CHEM 8410_6410_4410 Spring 2020 - Mid-Term Exam 1 02-18-20

Time: 10:00 am - 11:15 am

Student Name:
Student Number: \qquad

Instructor: Prof. Andreana
Room \#: BO 2059

CHEM 8410_6410_4410 - Organic Synthesis

Mid-Term Exam 1

Time: 10:00 am - 11:15 am Date: February 18, 2020
Room: BO 2059

100 Points - Total

1. Problem 1: Please provide mechanisms for 6 of the following 13 named reactions: (30 Points) - * indicates this named reaction MUST be one of your 6.
2. Baylis-Hillman Reaction
3. Baeyer Villiger Reaction
4. Bamford-Stephens Reaction
5. Barton -McCombie Reaction
6. Brook Rearrangement
7. Claisen Rearrangement
8. Chichibabin Reaction
9. Biginelli Reaction
10. Bishler-Napierlski Reaction
*10. Bucherer-Bergs Reaction
11. Beckmann Rearrangement
12. Bechamp Reduction
13. Canizzaro Reaction

Answers:

CHEM 8410_6410_4410 - Organic Synthesis

Problem 2: Provide a mechanism that accounts for observed stereochemistry of the illustrated transformation. (10 PTS)

Answers:

Problem 3. Please prepare the compound noted below from starting materials that contain four carbons or less and cyclohexanone. (10 Points)

Answers:

Problem 4: Show how you would synthesize the following molecule. Use and show retrosynthetic analysis to break the pertinent bonds. Provide mechanisms for every step you use. As a hint, start with cyclohexanone and some other compound of your choice. (10 Points)

Answer:

CHEM 8410_6410_4410 - Organic Syinthesis

THE UNIVERSITY OF
 TOLEDO

Problem 5. The two illustrated $\mathrm{Mgl}_{2}-$ promoted Mukaiyama aldol reactions occur with high diastereoselectivity (Eq 1 \& 2). In contrast, only poor selectivity is observed in both reactions when Mgl_{2} is replaced with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. Provide a transition state model that explains the formation of the 3,4 syn product in (Eq 1) and the 3,4 anti product in (Eq 2). Assume that the Bn and PMB protecting groups are chemically equivalent. (10 Points).

Mgl_{2}

3,4 anti product

When the chelating protecting group is in the alpha position (Eq 1), a five member chelate is formed and incoming nucleophile attacks the si-face opposite to the R group (TS-1). In contrast, a six-membered chelate is formed when the chelating protecting group is in the beta position and the nucleophile approaches from the face away from both the OP and R groups. The observation that $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ gives poor selectivity implies that the reaction is not simply under Felkin control, as one may predict for Eq 2.

CHEM 8410_6410_4410 - Organic Synthesis

THE UNIVERSITY OF
 TOLEDO

Problem 6: Rationalize the syn-selectivity of the following reaction with a clear 3-D representation of the Zimmerman-Traxler transition state. (15 PTS)

CHEM 8410_6410_4410 - Organic Synthesis

THE UNIVERSITY OF
 TOLEDO

Problem 7: Provide clear 3D depictions of the transition states for the following hydroborations. Specifically point out each factor responsible for the observed turnover in selectivity (Tatsuda, TL, 1991, 6015). (15 PTS)

