | 3 0 -3 0 3

Draw the fundamental cycle of y=3cos(2x—) and then elevate it by 1 unit (shift the
origin to (0,1) ) to give Figure 6.19 and extend it to get Figure 6.20.

6.3 Graph of tan@

Let us consider tan @ = Y for 0<@< %
X

At 6=0,y=0,x=1,s0 tand=0

Ato== > ,¥Y=1 x=0,so tan@ is undefined.

As @ increases from 0 to % y increases towards 1 and X decreases towards O.

Let us consider various values of the points (x,y) on the unit circle x*+y® =1 as
X — 0, y —1 and the consequential values of tané.

y 0 0.5 0.9 0.99 0.999 | 0.9999 | 0.99999
X 1] 0.86603 | 0.43589 | 0.14107 | 0.04471 | 0.01414 | 0.00447
tan @ 0| 057735 | 2.06472 | 7.01792 | 22.3439 | 70.7054 | 223.605
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Graphically we would get the following
by plotting 6 and tané. 6

0

2

Figure 6.21 y=tand, 0<0<x/2

We say tan @ approaches the line 6 :% and that the line @ :% IS a vertical asymptote.

The same happens in the intervals (z/2, z),(7,37/2) and so on, except tan @ alternates

between being positive and negative (ASTC). Let’s switch the independent variable to X
for the function y =tan x. The graph is shown in Figure 6.22.

y
6
4

2f

- -

SIE]
5

_2}

_4}

—6}

Figure 6.22 y=tanx, —z/2<x<2x

Summary
The domain of y=tanx is {x:x¢%+n7r, neZ}.

The range of y=tanx is (—o0,0).
The period of y=tanx is 7.

Example 10
Sketch y=>5tan2x, Xxe[-rx,7z]
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Solution
Method 1: The basic graph is that of

y =tan x, with a vertical stretching of 5

and a period of % due to the shrinking

factor 2. The vertical stretching and

horizontal shrinking takes

T T

-

el
-

NN

w

5 Y

Figure 6.23 y=>5tan2x, [-x, 7]

Method 2:

The fundamental cycle of y =tan&# may be summarized as follows.
% —xl2t -rl4 0 zl4 ]2
y=tané —o0 -1 0 1 00

Putting € =2x and multiplying by 5, the fundamental cycle of y =5tan2x becomes,
X —zl4t -8 0 718 !4
y=5tan2x | —o -5 0 5 o0

Draw the fundamental cycle as shown in Figure 6.23 and then extend it.

Exercises 6A

Draw the graphs of the following functions. State the amplitude, period and phase shift
(if any). Show two full periods.

=

WL N o 0 ko »

N =
[ =)

=
w N

f (X) =sin 2x
y—cos5
2

y =tan3x
y =2C0S 2X

. X
g(x)_sm§
g(x) =cos(—4x)
y —lsin X

4

y =4c0s X
y =sin4x

. y=sin(x—2r)
Ly = 4cos(x+%)

. y=2c0sx—3

f (X) =1+cos x
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14. f(X) =—sinx
15. y=-3sin3x

16. y = —lcoslx
3 3

17. y:3cos(x+%)

18. y:—4sin2(x+%)
v

19. y:1+cos(3x+5)

T
20. y=tan(x——
y ( 4)

21. y=tan4x
22. y =Sec2x

6.5 The Reciprocal Trigonometric Functions and Their Graphs

6.5.1 Definitions
The cosecant, secant and cotangent trigonometric functions are defined as the reciprocals
of the sine, cosine and tangent functions:

1  cosx

1 1
CSCX=——, SeCX=——, COtX=——=—""2
sin x COS X tanx sinx

To evaluate these functions at particular values of x, first evaluate sine, cosine or tangent
of x and invert the result.

Example 11

1
Evaluate csc%, sec%, cot%, cschﬁ, sechr, cot 2.

Solutions
CSC%: 1”:%:1 e 11 :_\/_1 _ 23
T 3 . /4 . T 3/2 3
sin sin(4z—=) sin(-—-
2 (47-7) sin(-7)
sec = t 1 undefined | sec57 = = 1 __1 :i:_l
2 sZ O cos5z cos(w+4r) cosz -1
1 1 .
cot2r = =— undefined
otf-—t -1 _ tan2z O
6 n” 13
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6.5.2 Graphs of cscx, secx

As reciprocals of sine and cosine, the cosecant and secant functions have period 27 , and
as the reciprocal of the tangent function, the cotangent function has period = . Since

tanx = sInx and secx = 1 , both have the same undefined points so both have the

COS X COS X

. T . 1 COS X
same vertical asymptotes at x = E +nz, neZ. Since cscX=—— and cotx=——

sin x sinx
both have the same vertical asymptotes where sinx=0, namely x=nxz, neZ.

To draw the graphs of y=cscx, y=secx, firstdraw the graphs of y=sinx, y=cosx
respectively, and then the asymptotesat x=nxz, neZ and x= % +nz, neZ

respectively.

When we plot points, the sine and cosecant curves meet wherever sin x =1 since then
csc X =1 and the cosine and secant curves meet wherever cos x =1 since then secx =1
but otherwise since —1<sinx <1, cscx>1 or <—1, and since —1<cosx <1,

secx>1 or <—1. So we get the graphs shown in Figures 6.24 and 6.25.

2n -

w
5

-
B
23
5

w
K

Figure 6.24 y=cscx "above"y=sinx Figure 6.25y=secx "above" y = cos X

Example 12

Sketch y =3sec(x—r), [27,27]

Solution

Method 1: The basic graph y =secx has maxima and minima at y =41 and period 2r .

The graph of y=3sec(x—x) is stretched so the maxima and minima are at y =43
and the period is still 27 . It is then translated so (0,0) — (,0), that is the fundamental
cycle shifts 7 to the right. See Figure 6.26.

Method 2: The fundamental cycle of y=secd may be summarized as follows.

0 —l2" 0 wl2 ml2" 7 312
y =secO 00 1 00 —o0 -1 —00
Putting X =7 +86, the fundamental cycle of y=3sec(x—x) becomes,
X ml2" 7 312 312" 27 5712
y =sec(X— ) 0 1 00 —0 -1 —0
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Draw the fundamental cycle and then extend it as in Figure 6.26.

Figure 6.26 y=3sec(x—7x), [-27,27x]

6.5.3 Graph of cot x

Since cotx:tL it follows that if tan x — 0 then cot x — ocand if tan X — oo then
an X

cot x — 0. The vertical asymptotes are at the values of x for which tanx =0, namely
Xx=nz. For [0,%] we have the two graphs,

y y

1

0 x
4 2

Figure 6.27 y=tanx, 0<x<x/2

X

1

x
0 r
4 2

Figure 6.28 y=cotx, 0<x<7x/2

The complete graph of y =cot X, [-27,27] is shown in Figure 6.29.

y

N
ey

Figure 6.29 y=cotx, [-27,27]

2
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6.6 Inverse Trigonometric Functions and their Graphs

6.6.1 The Problem

Recall that a function f has an inverse f ™ if and only if it is one-to-one, that is each
value of the dependent variable (often y ) corresponds to exactly one value of the
independent variable (often x).

Graphically, the inverse function f ™ exists if and only if f satisfies the horizontal line
test, namely, any line parallel to the x—axis intersects the graph of f at most once.

In Section 2.7.6 we discussed functions that fail the horizontal line test for an unrestricted
domain. If we restricted the domain, however, we could find an inverse function.

Clearly, the graphs of all trigonometric functions fail the horizontal line test big time due
to their periodicity. Any horizontal line in their ranges will intersect them an infinite
number of times.

/\ \ / |
[ \v ) v/ \V/ ) /(/ /( )
Figure 6.30 y=sinx Figure 6.31 y=cosx Figure 6.32 y =tanx
] x g x | \\ \
[ N SR /A .
T T T T T \ \ \ \
Figure 6.33 y=cscx Figure 6.34 y =secx Figure 6.35 y =cotx

What we need to do in each case is to select a part of the graph that includes the origin
and that satisfies the horizontal line test. That part will then have an inverse whose graph
is obtained by reflection in the line y =x.

6.6.2 The Inverse Sine Function

The sine graph obeys the horizontal line test on the domain [—%%} . We write the

inverse sine function as y=sin™ x or as y=arcsin x.

Since it is the inverse of y =sinx, we can also write itas x=siny. That is,
y=sin"x< x=siny
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Then, restricting the domain of y=sinx to {—%%} , we have,
Definition
The inverse of y=sinx, with domain x [—% : %} and range y e[-1,+1] is called

y=sin"'x or y=arcsinx with domain x e[-1,+1] and range y {—%%}
The graphs are as shown in Figures 6.36 and 6.37.

Figure 6.36 y=sinx, [-7/2,7/2] Figure 6.37 y=sin"x, [-11]
6.6.3 The Inverse Cosine Function

The cosine graph obeys the horizontal line test on the domain [0, 7]. We write the

inverse cosine function as y =cos™ x or y=arccosx. Since it is the inverse of
y =C0s X, we can also write itas x=cosy. That s,

y=C0S "' X <> X=Cosy
Then, restricting the domain of y=cosx to [0, 7], we have,
Definition

The inverse of y=cosx, with domain x [0, 7] and range y e[-1,+1] is called
y=cos™ x or y=arccosx with domain x e[-1,+1] and range y [0, z].
The graphs are as shown in the figures.

~

|
N

X
T
B
-1

Figure 6.38 y=cosx, [0,7] Figure 6.39 y=cos'x, [-11]
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6.6.4 The Inverse Tangent Function

The tangent graph obeys the horizontal line test on the domain {—%%} . We write the

inverse tangent function as y =tan™ x or as y = arctan . Since it is the inverse of
y =tan x, we can also write itas x=tany. Thatis,

y=tan"x < x=tany
Then, restricting the domain of y =tanx to {—E,%} , We have,

Definition

The inverse of y =tanx, with domain x e [—Z : %} and range y e (—oo,+0) is called

y=tan'x or y=arctan x with domain X e[—o0,+oc] and range y e {—%%} .
The graphs are as shown in the figures.
y
5 4
3 : 0 0 20 o
-5+
Figure 6.40 y=tanx,[-7/2,7/2] Figure 6.41 y =tan™" X, (—o0,0)

6.6.5 Evaluating Inverse Trigonometric Functions

In words, the solution x to y =sin™ x <> x=siny is “ x is the angle whose sine is y ”.
Note and note again, that x is an angle. In the case of sin™ and tan™, x e [—%%} in
the case of cos™ we must have x [0, z].

Let us stress again, your answer must be in the allowable domain of the particular inverse
function you are dealing with. Consider the following examples.
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Example 13

Evaluate (a) y =sin‘{%) (b) y= cos‘l(g], (c) y=tan™1
Solution

2 z

(a) The angle whose sine is - is % Then sin™ (7J :% since this value lies in the

allowable domain x e [_Z,ﬁ}
2 2

(b) %e [0, 7]
T

T
(© Ze[_E’E]

Example 14
Evaluate (a) y =sin™ [—%) (b) y=cos™(-1), (c) y=tan™(-1)

Solution
We need to be careful, inverse functions have a restricted domain.

(@) The angle whose sine is % is % The angle whose sine is —% is in the third or
fourth quadrants, given by sin(;w%j, sin[Zn—%j or sin(—%). We choose the
T T T
answer ——e| ——,= |.
6 ( 2 2)
(b) The angle whose cosine is —1 is z or —z. We choose 7 €[0, 7] .

(c) The angle whose tangent is 1 is % The angle whose tangent is —1 is in the second or

fourth quadrants, given by tan (7”%)’ tan(Zﬂ—%j or tan (—%) We choose the

v T T
answer ——e| —-= = |.
4 ( 2 2j

Example 15
Evaluate (a)sin(sin™(—/3/2) (b)sin*(sin(-z/6) (c) sin*(sin(57/6)
Solution
@) sin(—/3/12)=-r/3e[-712,712]
sin(-z/3) =—3/2
(b) sin(—z /6) =—1/2
sin'(-1/2)=-x16
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(c) sin(5z/16) =sin(z —z/6) =sin(z /6) =1/2
sint(1/2)=xl6e[-x/2,712]

Example 16

Evaluate (a) cos ' (tan(5x/4)) (b) sin"*(cos(37/4)) (c) sin(tan™(-1))
Solution

(a)tan(5z/4) =tan(zr + 7z /4) =tan(z/4) =1

cos (1) =0¢€]0, x]

(b) cos(37/4)=cos(x—nl4)=—cos(z/4) = 212
sint(—2/2)=-rlde[-n12,712]

) tan'(-) =-rxlde[-n12,712]
sin(=z/4) =—sin(z/4) =212

Example 17
Evaluate (a) tan(sin™(4/5) (b) cos(sin™*(2/3)) (c) sin(cos™(~1/3)
Solution
(a) We draw a right triangle for the angle © whose sine is 4/5 and calculate the third
side — see figure 6.42. Then tanf&=4/3

\8

=
LA

6 | 6 | ) ]
3 \5 1

Figure 6.42 Figure 6.43 Figure 6.44

(b) See Figure 6.43. Then cos@ = J5/3
(c) See Figure 6.44. In this case we use the reference angle ' in the right triangle

and argue as follows. If @=cos™(-1/3) and 6 <[0, ] then & must be in the
second quadrant where sine is positive. Then sin@=sinf'= J8/13=22/3

6.6.6 Graphs of inverse cosecant, secant and cotangent functions

The remaining inverse trigonometric functions have the following graphs.
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Figure 6.45 y=csc™x

:

Domain = {x|x<-1or x>1}

J

Range = {y|—%£y<00r0<y§%}

Figure 6.46 y=sec™x

Domain = {x|x<-1lor x>1}

Range = {y|0§y<%or %<ysﬂ}

As an exercise, use the reflection principle to sketch the graph of y =cot™(x) and state
its domain and range.

Exercises 6B

1. Graph y =%cscx. Show 2 full periods.
2. Graph y=2sec2x. Show 2 full periods.
3. Graph y= 2cot(x+%). Show 2 full periods.
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Find the exact values of:

4.

10.
11.

12.
13.

14.

15.
16.

17.

18.

19

Use a sketch to the find the exact values of:

20.

21.

a mfa (]

.41
sint=

cos™

tant—
3
tan 0

tan~'(—v/3)
. 4, T
sin (smg)
. 4,. 57
sin (sm?)

tan(tan'125)

o (o 5)

tanl(tanz—ﬂ)
3
sin”*(sin )
)
cos| sint=
5

tan(coslij
13
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23. sin [cos —

24. sec sin‘l(—ijj
4
25. tan cos‘l(—%D

26. csc| cos™ (——3B
3
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Chapter 7

Right-Angle Trigonometry

7.1 Description

A major application of trigonometry is in the solution of right-angle triangles. This
means, given some of the sides and angles, find the others. We will measure angles in

degrees only. If we call an angle A, we mean A= A’. We can label any right-angle
triangle as shown in Figure 7.1.

hypotenuse
opposite
(] ]
adjacent
Figure 7.1

We can then superimpose this triangle on the unit circle as shown in Figure 7.2.

\/

Figure 7.2

The triangles OPQ and OAB are similar triangles. They have the same angles
6, 90° — 4, 90° and therefore their corresponding sides are in the same ratio. Then,

Yy _ _opposite AB e sing = opposite |
1 hypotenuse OA hypotenuse
X _adjacent OB _ _adjacent
1 hypotenuse OA hypotenuse '
y_ OpPOSIte AB e tand — opposne .

X adjacent OB adjacent
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Example 1

Find the six trigonometric values of the angle @ in the triangle
Solution By the Pythagorean Theorem,
the hypotenuse =+/3* +4° =5. We have
adj =3, opp =4, hypot =5. 4

3
Figure 7.3

The six values are,
sin@=4/5,cos@=3/5tan@=4/3,cscd=5/4,secd=5/3,cotd=3/4

7.2 Using a Calculator

- 1 : . :
You can use the , , and keys on a calculator to find the trigonometric

values of any angle.

Example 2

Find sin398°

Solution

Type 398, press [sin] key. Answer 0.615661475....

Example 3
Find sec5°40'12"

0

0
Solution sec5°40'12" =sec 5°+4—O +£ =sec5.67°
60 3600

1
Type 5.67, press |cos key, press key. Answer 1.0049

7.3 Solving a right triangle

By convention, we mostly label triangles with vertices A, B C, opposite sides a,b,c and
angles A, B, C.
C

c
Figure 7.4
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Example 4
Solve the triangle,

Solution
sin40° = % — a=5sin40° =3.2 ; .
cos 40° :g:b:5cos40° -38 Al I
Example 5
Find the length of the ramp AB
Solution s
sin18.4° =& = ¢ = , 4 ~=12.7" c
c sin18.4 &
A 18.4 C
b
Figure 7.6
Example 6

A surveyor takes the measurements shown in order to calculate the width of a lake at its
widest points A and C. Find the width AC.

A 250m

Figure 7.7
Solution tan82° = 9—5% = AC =250tan82° =1779m

7.3.1 Definitions of angles of elevation and depression

The angle of elevation 0 is the angle through which an observer must elevate his sight
from the horizontal in order to focus on a particular point above him.

The angle of depression ¢ is the angle through which an observer must lower her eyes
from the horizontal in order to focus on a particular point below her.
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horizontal
line of sight
&,
line of sight —
)
horizontal
Figure 7.8a Angle of Elevation Figure 7.8b Angle of Depression

Example 7
A navy pilot flying at 3000 feet wants to land on an aircraft carrier that she sees at an

angle of depression of 15° below her. What is the actual distance of the plane from the
carrier?

Solution:
Figure 7.9
0s75° = 3000 = X= 30000 =11,591'=2.2 miles.
X cos75
Example 8

Harry wants to photograph a rocket at its first stage of separation that he knows occurs at
3000 feet. If he is 2 miles away, at what angle should he point his camera?
Solution See Figure 7.10. Note 2 miles = 2x5280 = 10560 feet.
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3000

10560
Figure 7.10

tan @ = 3000 = 0=15.9° (use the tan™ key)
10560

7.4 Area of a triangle

We define area by stating the area of a
rectangle is A=bh. Clearly the area of
the triangle formed by drawing its major
diagonal is:

height=h

A=1bh.
2

base=b

Figure 7.11

Consider the triangle AABC below.
B

Figure 7.12

The area of the ABAD = % xh

The area of the ABCD = % (b—x)h

So the area of the AABC :%xh+%(b—x)h:%bh.

Then, we have a general formula. The area of any triangle is one half of the product of
its base by its perpendicular height.
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Further, sinC = E =h=asinC
a

Hence, the area of the triangle AABC :%absin C

We can orient the triangle in three different ways so either A or B or C is the vertex. The
resulting formulas are,

Area of the triangle AABC =%absinC = %acsin B= %bcsin A

In words, the area of a triangle is one-half the product of the lengths of two sides times
the sine of the angle enclosed by them.

Example 9

A circle is inscribed in a hexagon of side 12. Find the area of the region between the
hexagon and the circle.

Solution

Figure 7.13

Consider one of the six pieces OABC, a sector of the circle inscribed in a triangle. The
angles are Z/AOC =60°, ZAOB =30°. Then,

tan30° = AB_S = 0B =10.3923,
OB OB

Area AAOC = %bh = % ©1210.3923=62.3538

Area of hexagon=6e62.3538 = 374.1230

Area of circle=7r° = 710.3923° =339.2917
Area of region between=34.8
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Exercises 7A

In 1 through 5, sketch a right triangle corresponding to the trigonometric function of the
acute angle 4. Use the Pythagorean theorem to determine the third side and then find the
other 5 trig functions of & .

1.

10.

11.

12.

13.
14.

sin6':i
13
cosQ:E
6
tan9=ﬂ
5
secH:E
7
cscéd =9

Solve the right triangle ABC where C =90°, B=54°, ¢ =15

At a certain time of day, the angle of elevation of the sun is 40°. To the nearest
foot, find the height of a tree whose shadow is 35 feet long.
The Washington Monument is 555 feet high. If you stand a quarter of a mile or
1320 feet from the base of the monument, find the angle of elevation of its top to
the nearest degree.
A road is inclined at an angle of 5°. After driving 5000 feet along this road, find
the driver’s increase in altitude to the nearest foot.
You are standing 45 meters from the base of the Empire State building. You
estimate the angle of elevation to the top floor is 82°.
a. If the total height of the building is another 123 meters above the 86"
floor, what is the approximate height of the building.
b. One of your friends is on the 86" floor. What is the distance between you
and your friend?
The sun is 25° above the horizon. Find the length of the shadow cast by a
building that is 100 feet tall.
A passenger in an airplane at an altitude of 10 kilometers sees two towns directly
east of the plane. The angles of depression of the two towns are 28° and 55°.
How far apart are the towns?
Find the area of the triangle ABC where B =130°, a=62, ¢ =20

Find the area of the triangle ABC where A=515",b=4.5¢c =22
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7.5 Solving any triangle

We can use the law of sines to solve a general triangle (it does not need to be a right
triangle) if we are given two angles and any side or two sides and an angle opposite one
of them. We can use the law of cosines to solve the other two possibilities for any other
general triangle, that is, we are given three sides or two sides and the included angle.

7.5.1 Law of Sines

Figure 7.14 Figure 7.15
. h . h sinA sinB
In both cases, sinA=—,sinB=—=——=——(=h).
b a a b
If we draw the perpendiculars from B rather than from C and note sin(180° — A) =sin A,
sinC  sinA
we get ——=——(=h)
c a
C
b
X 2
c A M ¢ .7 B
\\ - h
Figure 7.16 NQ
Figure 7.17

sinA sinB _sinC
a b c

The Law of Sines is

Example 10
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Solve the given triangle.

48° 39°
A 10 B

Figure 7.18

Solution

(i) C =180° — 48° —39° = 93"

sinA sinC  sin48° sin93°
= - =

(i) —a=74

a c a 10

; ; ; 0 ; 0
(iii) sin B _ sinC N sin39 _sin 93 . b-63

b c b 10
Example 11
A surveyor creates the following diagram to measure the width AB of a lake. Find it.

A
25° B
74°
C a Figure 7.19
- - - O -

Solution sinC _sin B N sin74 _sin 25 e c— AB—341

b c 150

The Ambiguous Case
Two angles and one side as in Example 10 above determine a unique triangle, but if two
sides and an angle opposite one of them are given, there are three possible situations,
(a) no such triangle exists
(b) one such triangle exists
(c) two distinct triangles satisfy the given conditions — the ambiguous case.
Suppose we are given a, b and A with h=bsin A.

If A is acute, we can have either of the following.
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b / hi b b// h
I a E

A ' A A

a<h a=h a>b h<a<b
No solutions One solution One solution Two solutions

Figure 7.20
If A is obtuse, we can have either of,
a
b
A
a>b
No solution One solution
Figure 7.21

Example 12 (Single solution)
Solve the triangle

B
Figure 7.22
Solution
. . . 0
Q) sin B =S|nA:>sm B =3|n42 — B = 21.41°
b a 12 22
(i) then C =180° —42° —21.41° =116.59°
; ; ; 0 ; 0
(iii) sinC _sin A N sin116.59 _sin 42 22940

C a C

Example 13 (No solutions)
Attempt to solve the AABC for b =25,a=15 A=85"
Solution
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sinB sinA sinB sin85°
= j— =
b a 25
Since we must have —1<sin B <1, there are no solutions.

=sinB=1.660>1

Example 14 (Two solutions)

Solve the AABC for a=12,b=31,A=20.5°

Solution

sinB _sinA _ sinB _sin 20.5°
b a 31

= B=64.8° or 180°-64.8° =115.2°

= C =180°-64.8° - 20.5° =94.7°

= sin B =0.9047

OR

C =180°-115.2° - 20.5° = 44.3°

Using SinC _ M we get the two solutions, c=34.2 or 23.9
C a

The resulting triangles are,

A 23.9 ‘B

Figure 7.23
Example 15
A rescue ship is 4 miles due west of a crippled destroyer traveling at 10 mph in the
direction N62°W . If the rescue ship travels at 18 mph, in what direction should it travel
in order to intercept the destroyer?
Solution If the rescue ship is at A and the destroyer is at B, we have the situation in the
Figure 7.24.

N
c
18t .-~ 10t
B«
, aY (2
A A 4 B
Figure 7.24 Figure 7.25

Let t be the number of hours before they meet. The rescue ship travels 18t and the
destroyer travels 10t in this time. We then have the picture shown in Figure 7.25. Then,
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a b 10t 18t

- =— = = =—
sinA sinB  sina sin28°
Answer: N74.9°E

= a=15.1°

7.5.2 Law of Cosines

We can use the law of cosines to solve triangles where we are given three sides or two
sides and the angle enclosed by them. The law of cosines is,

a® =b?+c?>—2bccos A or,
b? =a®+c?—2accosB, or,
c®=a’+b*-2abcosC

Proof
Assume C is an acute angle. Consider the following picture.
y{‘ B(x.y)
a Cc
h
_‘ P
C X D b-x A(b,0)
b
Figure 7.26

Then, cosC=§, sinC=E:>x=acosC, h=asinC
a a

Using the Pythagorean Theorem in the ADAB, we have
¢ =(b—x)*+h?

=(b—acosC)?+(asinC)?

=b*+a’(sin’C +cos’ C) —2abcosC

=a’ +b*-2abcosC

The other two forms and the case of C obtuse are left to the reader.
Example 16
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Find a in the triangle shown. c

Figure 7.27
Solution
a’ =b” +c”*—2bccos A
=49+144—-2e7e12c0s42°
=a=83

Example 17
Find the angle B in the triangle shown.
Solution B
b® =a’ +c*—2accosh
19° =8° +14° —2e8e14c0s B a=8 c=14
= cos B =-0.4509
So B is in the second quadrant,
B=180°-53.2° =116.8°, c A
where we used b=19
cos0.4509 =53.2°.

Figure 7.28

Example 18
A ship travels 60 miles due east and then alters course and travels 80 miles in an

unknown northerly direction. If it is now 139 miles from its starting point, what was its
unknown bearing?
Solution

b® =a’ +c*—2accosh

N C
1397 =807 + 60> — 280 60c0s B i
= c0sB =-0.97094
= B =166.15° 139 80
We have the picture shown right.
Answer: S =N 76.15°E B

A ______
60 B

Figure 7.29
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Exercises 7B

In 1 through 5, use the Law of Sines to solve the triangles ABC.

ok~ wn e

A=35", B=40°,c=10
A=25"B=35",a=35

C =105°,B=10° c =45
A=24.3"C=546°c=2.68
A=5°40'B=8%5"b=4.38

The Leaning Tower of Pisa in Italy makes an angle of about 84.7° with the
ground. If you walk 171 feet directly away from the base of the tower so that the
tower is leaning directly towards you, the angle of elevation of the top of the
tower is 50°. Find the distance to the nearest foot from the base of the tower to
the top of the tower.

A pine tree growing vertically upwards on a sloping hillside makes an angle of
75° with upwards direction of the hillside. From a point 80 feet up the hill, the
angle of elevation of the top of the tree is 62° and the angle of depression to the
bottom of the tree is 23°. Find the height of the tree to the nearest foot.

You are standing facing the sun with a telephone pole between you and the sun.
For you, the angle of elevation of the sun is 62°. The telephone pole is tilted at
an angle of 8° to the vertical directly towards you. You find you are actually
standing on the tip of the shadow cast by the pole on the ground and you are 20
feet away from the foot of the pole. Find the length of the pole to the nearest foot.
At a point A, you find the angle of elevation of the top C of a Redwood tree is 37°
. You walk 100 feet directly towards the tree to point B and find the angle of
elevation of the top of the tree is now 44°. Find the height of the tree to the
nearest foot. (Hint: first find BC).

Use the Law of Cosines to solve the triangles ABC in 10 through 12.
10. a=7,b=3,c=8
11. b=15,¢=30, A=30°
12. a=1.42,b=0.75,c=1.25

Determine whether the Law of Sines or the Law of Cosines is needed to solve the triangle
ABC in each of 13 through 15. Then solve the triangle.

13. a=10,b=12,C =70°
14. a=11,b=13c=7
15. a=160,B=12°,C=7°
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16. Two ships leave a harbor at the same time. One ship travels on a bearing of
S12°W at 14 mph. The other ship travels on a bearing of N75°E at 10 mph.
How far apart to the nearest 10" of a mile will they be after three hours?

17. Your boat travels 25 miles east from its berth. You then turn and travel 13.5

miles on the bearing S40°W .
a. How far are you from the berth?
b. What bearing could you have taken from the berth to reach this spot
directly?
18. A baseball diamond is a square of side 90 feet. The pitcher’s mound is 60.5 feet
from home plate on a line joining second base and home plate. Find the distance

from the pitcher’s mound to third base (to the nearest 10" of a foot).
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Chapter 8
Trigonometric Identities
8.1 Fundamental Trigonometric ldentities
The fundamental trigonometric identities are as follows.

8.1.1 Reciprocal Identities

By definition,
1 . 1
CSCX=——<sinX=—— @
sin x CSC X
secx:i@cosx:L (2)
COS X Sec x
cotx:i<:>tanx:L (3)
tan x cot x

8.1.2 Tangent and Cotangent Identities

By definition,
tanx = snx (4)
COS X
otx = S2X ®)
sin X

8.1.3 Pythagorean Identities

From the unit circle x* +y? =1 definition of sine and cosine as cos@=x, sin@=y, we
have

sin®@+cos’ =1 (6)

tan® @ +1=sec* 0 (7) [(6)+cos? ]

1+ cot?* @ =csc’ @ (8) [(6)+sin?6]

With x as the variable we have the alternate forms,

sin® x+c0s” X =1=>sin” x =1—co0s” X = cos’ x =1-sin* x (9&10)
tan® x +1=sec’ x = tan® x =sec’ x—1= tan* x —sec’ x =1 (11&12)
1+ cot? x = csc® X = cot® x = ¢s¢® x—1=> csc® x —cot’ x =1 (13&14)
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8.1.4 Co-function ldentities

From the triangle we have:

T1/2-X

X

a

Figure 8.1
sinx =cos(z/2-X) (A5 and cosx=sin(z/2-Xx) (16)
tanx =cot(z/2-X) (@7) and cotx=tan(z/2-Xx) 28)
secx =csc(z/2-x) (19) and cscx=sec(z/2-Xx) (20)

We can prove these identities for general x € R by positioning the angles 8 and z/2—6
in the unit circle.

8.1.5 Unit Circle Reference Angle Identities

7\ A
-0
180°-6 0 S A
< < >
180°+6 T C
+0
Figure 8.2 Figure 8.3

sin(r—6@) =sind (21) cos(r—6O) =-cosO (26) tan(x—O) =-sind (30)
sin(z+6) =-sind (23) cos(x+6) =-cosd (27) tan(z+6) =tand (31
sin(2r—0)=-sin@ (24) cos(2r—0)=cosO® (28) tan(2z—0)=—-tand (32)
sin(—¢) =-sin@ (25) cos(-¢) =cosfd (29) tan(-¢) =-tan@ (33)

sin(@+2zn) =sin @ (34)
For neZ, cos(@+2zn)=cos®  (35)
tan(@+ zn) =tan @ (36)
We can replace 7z with 180° in each of the identities (21) through (36).
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8.2 Finding the Values of Trigonometric Functions

If we are given the value of any trigonometric function, we can use a right angle triangle

containing the reference angle to find the values of the other trigonometric functions.

Example 1

3 : o : :
Use secx = - and tan x > 0 to find the values of all six trigonometric functions.

. 3 2
Solution secx = -5 = COSX = -3

The reference angle x' is as shown in the right s
triangle, Figure 8.4. Since cos is negative and
tan is positive, ASTC tells us x is in the third : —
quadrantor X=7z+X".
Figure 8.4
sinx =sin(z +x") =-sin x‘:—ﬁ, cscx:—i:—%
3 J5 5

2 3
COSX=——, SeCX=-——
3 2

J5 2 25

tan x =tan(z + x") = tan x'=7, COtX=—==—

J5 5

8.3 Simplifying Trigonometric Expressions

We can use the fundamental identities to simplify and manipulate trigonometric
expressions.

Example 2
Simplify sinxcos® x—sin x
Solution
sin xcos® X —sin x
= —sin x(1—cos® )
= —sin x(sin” x)
=—sin®x
Example 3
Factor (a) tan® x—1 (b) 4sin®x+sinx—3
Solution

(a) tan® x —1 = (tan x +1)(tan x —1)
(b) 4sin”® x+sin x—3=(4sin x—3)(sin X +1)
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Example 4
Simplify sin &+ cot&cosé
s6 _sin?@+cos’d 1

Solution sin¢9+cot9c039:sin9+c_o—cose . =——=cscl
sin@ sin@ sin@

Example 5

Simplify sin@ cosd

+
1+cos@ sing
sind  cosf sin®O+cos@+cos’d  1l+easd _ cscd

+ = =
1+cosé siné sin @(L+ cos 6) sin 9(1+€050)

Solution

Example 6
N COS X
Simplify tan x+ -
1+sinx
Solution
- - .2 2 -
COSX  SINX  COSX  SiNX+Sin° X+C0s” X X
tan x + = + = = Lsix =Sec X

1+sinx cosx 1+sinx  cos X(L+sin x) " cos XW

Example 7
Simplify sec® x—tan xsec x
Solution

1 sinx 1
cos’ X COS X COS X
_1-sinx
~ cos’ X
_ 1-sinx
" 1-sin?x
~ 1-simx
 (1=sirX) (L+sinX)
1

1+sinX

sec? X —tan xsec x =
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Exercises 8A

Find the exact value of the trigonometric functions in exercises 1 through 5.

. 27 2 27
1. (a)sin— (b)cos— (c)tan—
(@) 3 (b) 3 (c) 3

. I . T . 11x
2. (a)sin— (b)sin—= (¢)sin—
(@) 5 (b) 5 (c) 5

T V4 T
3. (a) COS(_§j (b)sec(—gj (c)tan (—Ej

. 3 3 3
4. 0’”“”(-;) (b) COS(—;) ©) cot(—?j

5r 1 11~
5. (a)tan— (b)tan— (c)tan—
(@) 5 (b) 5 (c) 5

In exercises 6 through 11, find the values of the 6 trigonometric functions of 8 from the
given information

6. sinezg , terminal point of @ is in Quadrant II.

7. cosé?:—g, terminal point of @ is in Quadrant III.
8. secd =3, terminal point of & is in Quadrant IV.
9. tané?:%, terminal point of @ is in Quadrant III.
10. secd=2, sind<0.

11. sinez—%, secd <0.

Write the expression in problems 12 to 22. sinu+cotucosu
25 in terms of sine and cosine and then 23. cos? O(1+tan® )
simplify. sec—cosd
12. cos@tan @ 24. “ing
13. cos@cschd cotd
14. sin@secd 25. ﬂ
15. tan® x —sec® X csco—sin
16. Secx Simplify the trigonometric expressions
csex 26 to 49.
18. sin g(cscg—sin ) 26—~
CSC X 2
i cos
19. e 27, | y
] 1-siny
20. SeCa.sma 28. sin@+cosécotd
tan o« cosd
21. sin(z/2—x)cscx 29. :
(7 ) 1-sind
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30.

31.

32.
33.

34.

35.

36.
37.
38.1

39.

40.

1+cos@ sin@
+

sind  1+cosé@
sin@+cos@ B cos@d—-sind

sin@ cosé

cos® X +sin? Xcos x
1+cosy

1+secy
tan x
sec(—x)
sec’ x—1
sec’® x
SEC X —C0S X
tan x
sin@cscd—sin* o
sin @
1-cos@
tan @ N 1+secd
l+secd tand
(sin x + cos x)*

41.

42.

43.

44,
45.
46.

47.
48.
49.

1 1
+
1+cosx 1-cosx
1+cscx

COS X + cot X
sinX cosS X

CSCX Secx
1+sinu cosu
+

cosu 1+sinu
tan X cos x csc X

2 +tan’ x ~
sec? X
1+cotA

csc A
tan 8+ cos(—6) + tan(—6)

COS X
Sec X +tan x

1
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8.4 Verifying Trigonometric Identities

An identity is verified if we show the two sides are the same, that is, simplify to the same
result.

Example 8

Show tan @-+cot & =sec? Gcot &
Solution
LeftSide or LS RightSide or RS

_sin@  cosd =sec’ dcot

~cosé sin@ 1 cosd
:Sin29+00529 _COSZHSiHH
sin@cos @ 1

_ 1 " sinfcosd
singcosd =LS

Example 9
Show (sin x—cos x)(csc X +sec X) = tan X —cot X

Solution
LS
) 1 1
= (sinx—cos X)(——+
sinX C€oSX
sinXx  cosS

COSX sinXx
=tan X —cot x

=RS

)

Example 10

Show w:tane’@
cscd—sind
Solution
S 0
Y. —C0s _1-cos®0 1-sin*@

cosd  sind

—— _—sin@
sin@

_sin0 _sin®

- o« —— =tan*0=RS
cos@ cos“ 4o

Example 11
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sec’ X —

sec? x

: sec’x—1 sin’ x
Solution LS = —-——==tan’ xecos’ X = o= e cos*X =RS

Show 1:sin2 X

sec? x X

Example 12
1 1 )
Show — + —— =2Sec” X
1-sinx 1+sinx

Solution
gL 1 14 srX +1osimx
1-sinx 1+4sinx (1-sinXx)(@+sinXx)
= ?2 = 22 =2sec’x=RS
1-sin“x cos® x
Example 13
2 -
Show cot” x :1 _smx
l1+cscx  sinX
Solution
cos’x  cos’ X
L cot’X _ sin’x _ sin’ x _cos’x siTX
l+cscx 4, 1 L+sinx sin? x 1+sinx
sin X sin X
__L-sin’x _ (@-siny) (eshTR) 1-sinx _ o
sinx(L+sinx)  sin x (1+8iTX) sin x
Example 14

Show tan” x = tan” xsec® x —tan” x
Solution RS = tan® x(sec® x—1) = tan® xtan® x = tan* x = LS
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Exercises 8B

Verify the following identities.

1.

12.

13.

14.

15.

16.
17.
18.

19.
20.

21.

22.
23.
24,

1+ cot?(—6) =csc? @

sin x(cot X + tan X) =sec x
cosusecu
— " —cotu

tanu
sinucscu—cos® u=sin’u
sinB-+cosBcotB=cscB
(cscx —1)(csc x +1) = cot? x
cot(—«) cos(—«) +sin(—a) =—csca
(1—cos® x)((L+cot® x) =1

. tan@+cotd =secdcscld

. (L—cos B)(L+cos pB) =

1
csc’ S

l+tanu cotu+1
l1-tanu cotu-1
(sinx+cosx)®  sin® x—cos’ X
sin?x—cos? X (Sin X—cos x)?
sect —cost

sect
COS X

1+sinX
1

1-sin’y
(cot x —csc x)(cos x +1) =—sin X
tan@—cot @
tan @ +cotd
(1—cos® x)(1+cot® x) =1
2c0s* Xx—1=1-2sin’ x
1-tan®@
1+tan® @
1-cosa  sina

sing 1+cosa
tan® —sin” @ =tan” @sin* @
sinx—1  —cos®x
sinx+1  (sinx+1)

=sin’t

1+sinX
+ =2secx
COoS X

=1+tan®y

=sin’0—cos’ 0

+1=2c0s° 0

25
26

27.

28.

29.

30.

31.
32.
33.

34.

35.
36.

37.

38.
39.

40.

41.

42.

43.

. SECX—CO0S X =sin X tan x
sint +cost)’
. (_—):2+sectcsct
sintcost
1+tan’u 1
1-tan*u  cos’u-sin’u
Sec X
—————— =secx(secx+tan x)
sec X —tan x
1
secv—tanv=———
secv+tanv
sinx+cosx .
————————— =sinXCosS X
SeC X+ CSC X
CSC X —Cot X
———————=cotx
secx—1
tan® u—sin*u =tan”usin’u
secu—tanu)® +1
( ) =2tanu
cscu(secu —tanu)
1-2cos® X
———— =tanx—cotx
sin X cos X
4 4., 2 2
sec” X—tan” x =sec” x+tan“ x

cosf  sin@-csch
1-sin@ coséd—cotd
cos’t+tan’t—1

sin’t

1 1

+
secxXx+tanx secx—tanx
(tan X+ cot X)* =sec’® X +¢sc® X
cos?u—sin®u )
——————=C0s"U
1-tan“u

secu—1 1-—cosu
secu+1 1+cosu
sin® x + cos® x

tan?t

= 2Sec X

- =1-sin xcos X
sin X +Cos X
1+sinx 2
—— = (tan X +secx)
1-sinx
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8.5 Solving Trigonometric Equations

Recall
y y
A A
-0
180°-6 (¢] S A
< rX < ;X
360°-6 T C
21-0 or -0
Figure 8.5 Figure 8.6

For neZ,

sin(@+2zn)=sind, cos(@+2zn)=cosH, tan(@+2zn)=tand
Example 15

Solve 2sinx—1=0 for (a) x€[0,27], (b) xeR

Solution

25inx—1=0:>sinx=%
T 7w 7w 5

@x==71-===,—
6 6 6 6

(b) x=%+27zn, 5%TWLZ;rn, neZ

Example 16
Solve tan’0-1=0, 8 R

Solution tan @ = +1, so the answers are in any of the four quadrants.
T T T T
9:Z+n7r, 7Z'—Z+n72', T+—+Nrx, 2r——+nNrx

T 3 57 1
== 4Nz, —+N7z, —+N7z, —+ N1
4 4 4

T T
=—+n=
4 2

(Convince yourself this is true!)
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Example 17

Solve sin®*x—3sinx+2=0, 0° <4 <360°
Solution (sinx—2)(sinx—1)=0=sinx=12
But sinx =2 is impossible. (Why?)

The only solution is sin x =1=> x =90°

Example 18
Solve sin® x—cos®x =1, x€[0,2x]
Solution
sin®x—cos’x=1
< sin®x—(1-sin*x) =1
& 2sin® x =2
=sinx==1
= x=£,3—”
2 2

Exercises 8C

Solve the given equation for 6 €[0,27].

1. sinx:1
2

2. cosx=—£
3. sinx=1
4. tanx+1=0
5. csex=1
6. tan0=—J§
7. 3cosx+1=5
8. sin49=E

cosfd=-1
10. cosé’:g
11. tan@ =1
12. sinﬁzg
13. cos@+1=0
14. 5s5ind-1=0
15. sin®x+4=5
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16.
17.
18.

19.
20.
21.

22.
23.
24,
25.
26.
27.
28.

29.
30.
31.

4c0s” x—3=0

6cot’ 0+1=3

cos® X+ 2 =3cos X

tan’ @ =tan @

2SIn X =Sin X cos X

sin X = cos X

2c0s*0-1=0

tan’0—4=0

sec’0-2=0

(tan*@—4)(2cos8+1) =0
3sin*@—7sin@+2=0
2c0s*0—7c0s6+3=0

cos’ @—cos@—6=0

cot’u—cscu=1

sin@+cosd =1 (hint, square both sides)
tan x+1=secx (hint: square both sides)

Solve for xe R

32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.

44,
45.
46.
47.
48.
49,
50.
51.
52.
53.

sin@=2sin6+3
cosd(2sinf+1) =0
cos@sind—2cosd =0
3tangsind—2tan @ =0
2c0s? O+sinf=1
sin@=4—2cos* 0
tan? @—2secf =2
csc? @ =cotH+3
2sin260—-3sin@=0
3sin20—-2sin@=0
cos20 =3sinf-1

€0S 26 = cos? 0—%

2sin”@—cos@ =1
tand—-3cotd=0
sind—-1=coséd
cos@d—sin@d =1
tan@+1=secd
2tan @+sec’ =4
2cos30=1
3csc? @ =4
2c0s20+1=0
2s5in360+1=0
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8.6 Addition Formulas

If A B are any two angles, we prove the Addition formulas,

sin(A+B)=sin AcosB+cosAsinB  (37)

sin(A—B) =sin AcosB—cosAsinB  (38)

cos(A+B) =cos AcosB —sin AsinB  (39)

cos(A—B) =cos AcosB+sin AsinB  (40)
tan A+tan B

tan(A+B)= ——M— 41
( ) 1-tan Atan B (“4D)
tan(A—B) = tan A—tan B (42)
1+tan Atan B
Proof
A A
R(cosA,sinA)

P(cos(A-B),sin(A-B))

A-B

A

A
A

0 Q (1,0)

Figure 8.7 Figure 8.8

We obtain Figure 8.8 from Figure 8.7 by repositioning the arc RS so that S is at (1,0).

Clearly PQ=RS = PQ*=RS"”

Using the distance formula,

(cos(A—B)-1)* +sin*(A—B) =[cos A—cos B]* +[sin A—sin BJ?
= c0s’(A—B)—2cos(A-B)+1+sin’(A-B)

= cos® A—2cos Acos B + cos® B +sin® A—2sin Asin B+sin’ B
— —2c0s(A—B) + Z = —2cos Acos B —2sin Asin B+ Z

= c0S(A—B) =cos Acos B +sin Asin B (40)

Putting B=—-B and using sin(—x) =—sin x, cos(—x) =cos X
cos(A+B)=cos AcosB—sin AsinB  (39)

Using sinx=cos(z/2—-x), and cosx =sin(z/2—X), we get,
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sin(A+B) =cos(z/2—-(A+B)=cos([z/2- A]+B)
=cos(z/2—A)cosB+sin(z/2—- A)sinB

=sin Acos B + cos Asin B (37)
Put B=-B to get
sin(A—B) =sin Acos B—cos Asin B (38)
Finally,
- . N .
tan(A+ B) = sin(A+B) _sin AcosB _C(-)S As!n B
cos(A+B) cosAcosBzFsin AsinB
+
_ tan At+tan B (41) & (42)
1xtan Atan B

on dividing numerator and denominator by cos AcosB.

Example 19

Find the exact values of (a)sin % (b) cos75° (c) tan15°

Solution
(a)sinzzsin(z—z):sinzcosz—coszsinZzﬁo—z—10—2:\/g_\/E
12 3 4 3 4 3 4 2 2 2 2 4
(b) cos 75° = cos(45° +30°) = cos 45° cos 30° —sin 45° sin 30° :£0—3——20£= V6 -2
2 2 2 2 4
1 ’J§
0_ 0 - _ _
(c) tan15° = tan(45° —30°) = tan 45 Otan300: 3 3 J§.3 Jg:Z—Jg
1+1an45°an30° | V3 3443 3-43
3

Example 20

Find the exact value of sin(6—¢) given sin@ :%, COS¢p = —%, @ is in the second

quadrant and ¢ is in the third quadrant.
Solutions
Use these two triangles.
Note 8', ¢" are the

reference angles. J21

2

Figure 8.9 Figure 8.10

Then,
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V7 V21

cosf =———,sing=———
2 ¢

sin(@ — ¢) =sin@cos ¢ —cosdsin ¢

OIS

Example 21

Simplify (a) cos(@—%ﬂ), (b) tan(@+37)

Solution

(a) 003(9—37”):cosecossfﬁin@sin%ﬂ:—gcose+gsin0:§(sin 6 —cos )

tan@+tan3
* il =tand

b)tan(0+37) = —M =
(b) tan( 7) l1-tanf@tan3rx
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Exercises 8D

Use an Addition or Subtraction formula to find the exact value of each expression.
sin5z /12

sinz/12

cos7x/12

c0s195°
tan15°
tan165°

N ook whE

Use an Addition or Subtraction formula to write the expression as a trigonometric
function of one number and then find its exact value.
13. sin 20° cos10° +cos 20° sin10°
14. sin 20° cos80° —cos 20° sin80°
3z 2r . 3w . 2«
15. cos—cos— +Ssin—sin—
7 21
tan z +tan z
16. 18 9

1—tan£tanz
18 9

tan 40° —tan10°
1+ tan 40° tan10°

137 T . 137 . T
18. cos——cos| —— |-sin—sin| ——
15 5 15 5

17.

19. cos70° cos20° —sin 70° sin 20°
tan 20° + tan 25°
20. il
1-tan 20" tan 25
21. cos45° cos15° +sin45° sin15°
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22. sin(zr/12) cos(7x/12) —cos(z /12)sin(7z/12)

Prove the following co-function identities using the Addition and Subtraction formulas.

23

24

25

26

Prove

27

28.

29.
30.
31.

32.

33.

34.

35.
36.

. tan| ——u [=cotu
2
T

. cot| ——u |=tanu
2
T

. Sec| ——U |=cscu
2
T

. CsC E—u =secu

the following identities.

. sin(x—%) =—CO0S X

T .
cos| x—= |=sinx
( 2)

sin(Xx—7z) =—sinx
cos(X— ) =—CoSs X
tan(x—z) =tan x

. T . T
sin| =—x |=sin| =+Xx
(2 j (2 ]
T . T
COS| X+— |[+sin| x—=|=0
[ 6) ( 3)

T tan x+1
tan| x—— | =
4 tan x -1

sin(x+y)—sin(x—y) =2cos xsin y
COS(X+ Y) +C0oS(X—Yy) =2C0S XCOS y

Evaluate each expression under the given conditions.

37

38

39

. cos(¢9—¢);cos¢9:g,49 in Quadrant IV, tan¢=—J§, ¢ In Quadrant 11.

10

: sin(6’—¢);tan0=g,0 in Quadrant I11, sin¢:—ﬁ, ¢ in Quadrant IV.

25

: sin(9+¢);sin6=%,9 in Quadrant I, cos¢:—?5, ¢ in Quadrant II.

40. tan(6’+¢);0030=—%,9 in Quadrant Ill, sin¢=%, ¢ in Quadrant I1.
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8.7. Double Angle Formulas

If we put A=x, B=x inthe Addition Formulas we get the double angle formulas,

sin2x=2sinxcosx  (43)
COS2X = Cos* X —sin’ x (44)
=2cos°x—1  (45) (put sin®x=1-cos’ X)
=1-2sin*x (46) (put cos®x =1-sin’x)
tan 2x :—2 tan2x (47)
1-tan® x
Example 22

If cosé = —% and @ is in the second quadrant, find (a)sin 26, (b) cos26

Solution
Use this triangle. Note &' is the reference
angle.
13
Sin9:sin9':2 12
13
°
5
Figure 8.11
(a)sin260 =2sin@cos@=2e 12 o 5 =_@
13 13 169
2
(b) cos260 =2cos* 6 -1=2 > 1= _119
13 169
Example 23
Write sin3x in terms of sin x.
Solution

sin 3x =sin(2x + x)
=Sin 2XC0S X + C0S 2XSin X
= (2sin xcos X) cos X + (1—2sin® x) sin x
=2sin x(L-sin’® x) + (1—2sin® x)sin x

=3sin x—4sin® x
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Exercises 8E

© ~No o

Given

Given

Given

Given

Given

Given
Given

Given

cosx:—g, find cos2x
13
3 ..
tanx:g, find tan2x
: 24 . : .
smx:—g and x is in the fourth quadrant, find sin2x
tanx:—1 and x is in the second quadrant, find sin 2x

tanx = —g, X is in the second quadrant, find sin2Xx, cos2x, tan 2x

cscx =4, tanx <0, find sin 2x, cos2x, tan 2x.
secx =2, x in the fourth quadrant, find sin2x, cos2x, tan 2x

cotx=§, sinx >0, x in Quadrant II, find sin2x, cos2x, tan 2x.

Rewrite cos* x in terms of the first power of cosine.

Prove the following identities.

10

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

. (sin x+cos x)? =1+sin 2x

tan x =

sin 2x
1+cos2x

2c0s’® X = cot xsin 2x
Sin8x = 2sin4xcos4x

2tan x

1+tan’ x
1+sin2x

sin 2x

fan x+cotx =

cot 2x

sin3x+sin7x

=sin2x

1
=1+§secxcscx

sin 2x
1—tan®x
2tan x

= Ccot 2X

C0S3X—C0S 7X

tany

COS2X =

1-tan® x
1+ tan® x
sin(x+y)—sin(x—y)
CoS(X+ y)+cos(x—Y)
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8.8 Alternative Forms of the Double Angle Formulas
By rearrangement, the double angle formulas (45) and (46) for cos26 become,

1-cos 26

sind=——"—""- (48
> (49)
Cos? 6 1+cos26 (49)
Example 24
Write sin® x in terms of first degree trigonometric expressions.
Solution

sin® x = (sin® x)(sin* x)

B (1—005 ZXJ2
2

_ 1-2c0s2x+c0s’ 2X
4

l—2cos2x+M

4
3 C0s2x  C0s4x

+
8 2 8

8.9 Half-Angle Formulas

If we put € :g in the alternative forms of the double angle formulas (48) and (49) and

take the square root, we get the half-angle formulas,

sin> =+ 1-cosx (50)
2
cosfzi 1+ cos x (51)
2 2
tan X = 4 [1Z 008X (52)
2 1+cosx

As usual, we get (52) by dividing (50) by (51).
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Example 25
Find the exact value of sin105°

Solution
Note 105° =180° —75° is in the second quadrant where sine is positive.
0
Also, 105° = 210 and 210° =180° +30° is in the third quadrant where cosine is
negative.
0
sin105° =sin 2120

fl—cos 210°

~ \/1—003(1800 +30°)

2

1+ cos30°
2

Example 26

Solve cos2x =3cosx+1, 0<x<2rx

Solution

c0S2X =3C0S X +1 <> 2¢c0s* x—1-3cos x—1=0

< (2005 x+1)(cos—2) =0 < cosx:—%,Z
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8.10 Product to Sum Formulas

As an exercise, you are asked to add and subtract appropriate pairs of addition formulas
to get,

sin AsinB = %[cos(A— B)-cos(A+B)] (53)
cos AcosB = %[COS(A— B)+cos(A+B)] (54)
sin AcosB:%[sin(A+ B) +sin(A-B)]  (55)

cos Asin B = %[sin(A+ B)-sin(A-B)]  (56)

Example 27

. . T T
Write smgcosg as asum

. T r 1| . (n =« . (T
sin=cos—===|sin| =+ = |+sin| =—=
ogaon(5eeon(5 5 )
1 (nj (ﬂ'j
==|sin| = |+sin| =
2{ 2 6

8.11 Sum to Product Formulas

Solution

As a final exercise, by making the substitutions A= X; y ,B= X; y in (53) to (56)

above derive the sum to product formulas,

sinx+sin y = 2sin %cosx;zy (57)

COSX+COS Y = ZCOS%COSX;;, (58)

sinx—siny = 2COSXL2ySin% (59)

COS X —CO0S Y = —2sin izysin % (60)

150



Example 28
Write sin10x-+sin6x as a product.

Solution
sin10x+sin 6x = 2sin 10x+6x cos 10x—6x _ 25in8xc0os 2X
Example 29
Find the exact value of cos195° +cos105°
Solution
c0s195° + cos105°
195° +105°  195°—-105°
= 2C0S cos
2
= 2¢05150° cos 45°
=—2¢0530° cos 45°
__,3N2_ e
2 2 2
Example 30
sin3x—sin x B

Verify the identity tan x

COS X + COS 3X

(3x+xj ) (3X—Xj
2c0s > sin 5
LS =

B X +3X X—3X)
2C0S coS
2 2
_2cos2xsin x
2€0Ss 2xcos(—X)
_sinx

COS X
=tanx

=RS

Solution
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Exercises 8F
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Solve each equation in the interval [0, 2]

sin2x=+/3/2

cos2x =~/2/2

cos4x=—3/2
sin4x=—\/§/2
tan3x =+/3/3

tan3x:\/§

tang=\/§
x 3

8. tan—=—
2 3

9. singz—l
3

N gk~ wbh e

10. cosé =-1
3

11 secSX = o
2
3X

12 Cot?:—\/g

13. sin(2x+zj =
6

14. sin(Zx—ﬁj:
4

15. \/§tan 3x+1=0
16. sec4x—-2=0

17. cos>—1=0
2

N |-
S

18. tan§+\/§:0
19. 23in§+\/§=0

20. sec5 = cos5
2 2

21. 2cos® x+sinx—1=0
22. sSin2X = cos X
23. sin2x=sin x
24. COS2X =CO0S X
25. cos2x =sin x
26. cos2x+5cosx+3=0

153



217.

28.

COS2X+cosX+1=0

N

SiN XCOS X = —
4

Use an Addition or Subtraction formula to simplify the equation and find all solutions in
the interval [0, 2]

29.
30.

31.
32.

COS XC0S3x—sin xsin3x =0

] ] 1
COS XCOS2X +SIn XSin2X = E
_ .3
SiN 2XC0S X —C0S 2XSin X :?
sin3xcos X —cos3xsinx=0

Use an Half-Angle formula to find the exact value of each expression.

33.
34.

35.

36.
37.

38.

sin22.5°
tan 67.5°

cos112.5°

39. Given sinez—g and @ is in the third quadrant, find

.0 0 0
(a)sin > (b) COSE (c) tan >

40. Given cosezg and @ is in quadrant 4, find (a)sing, (b) cosg(c) tang

Use a Double- or Half-angle formula to find all solutions in the interval [0, 27]

41.
42.

43.
44,

45,

sin2x+cosx=0
COS2X+CcoSX =2

cos2x—cos*x=0
c0s20—-cos460 =0

. . X
COSX—SIiNn X = 25|n§

Solve the equation by first using a sum-to-product formula.
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46. sinx+sin3x=0

47. cosb5x—cos7x=0
48. cos4X+C0S2X =C0S X
49. sin5x —sin3x = cos4x

Prove the following identities
50. sin® > = secx—1
2 2secX
51. Show co0s100° —cos200° =sin50°
52. Show cos87° +cos33° =sin63°
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Answers to Exercises

Answers Exercises 1A

1.15 18. m=0,b=4
2. 32 .
3. (-2,5),6
5r -
4. (3,4),4 y=t
5. x*+y +6x+8y=0
6. (x—3)?+(y—23)2=85 NI ;
(x=3)"+(y-3) 19. m undefined, no y—intercept
7.m=4/3 )
8.6
9. x=-5 ‘
Y - - - - X
5 -3 -1]1 3
6 I
2 20. (@) x+y+1=0,(b) x—y+5=0
4 4 21. (a) 40x+24y =53 (b) 24x—40y+9=0

3

> Answers Exercises 1B

10. 3x—y+10=0 1. Intercepts (0,0),(6,0)

1L x-y=1 Vertex (3,-9)
12. 9x+5y =0 ,

13. 2x—-9y+27=0

14. 5x+8y+15=0

15. y=-3x+7,m=-3,b=7
16. m=-1b=3

y

-3 171 3
y

17. m=-1/3,b=0

y

=1

2. Intercepts (-3,0),(-1,0),(0,3)
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Vertex (-2,-1)

y

X
‘N/‘l
1)

3. Intercepts (1J_r\/§,0),(0,3)
Vertex (—1,2)

4. Intercepts (0,3)
Vertex (1/2,5/2)

y

(1/2,5/2)

-—

-1 1

x

5 (-o0,—2) U(L,)

6. (—oo,—g) u(%,oo)

7. (~o0,—2]U0,4]
8. (~7,5)

9. (—00,—2)U(2,00)
10. (~00,~1) U(2,0)
11. (~o0,1) U[2,0)
12. (-6,-3)

13. (~o0,5) U[9, %)

14.

15.
y
10
5
. /
7[2 -1 f 12 3
16.

A

La 32 ;1_5E 12 °

[4,1]U[2,)

156



Answers Exercises 2A

1. @Y(M®ONEY (dN
2. @Y®Y(@EY(@N
3. Yes

4. No, y=1+1-x2

5. Hor. y=1, Vert. x=2

6. Hor. y=0, Vert. x=2

=3 =2 -1 1

A
© \90

— AN
-3 ﬂzﬁﬁ\;\T 5 6
10.
Verts : (+2,0), Minor ends(0, +1),
Foci : (+4/3,0)

N

11.
Verts : (0,+£3), Minor ends(i\/s_’, 0),
Foci : (0,£2+/3)
y

12.
Verts : (+3,0), Foci (iJl_B ,0),
Asymps:y =+2x/3

y

PESN

4t

13.
Verts : (+1,0), Foci (i\/g ,0),
Asymps : y = £2X
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Answers Exercises 2B

1. 6x—-2,R,6x-1IR
2. 3x*+9x-16,R,9x* —-15x,R

3. 1/@2x+7){x:x=-712}
4, 3x-3,{x:x>1}
3@—1,{x:x22}

5 x/I2-x){x:x=0,2}
2x -2, {x:x=1}

6. 2«/E+1,{x:x21}
\/&,{XZXZO}

7. 34,18
8. f'(X)=x+4
9. fI(x)=(12x+10)/9

10. f'(x)=x%x>0

11. f1(X)=(x+2)/x=1+2/x
y
af Jex-1)

27 x+2)/x

1 3 5

12. Domain of f: {x:x>5}
Range of f: {x:x>0}
f*(X)=x+5

Domain and range of f'is R

13. Domain of f : {x:x>4}
Range of f: {x:x>0}
f(x) =X +4

Range of f~: {x:x>4}
Domain of f: {x:x>0}

14. Domain of f : {x: x>0}
Range of f: {x:x>-1}

fH(x)=+2x+2
Domain of f: {x:x>-1}
Range of f~: {x:x>0}

Answers Exercises 3A

1.
y
o
-2-1 12
2.
y
4
X
-3-2-1 1
3.
y
/%/ .
-4 4
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- -ox
-4 2 4
2t

Vertices (0,£4)
Major (0,%4)
Minor (£ 2,0)
Foci (0, 2J§)

Vertices (1,2),(-7,2)
Major (1,2),(-7,2)
Minor (-3,4),(-3,0)
Foci (4+2+/3,2)

Vertices (0,2),(-6,2)
Major (0,2),(-6,2)
Minor (-3,3),(-3,2)
Foci (-3+2+/2,2)
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12\3

Vertices (0,2),(0,—6)
Major (0,2),(0,-6)
Minor (-3,-2),(3,-2)
Foci (0,2++/7)

14. Center (-3,4), radius 5

Vertices (0,£1)

Foci (O,iﬁ)
Asymp: y=+x/2

15.
y
\ 3 | /
3 5 3
/ \
-3+
Vertices (+3,0)
Foci (+ V2, 0)
Asymp: y=+£Xx

Vertices (—2,—4),(4,—4)
Foci (1+ \/1_3,—4)

Asym: y+4= i%(x—l)

17.

Foci (4 J13, -2)
Vertices (—6,—2),(—2,—-2)

Asym: y+2:ig(x+4)

Answers Exercises 3B

1. vertex (-1,2)
y- intercept (0,1)
x-intercepts (1+ J2, 0)
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y=4
2 4
X

321

2

1

13.

161

-1




14..

>
s |
2
—1 1 x
—2
15.
Yy
98
48

1357 9 1113

16.

19.

y
=
20.

S

2
21.
PR
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Answers Exercises 3C

1.

A
\
=

No symmetries

2.

-1

y-axis symmetry

-4 -2 2 4

No symmetries

1S

®

AN

1

X

y

o

1
1

N W

y

y

" - x

1
y
3

- SoXx

4 9

| ro.m/ x

1

7.
-1
8.
3 -1
9.
10.
1

11.
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13.
y
s?\ /

1 3 5 7
14. x-axis symmetry
15. no symmetries

16. () C,(b) F, (c) I, (d) A, (e) J,

(f) D, (9B, (N E ()H, ()G,
(K) K

17. (@) K, (b) B, (c) J, (d) L, (e) A,

(HC,(@E (D, ®{)H, ()G,
k)1, ()F
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Answers Exercises 4A

1.
y
: : x
-2 -1 1
2.
y
3
: X
-1 1
3.
y
A
3/
//.2 y=1
T
- ! ! — X
-2 -1 1
4,

x
-2 -1 1

6. {32}
7. {1}

8. {1}

9. {1/5}
10. {-1}
11. 6

12. {5}

13. {3/2}
14. {0}
15. {3}

16. {5/2}
17. $283.70
18. $1251.59
19. $567.63

20. $760.98

21. 625 mg, 442 mg
22. 354 grams

23. 2226, 3320, 7389

Answers Exercises 4B

1. 4°=64
2. 10* =10,000
3. 10°=0.001
4. log,16=4
5. log, — =6
gg 729
6. 4
7. %
8. 5
9. 1
10. 4
11.-3
12. 3
13. 16
14. 27
15. 3
16.
y
4
N
2
1.,'
‘ 1 2 3 4 ¥
17.
y
-t
1 3 4 5
18.
y
) 1 3 4 *
-2 /
19. 1.6094
20.-3.114
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Answers Exercises 4C

1. -3
2. 1/3
3. -12
4. 7
8
5. log; "
6. log, x*y*
1
7. logy, —
Jo 16x°
8. In64(z-4)

3 2
9. In(zx j
X" -1

10. log,10+log, z
11. logy—log2
12. In(x+2) +In(x—-1)—-3Inx

3
13. Inx—=In
> y

14. 4+2log, 3
15. log3-2
16. 0.7183
17.1004

18. -25
19.-2,3
20.2,4

21.4

22.4
23.19/47

24, {‘“‘@}

4

25.2.33
26.5.43
27.4.57
28.3.32
29.1.70
30. —29.34
31.0.05
32. -3.10
33.0.712
34.-1.161
35.-0.463

Answers Exercises 5A
1. (a) 2" (b) 4™

@ 7x/4 (b) 2713
(@) —150° (b) 15°
(a) —330° (b) 168°
(@) 1.210 (b) —1.764
3z

2.5

. 0.8

10. 274.9 sq.m.

11.
sin@=-5/13, cos@=12/13,tand =-5/12

cscd =-13/15,secd=13/12,cot@=-12/5
12. (-1,0)

13. (—2/2,4212)

1. sinz/3=+/3/2, cosz/3=1/2,
tanz/3=+/3

15. —\2/2,4212,-1
16. \3/2, -1/2, =3
17. —\312,1/2,-3
18.
sin@=1/2, cos@ =—/312,
c500:2,se00:—2J§/3,
tan @ =—/3/3, cotd =—3
19.
sind=-2/2,cos0=+21/2,

cscez—\/f,secé?:\/i
tan@=-1, cotd=-1
20.
sin@ =-1 cos@ =0, tan & = undefined
csc O = -1, sec @ = undefined, cot@=0
sin@=0, cos@=-1tand=0
21. csc@ =undefined, sec & = -1,
cot & = undefined
22. -1
24. \J2/2
25. (a) —3/8 (b) —8/3
26. -1/2

©CoNO A~ WD
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Answers Exercises 5B

ok~ wbhE

10.

11.

12.
13.

14.

wl3+2nx, 27013+ 2nx, neZ
2713+n7,57/3+nr, neZ
S5z16+2nz,77x/6+2nz,neZ
S5zl4+2nz, Tnl4+2nr, neZ
mld+2ng, Txld+2nr, neZ

mld+nz,3714+nx,5714+nr,

Trld+nr,nekZ
7l3+2nz57/3+2nz,neZ

Trl6+2nz,117/6+2n7,
7l2+2nT,neZ

Trl6+2n7,117/6+2n7, NeZ
2713+n7,57/3+nz, neZ

7l3+nm,2713+nx, 4713+ nr,
5713+nxz, x16+nxz,57/6+nr,

T7zl6+nz,1lz/6+nz, neZ
7l18+nx/3,57/18+nx/3,

T7/18+n7/3,117/18+nxz /3, neZ
2nz, t+2nz, neZ or simply
nr,Nnez

T716+2nz,117/6+2nrx,
37/2+2nz, neZ

Answers Exercises 6A

1. Amplitude: 1, Period: 7, Shift:

none

1

Fox
\/ v
= n T
2 2

2. Amplitude:1, Period: 4z, Shift:
None

AW

: - X
Wﬂ 4r S\Vn 87

3. Amplitude: oo, Period: 27/3,
Shift: None

Wy

2

—_

- X
T kg T 2_7!
3 3

4. Amplitude: 2, Period: 7, Shift:

None
y

—-1r

-2+

v ;r W 2‘” |
5. Amplitude: 1, Period: 67, Shift:
None




1 Nxﬁ
Fox
3\\/” gv”
-1+

6. Amplitude: 1, Period: 7/2,
Reflected in y-axis (causes no
change)

\/M/
VIVAT

7. Amplitude: 1/4, Period: 27,

Shift: None
y
1
n

/4 sin x

* X
{ RN N
2 2 2

8. Amplitude: 4, Period: 27,
Shift: None

y
4
\4cosx A /
. . p . -
2 2 2 2
_4+

9. Amplitude: 1, Period: 7/2,
Shift: None

sin 4x

. . . . -
3n n 5n VEd
A = /= T — |z
4 8 2 8 8
—-1Fr

10. Amplitude: 1, Period: 27,
Phase shift: 2z right (no
resultant change)

)

sin(x—27)

. . . . o
s 3n 5n in
-_ T =— 3 bt K
2 2 2
—1Fr

11. Amplitude: 4, Period: 27,
Phase shift: z/4 left

N

y

&7 4cos(x+7r/ﬂ /
4+

12. Amplitude: 2, Period: 27,
Phase shift: None, Vertical shift:
down 3

. . . . -
3n 5x ks

n — 27 — 3nm — A4r
2 2 2

oN -

13. Amplitude: 1, Period: 27,
Phase shift: None,
Vertical shift: up 1



NA S
VAL

14. Amplitude: 1, Period: 27,
Phase shift: None, Reflection in
X-axis

z "22W"24"
2 2 2 2
_1+

15. Amplitude =3, Period =27/3,
Phase shift: None, Reflection in
X-axis

1
X
r 2 4n
! - 4x
3 3
ol v
-3+r

16. Amplitude =1/3, Period =67 ,
Shift: None, Reflection in x-axis

—

y

>
=

y

AWAY
BAVARN

17. Amplitude =3, Period =27,
Shift (0,0) — (—z/4,0) or shifts
14 to left

W -

Yy

3

. . . . X
F's 3_1r n 7_1r 9 11_1! n
i\ 4 J4 4 4\ 4 a
_27

-3F

18. Amplitude =4, Period =7,
Shift (0,0) - (- /2,0) or shifts
712 to left . Reflection in x-
axis. Ends up same as y =sinx

A

19. Amplitude =1, Period=27/3,
Shift (0,0) > (—=/6,1) or shifts

716 to leftand up 1 so it
oscillates around y=1.

20. Amplitude: oo, Period = 7,
Phase shift 7 /4 right

A A
I

21. Amplitude: oo, Period = /2,
Phase shift: None



)

o

22. Period = «

y

P

s 3z
m;

Answers Exercises 6B

—

1.

U

ANt
7l6

zl4
—7l6
7l3
3rl4
9. 2x1/3
10. =

11. z/6
12.0
13. -z /3

14. /3
15. 7 /6

©ONOoOR

16.
17.
18.
19.
20.
21.
22.
23.
24,

25
26

125
—7l6
—l3
0

3/5
12/5
-3/4
zl4
-1/4

22
J6/2

Answers Exercises 7A



sin A=5/13,cos A=12/13,
tan A=5/12
csc A=13/5,sec A=13/12,
cotA=12/5

sin@=+/11/6,cos0 =5/6,
tan @ =+11/5

cscd =6+11/11,secO=6/5,
cotd=511/11

Sin@ = 441/41, cos 6 =541/ 41,
tand=4/5

cscezx/ﬂm, secQ:«/HIS
cot@=5/4
sin@ =415 /17,cos0 = 7/17,

tan@ = 41517
cscd=17/15/60,secd =17/7,

11. 214.45 ft
12.11.8 km
13.474.9
14.4.5

Answers Exercises 7B

cot@ = 7/15/60

sin@=1/9,c0s6 =4/5/9,
tano =+/5/4

csc =9,secd =9/5/20,
cotd =45

a=8.82 b=12.14, A=36°
29 feet

36°

. 436 feet

0.443.2m, 323.3m

B2 oo~

Answers Exercises 8A

1. C=105°, a=6.10,b=6.84

2. C=120° b=4.55,c=6.86

3. A=65°, a=42.22, b=8.09

4, B=101.1°,a=1.35 b=3.23

5. C=166.5°, a=3.30, c=8.05

6. 184 feet

7. 233 feet

8. 30 feet

9. 343 feet

10. A=60°, B=21.79°, C =98.21°
11. B=23.79°, C =126.21°, a =18.59
12. A=86.68°, B=31.82°, C =61.50°
13. Law of cosines

A=102.44°, B=62.44° ¢c=12.72
14. Law of cosines

A=57.79, B=89.63", C =32.58"

15. Law of sines

A=161°, b=102.18, ¢ =59.89

16. 61.7 miles
17. () 19.3 miles (b) S58°E
18. 63.7 feet

1. @) v3/2 (b) -1/2 (¢)
3



2. (a) -1/2 (b) -1/2 (c) sin@=22/3, cos@ =1/3, tan & = 242,

-1/2 8.
3. @1/2 (b) 2 (o) _\/5/3 csc9=3\/§/4,sec¢9:3,cot9=\/§/4

4. (@)1 (0)0 (c)0 sin@ = —17 /17, cos 6 = —417 /17,
5. (a) ~J31/3 (b) J31/3 (© 9. tan@=1/4,cscd=—17,
~/3/3 secd =—17/4,cot0 =4

sint=3/5,cost=-4/5,
6. tant=-3/4,csct=5/3, 10.
sect=-5/4,cott=-4/3

sinez—\/§/2, cosd=1/2, tanez—\/§,
0500:—2\/5/3,3ec¢9:2, cotez—\/§/3
sin@ =-1/4, cosez—J1_5/4,

sint=-3/5,cost =—4/5, 11. tan@ =+/15/15,csc O = -4,
7. tant=3/4,csct=-5/3, secd = —415 /15, cot @ = 15
sect=-5/4,cott=4/3
12. sint
31. secdcscd or ————
13. cott sin@cos @
14. tan @ 32. cos X
15. -1 33. cosy
16. tan x 34. sinx
17. cosx 35. sin® x
18. cos” ¢ 36. sinx
19. secx 37. cos2 O
20.1 38. —cosd
21. cotx 39. 2cotd
;g i:scu 40. 1+ 2sin xcos X
. 2
24. tan @ j% Szefi X
25. secd ’
26. 1 43. 1
' . 44. 2secu
27. 1+siny
45. 1
28. cscl 2
1+siné@ 46. CPS X
29. sec@d+tan@ or 47. sin A+cos A
cos® 48. cosé
30. 2csco 49. 1-sinx
There are no answers required for
Exercise 8B on proving identities.
T S
1. —, —
) 6 6
Answers Exercises 8C 57 Irx
2. —,—
6 6



7.no solution
8. 713,2x/3

9.
10. x/6,11z/6

11. 7z/4,57/4
12. 7/4,3x/4

13. =«
14. 0.20, 2.94

15. /12,3712

16. 7/6,5716,77x/6,11x/6
17. x/13,27x/3,47/3,57/3
18. 0,2«

19. 0,7 2x, /4,574

20. O,x2rx

21. xl4,5x/4

22. 71437145714, 7714
23. -111,1.11

24. 7l4,371,57x14, 7714
25. 111,111, 2x/3,4x/3
26. 0.34,2.80

27. /35713

28. No solutions
29. 7/6,5716,37/2

30. 0,7/2

3. 0
32. 3x/2+2nw ,neZ

Answers Exercises 8D

J6+42

4

1.

33.

34.

35.

36.

37.
38.

39.

40.

41.
42.

43.

44,

45.
46.
47.
48.
49.
50.

ol.

52.
53.

7l2+nxz, 7716+ 2n7x,
{117[/6+2n7z', neZ
ml2+nz, neZ
nz,0.73+2nx, 2.41+ 2nr,
{neZ

ml2+2nz, 7716+ 2nrm,
{1171/6+2n7z, neZz

No solutions
{1.23+ 2nz,5.05+ 2nr,

r+2nT, NeZ
—nl4+nr,046+nz, NeZ
nz, 0.72+2nr,

{5.56 +2nz, neZ

nz,1.23+2nz, 5.05+2nz,neZ

716+2nz,57/16+2n7, NeZ
mld+2nz, 3714 +2nx,57 14+ 2nr,
Trld+2nrc=xl4+nx,37/4+nr,
neZz

m+2nz, 713+ 2n7,57/3+2n7, neZ

7l3+nz,27/3+nT, neZ

Nz, 7l2+2nz, neZ

Nz, 3z/2+2nz, neZ

Nz, NeZ

-1.24+nx, zl4+nr, neZ

7l19+2nx/3, 572/19+2n7/3, neZ
ml3+2nm, 27213+ 2n7z, 47013+ 2N,

{572/3+2n7r, nez

7l3+nz,27/3+nz, NneZ

T7118+2n7x/3117x/18+2nz/3, neZ

V62
4
-

4
+

4

kl

2

&
o




10.

11.

12.
13.

14.
15.

16.

17.

18.
19.

1-4/3
—2++3
B+42
4
ez

J3-1
B+42

4
B+42
~(2+3)

N |-
&

'_\
~
N o

|G wlé

(=R
H
~
N

20. 1

n ¥
2

22. -1

3+443

10

33. —310/10
34. 24/5/65
3242+9415

7

37. —

35.

Answers Exercises 8E

.119/169

.15/8

. —336/625

.—3/4

. 24125, -7125, 2417

.—\/15/8,7/8,-15/7

.—3/2,-1/2,3
.—12/13,-5/13,12/5
Ccos4x N COS 2X §

+
8 2 8

© O ~N O UAWNE



Answers Exercises 8F

~No Uuh wWN R

8.

.7l6, 713, 7716,4713

.18, 7718,9718,157/8

5124, T 24,17x124,19701 24,2971 24,311 24, 411 24, 4371 24
. 7wl3,57/12,5716,112/12,4713,1772/12,11/6, 2377/12

. 7118, 77/18,1377/18,197/18, 2577/18,317/18
.l9,4x19,7719,107/9,137/9,167/9

2713
7l3

9. No solution in [0,27]

10.
11.

12.
13.
14.
15.
16.

17.
18.

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.

34.

35.

36.

3712
47/9,87/9,167/9

5719,112/9,1771/9,

0, 713, 7,413

7wld,xl2,5714,3712
2719,5719,87/9,112/9,147/9,177/9

7112, 77112,137/12,1972/12,57/12,117/12,17 /12

0
No solutions in [0, 2]

No solutions in [0, 2]
0,27z
7l2,7716,117/6

716, 7712,5716,37/2
0,7/3, 7,5713
0,2713,4r13,27
716,5716,37/2
2713,4x13
7wl12,2713,4713,37/2
718,37/8,97/8,117/8
718,3718,5718,7x18,97/8,117x/8,137/8,157/8
713,573

13,2713
0,712,7,3r12,27

V2-+2
2
1+2
2-\2
2

2-+3




37.

38.

39.

40.
41.
42.
43.
44,
45.
46.
47.
48.
49.

2-43

2

2-2

2
(2)3/~/10 (b) ~1/+/10 (c) -3
(@)V2/4(b)-1414(c) 717
12,3712, 7716,11/6
0,27
0,7, 27
7l13,2713,4x13,5713,0, 7,27
37l12,716,57/6
0,7/12,7,3712,27
0,716,713, 712,27c13,5716,7,77x16,413,37/2,57z/3,11x/6,27
7w12,3712,7719,57219,772/9,11r/9,1372/9,177/9
716,5716,718,37/8,5718,7718,97/8,117/8,137/8,157/8



