

CHEM 8410_6410_4410 Spring 2020 – Mid-Term Exam 1 02-18-20

Time: 10:00 am - 11:15 am

Student Name:

Student Number: _

Instructor:Prof. AndreanaRoom #:BO 2059

Mid-Term Exam 1

Time: 10:00 am – 11:15 am Date: February 18, 2020 Room: BO 2059

100 Points - Total

- Problem 1: Please provide mechanisms for 6 of the following 13 named reactions: (30 Points) * indicates this named reaction <u>MUST</u> be one of your 6.
 - 1. Baylis-Hillman Reaction
 - 2. Baeyer Villiger Reaction
 - 3. Bamford-Stephens Reaction
 - 4. Barton -McCombie Reaction
 - 5. Brook Rearrangement
 - 6. Claisen Rearrangement
 - 7. Chichibabin Reaction

- 8. Biginelli Reaction
- 9. Bishler-Napierlski Reaction
- *10. Bucherer-Bergs Reaction
- 11. Beckmann Rearrangement
- 12. Bechamp Reduction
- 13. Canizzaro Reaction

Answers:

Problem 2: Provide a mechanism that accounts for observed stereochemistry of the illustrated transformation. (**10 PTS**)

Answers:

Problem 3. Please prepare the compound noted below from starting materials that contain four carbons or less and cyclohexanone. **(10 Points)**

Answers:

Problem 4: Show how you would synthesize the following molecule. Use and show retrosynthetic analysis to break the pertinent bonds. Provide mechanisms for every step you use. As a hint, start with cyclohexanone and some other compound of your choice. (**10 Points**)

Answer:

Problem 5. The two illustrated Mgl_2 -promoted Mukaiyama aldol reactions occur with high diastereoselectivity (Eq 1 & 2). In contrast, only poor selectivity is observed in both reactions when Mgl_2 is replaced with BF_3 •OEt₂. Provide a transition state model that explains the formation of the 3,4 *syn* product in (Eq 1) and the 3,4 *anti* product in (Eq 2). Assume that the Bn and PMB protecting groups are chemically equivalent. **(10 Points).**

When the chelating protecting group is in the alpha position (Eq 1), a five member chelate is formed and incoming nucleophile attacks the *si*-face opposite to the R group (TS-1). In contrast, a six-membered chelate is formed when the chelating protecting group is in the beta position and the nucleophile approaches from the face away from both the OP and R groups. The observation that $BF_3 \cdot OEt_2$ gives poor selectivity implies that the reaction is not simply under Felkin control, as one may predict for Eq 2.

Problem 6: Rationalize the *syn*-selectivity of the following reaction with a clear 3-D representation of the Zimmerman-Traxler transition state. (**15 PTS**)

R-CHO	+	PhCOO <i>t</i> -Bu	Et ₃ N (5 mol%)		_COO <i>t-</i> Bu
		ОН	Ti(O <i>i</i> Pr) ₄	► R´ `` HÔ	Ph
	R	yield (%) ratio	o (syn/anti)	
	Me	70		55:45	
	Et	75		79:21	
	<i>i</i> -Pr	78		94:06	

Problem 7: Provide clear 3D depictions of the transition states for the following hydroborations. Specifically point out each factor responsible for the observed turnover in selectivity (Tatsuda, *TL*, **1991**, 6015). (**15 PTS**)

