\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Answer \& Mark \& Guidance \\
\hline 1 \& (a) \& \& \begin{tabular}{l}
FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer \(=8.3 \times 10^{4}\) OR 83333 award 2 marks THEN IF units are \(\mathbf{d m}^{6} \mathrm{~mol}^{-2} \mathbf{s}^{-1}\), award 1 further mark
\[
\begin{aligned}
\& k=\frac{r a t e}{\left[\mathrm{H}_{2}(\mathrm{~g})\right][\mathrm{NO}(\mathrm{~g})]^{2}} \text { OR } \frac{3.6 \times 10^{-2}}{\left(1.2 \times 10^{-2}\right) \times\left(6.0 \times 10^{-3}\right)^{2}} \\
\& \checkmark \\
\& =8.3 \times 10^{4} \mathrm{OR} 83000 \text { OR } 83333 \mathrm{r}
\end{aligned}
\] \\
units: \(\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \checkmark\)
\end{tabular} \& 2

1 \& | ALLOW 1 mark for 8.3×10^{x} with no working (power of 10 is error) |
| :--- |
| ALLOW 2 SF up to calculator value of 8.33333333×10^{4} correctly rounded |
| ALLOW ECF for calculated answer from incorrectly rearranged k expression but not for units (Marked independently see below) |
| ALLOW dm ${ }^{6}, \mathrm{~mol}^{-2}$ and s^{-1} in any order, eg $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$ DO NOT ALLOW other units (Rate equation supplied on paper - not derived from data) | \\

\hline \& (b) \& (i) \& effect on rate $\times 2 \checkmark$ \& 1 \& ALLOW 'doubles' OR rate $=7.2 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ \\

\hline \& \& (ii) \& effect on rate $\times 1 / 4 \mathrm{OR} \times 0.25 \checkmark$ \& 1 \& | ALLOW 'a quarter' OR decrease by $1 / 4$ OR decrease by 0.25 OR rate decreases by 4 OR decrease by 75% OR rate $=0.9 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ |
| :--- |
| DO NOT ALLOW just 0.5^{2} of rate OR rate decreases by 2^{2} | \\

\hline \& \& (iii) \& effect on rate $\times 64 \checkmark$ \& 1 \& | ALLOW rate $=2.3(04)\left(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ |
| :--- |
| DO NOT ALLOW just 'increases by 4 and then by $16 / 4^{2}$ OR increases by 4^{3} | \\

\hline
\end{tabular}

Question			Answer	Mark	Guidance
1	(c)	(i)	(initial) rate increases AND more frequent collisions OR more collisions per second/time	1	BOTH points required for mark ALLOW rate increases AND concentration increases For concentration increases, ALLOW particles closer together OR less space between particles DO NOT ALLOW just more collisions OR collisions more likely
		(ii)	rate constant does not change \checkmark	1	
	(d)		$\text { step 1: } \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})$ LHS of step one step 2: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ rest of equations for step 1 AND step $2 \checkmark$	2	State symbols NOT required For 'rest of equations', This mark can only be awarded if 1 st mark can be awarded ALLOW other combinations of two steps that together give the overall equation (shown above part in scoris window), eg step 1: $\longrightarrow \mathrm{N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ step 2: $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ step 1: $\longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})$ step 2: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ There may be others with species, such as $\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ and HNO . Provided the two steps add up to give the overall equation AND charges balance, the 2nd mark can be awarded
			Total	10	

Question		Answer	Mark	Guidance
2	(a)	$\begin{aligned} & \text { Fe: } \quad\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2} \checkmark \\ & \text { Fe}^{2+}:\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{6} \checkmark \end{aligned}$	2	ALLOW $4 s$ before 3 d, i.e. $\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$ ALLOW $4 s^{0}$ ALLOW subscripts IGNORE $1 s^{2} 2 s^{2} 2 p^{6}$ is written out a second time
	(b)	coloured (compound/complex/precipitate/ions) OR catalyst \checkmark	1	IGNORE 'variable oxidation states' but ALLOW the idea that Fe^{2+} can react to form an ion with a different charge/oxidation state. 'ion' is essential: 'atom' or 'metal' is not sufficient IGNORE partially filled d sub-shell/d orbital (question refers to property of Fe^{2+})
	(c)	Fe oxidised from +2 to $+3 \checkmark$ Cr reduced from +6 to $+3 \checkmark$	2	CHECK and credit oxidation numbers on equation ALLOW Fe^{2+} oxidised to Fe^{3+} ALLOW Cr ${ }^{6+}$ reduced to Cr^{3+} ALLOW + sign after number in oxidation number, ie 2+, etc ALLOW 1 mark only if oxidation numbers given with no identification of which species has been oxidised or reduced, ie Fe goes from +2 to +3 AND Cr goes from +6 to +3 Fe reduced from +2 to +3 AND Cr oxidised from +6 to +3 (oxidation and reduction the wrong way around) DO NOT ALLOW just ' Fe is oxidised and Cr reduced' IGNORE other oxidations numbers (even if wrong) IGNORE any references to electrons

Question			Answer	Mark	Guidance
2	(e)	(ii)	(For complex) with CO , stability constant is greater (than with complex in O_{2}) OR with CO, stability constant is high \checkmark (Coordinate) bond with CO is stronger (than O_{2}) OR bond with CO is strong \checkmark	2	ANNOTATE WITH TICKS AND CROSSES, etc Comparison of CO and O_{2} is NOT required ALLOW stability constant with/of CO is greater IGNORE (complex with) CO is more stable ALLOW bond with CO is less likely to break OR bond with CO more likely to form OR 'CO cannot be removed' OR idea that attachment of CO is irreversible OR CO is a stronger ligand (than O_{2}) OR CO has greater affinity for ion/metal/haemoglobin (than O_{2}) IGNORE CO bonds more easily
	(f)	(i)	$\mathrm{Pt}^{2+} / \mathrm{Pt}$ is $+2 / 2+, 2 \times \mathrm{Cl}^{-}-2 \checkmark$	1	DO NOT ALLOW response in terms of Cl_{2} rather than Cl^{-} DO NOT ALLOW 'charges cancel' without the charges involved being stated

Question			Answer	Mark	Guidance
2	(f)	(ii)	OR $\checkmark \checkmark$ For each structure Ligand donates an electron pair to metal (ion) $/ \mathrm{Pt}^{2+} / \mathrm{Pt}$ OR forms a coordinate bond to the metal (ion)/ $/ \mathrm{Pt}^{2+} / \mathrm{Pt} \checkmark$	3	IGNORE any charge, ie $\mathrm{Pt}^{2+} \mathrm{ORCl}^{-}$, even if wrong IGNORE any angle, even if wrong ACCEPT bonds to $\mathrm{H}_{3} \mathrm{~N}$ (does not need to go to ' N ') Assume that a solid line is in plane of paper Each structure must contain 2 'out wedges' AND 2 'in wedges' or dotted lines OR 4 solid lines at right angles (all in plane of paper) DO NOT ALLOW any structure that cannot be in one plane DO NOT ALLOW any structure with Cl_{2} as a ligand DO NOT apply ECF from one structure to the other ALLOW coordinate bonds shown on diagrams provide that they start from a lone pair ALLOW 'dative covalent bond' or 'dative bond' as alternative for 'coordinate bond IGNORE cis and trans labels (even if incorrect) IGNORE incorrect connectivity to NH_{3}, ie ALLOW NH3—
		(iii)	platin binds to DNA (of cancer cells) OR platin stops (cancer) cells dividing/replicating \checkmark	1	

Question		Answer	Mark	Guidance
2	(g)	1,1-cyclobutanedicarboxylate ion Correct charge required (could also be 2- outside square brackets) carboplatin (cis isomer shown below)	2	Must show cyclobutane ring with both COO^{-}groups bonded to same carbon ALLOW $\mathrm{COO}^{-} \mathrm{OR} \mathrm{CO}_{2}^{-}$for each carboxylate ion ALLOW structures showing CH_{2} or C atoms provided it is clear that C skeleton is shown, Note: H atoms are not required if C atoms shown, ie DO NOT ALLOW circle inside cyclobutane ring Two bonds from Pt to O atoms Any bonds from ligand MUST come from O OR from atom with lone pair IGNORE any charge shown Note: H atoms are not required if C atoms shown, (see ion in 1st structure) ALLOW ECF from 1st structure provided that the attached atoms are capable of forming coordinate bonds (ie they contain a lone pair of electrons) Example if 1st structure is as below, then ALLOW 1 mark ECF X ECF. \checkmark
		Total	18	

Question			Answer	Mark	Guidance
3	(a)	(i)	$\mathrm{HOCH}_{2} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{HOCH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$	1	ALLOW: $\mathrm{HOCH}_{2} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{HOCH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$ ALLOW: $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ DO NOT ALLOW molecular formulae (cannot see which OH has reacted)
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=0.142\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$, award 2 marks $\begin{aligned} & \text { amount of } \mathrm{HOCH}_{2} \mathrm{COOH}=0.125 \times \frac{25.0}{1000} \\ & =0.003125(\mathrm{~mol}) \checkmark \\ & \text { concentration } \mathrm{NaOH}=0.003125 \times \frac{1000}{22.00} \\ & =0.142\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark} \end{aligned}$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc ALLOW $3.125 \times 10^{-3} \mathrm{~mol}$ ALLOW ECF: answer above $\times \frac{1000}{22.00}$ ALLOW 2 SF: 0.14 to calculator value: 0.142045454 If candidate has written in (a)(i): $\mathrm{HOCH}_{2} \mathrm{COOH}+\mathbf{2 N a O H}$, mark by ECF: concentration $\mathrm{NaOH}=2 \times 0.003125 \times \frac{1000}{22.00}$ $=0.284\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
		(iii)	Vertical section matches the (pH) range (of the indicator) OR colour change (of the indicator) OR end point (of the indicator) \checkmark	1	ALLOW stated pH range for vertical section at about 7-10, 6-10, etc ie ALLOW ' pH range must be about 7-10' ALLOW 'pH changes rapidly' for vertical section ALLOW 'equivalence point' for vertical section, ie ALLOW equivalence point matches the (pH) range, etc DO NOT ALLOW just 'end point matches (pH) range' DO NOT ALLOW just 'indicator matches vertical section' Response must link either the pH range or colour change or end point with the vertical section / pH range $\sim 7-10$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Answer \& Mark \& Guidance \\
\hline 3 \& (b) \& (i) \& \[
\left(K_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HOCH}_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{HOCH}_{2} \mathrm{COOH}\right]} \checkmark
\] \& 1 \& IGNORE state symbols IGNORE \(\qquad\) \(\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{HOCH}_{2} \mathrm{COOH}\right]}\) in (i) but ALLOW in (ii) \\
\hline \& \& (ii) \& \begin{tabular}{l}
FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer \(=1.46 \times 10^{-4}\), award 2 marks THEN IF units are \(\mathrm{mol} \mathrm{dm}^{-3}\), award 1 further mark
\[
\begin{aligned}
\& {\left[\mathrm{H}^{+}\right]=10^{-2.37}=0.00427\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \\
\& K_{\mathrm{a}}=\frac{0.00427^{2}}{0.125}=1.46 \times 10^{-4} \checkmark
\end{aligned}
\] \\
units: \(\mathrm{mol} \mathrm{dm}^{-3} \checkmark\)
\end{tabular} \& 2

1 \& | IF there is an alternative answer, check to see if there is any ECF credit possible using working below UNITS can be credited with no numerical answer |
| :--- |
| ANNOTATE WITH TICKS AND CROSSES, etc |
| ALLOW 4.27×10^{-3} (mol) |
| ALLOW 2 SF: 0.0043 up to 0.004265795188 (calc value) |
| IF candidate has rounded to $0.00427\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ in 1 st response, credit |
| EITHER |
| 2 SF: 1.5×10^{-4} up to 1.458632×10^{-4} (from 0.00427) |
| OR |
| 2 SF: 1.5×10^{-4} up to $1.455760687 \times 10^{-4}$ (from unrounded calculator value of 0.004265795188) |
| ALLOW calculation based on equilibrium conc of glycolic acid as $0.125-\left[\mathrm{H}^{+}\right]$: |
| Using $\left[\mathrm{H}^{+}\right]=0.00427, K_{\mathrm{a}}=\frac{0.00427^{2}}{0.125-0.00427}=1.51 \times 10^{-4}$ |
| For UNITS this is the ONLY correct answer | \\

\hline \& \& (iii) \& | $\% \text { dissociation }=\frac{0.00427}{0.125} \times 100=3.4(\%) \checkmark$ |
| :--- |
| Assume working from EITHER from a rounded $\left[\mathrm{H}^{+}\right]$ OR unrounded calculator value of \mathbf{b} (ii) $\left[\mathrm{H}^{+}\right]$ | \& 1 \& | ALLOW ECF using calculated $\left[\mathrm{H}^{+}\right]$from \mathbf{b} (ii), ALLOW 2 SF: 3.4 \% up to calculator value |
| :--- |
| Note: $\left[\mathrm{H}^{+}\right]$from b(ii) displayed at top of answer window DO NOT MARK THIS TWICE! | \\

\hline
\end{tabular}

CHERRY HILL TUITION OCR A CHEMISTRY A2 PAPER 26

Question			Answer	Mark	Guidance
3	(e)		$\begin{aligned} & 2 \mathrm{HSCH}_{2} \mathrm{COO}^{-}+\mathrm{R}-\mathrm{S}-\mathrm{S}-\mathrm{R} \\ & \\ & \longrightarrow \mathrm{OOCCH}_{2} \mathrm{~S}-\mathrm{SCH}_{2} \mathrm{COO}^{-}+2 \mathrm{R}-\mathrm{SH} \checkmark \\ & 2 \mathrm{R}-\mathrm{SH}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{R}-\mathrm{S}-\mathrm{S}-\mathrm{R}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	2	ALLOW $\left(\mathrm{SCH}_{2} \mathrm{COO}^{-}\right)_{2}$ ALLOW equation with ammonium salt, ie: $\begin{aligned} & 2 \mathrm{HSCH}_{2} \mathrm{COONH}_{4}+\ldots \ldots . . \\ & \longrightarrow \mathrm{H}_{4} \mathrm{NOOCCH}_{2} \mathrm{~S}-\mathrm{SCH}_{2} \mathrm{COONH}_{4}+\ldots \ldots . . \end{aligned}$
			Total	20	

Question			Answer	Mark	Guidance
4	(a)	(i)	Complete circuit with electrodes to voltmeter AND salt bridge between solutions $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ half cell with Pt electrode AND both solutions labelled as $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M}$ $\mathrm{H}^{+} / \mathrm{H}_{2}$ half cell with Pt electrode AND H^{+}solution labelled as $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M} \checkmark$	3	ANNOTATE WITH TICKS AND CROSSES, etc circuit shown must be complete, ie must be capable of working salt bridge must be labelled and must dip into both solutions ALLOW concentration label of 'equimolar' or similar wording for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ half cell ALLOW any strong acid IF both half cells are correct with no concentrations, ALLOW 1 out of the 2 marks available for the 2 half cells IGNORE any stated temperature or pressure, even if wrong
		(ii)	$\begin{array}{ll} 2 \mathrm{Cr}+3 \mathrm{Sn}^{4+} & \rightarrow \quad 2 \mathrm{Cr}^{3+}+3 \mathrm{Sn}^{2+} \\ \mathrm{Cr}+3 \mathrm{Cu}^{+} \rightarrow & \mathrm{Cr}^{3+}+3 \mathrm{Cur} \\ \mathrm{Sn}^{2+}+2 \mathrm{Cu}^{+} & \rightarrow \quad \mathrm{Sn}^{4+}+2 \mathrm{Cu} \checkmark \end{array}$ Conditions not standard OR concentrations not $1 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ High activation energy OR slow rate \checkmark	5	ANNOTATE WITH TICKS AND CROSSES, etc Correct species AND balancing needed for each mark ALLOW equations as shown with equilibrium sign ALLOW multiples but electrons must not be shown IF three equations have correct species but no balancing, AWARD 1 mark ALLOW not favoured kinetically
	(b)	(i)	$\mathrm{CH}_{3} \mathrm{OH}+11 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	Correct species AND balancing needed ALLOW multiple, ie $2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ ALLOW CH ${ }_{4} \mathrm{O}$ for formula of methanol
		(ii)	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{H}^{+}+6 \mathrm{e}^{-}+\mathrm{CO}_{2} \checkmark$	1	
		(iii)	less CO_{2} OR less greenhouse gases \checkmark greater efficiency \checkmark	2	ALLOW no CO_{2} OR no greenhouse gases ALLOW (very) efficient IGNORE less pollution OR 'renewable fuels'
		(iv)	methanol is a liquid AND methanol is easier to store/transport \checkmark	1	Both points required for mark Response MUST state that methanol is a liquid IGNORE methanol has a higher boiling point Assume that 'it' refers to methanol IGNORE safety issues, eg H_{2} leakage, flammability, explosive
			Total	13	

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Answer \& Mark \& Guidance \\
\hline 5 \& (a) \& \begin{tabular}{l}
A: forms fewer moles/molecules of gas \(\checkmark\) \\
B: forms gas from a liquid \(\checkmark\) \\
C: forms liquid from gases \(\checkmark\) \\
D: forms more moles/molecules of gas
\end{tabular} \& 4 \& \begin{tabular}{l}
Note: Responses must imply the key difference between the sides of the equation \\
IGNORE comments about C(s)
\end{tabular} \\
\hline \& (b) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \Delta S=\Sigma S \text { (products) }-\Sigma S(\text { reactants) } \\
\& =40+214-89=165\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
\& =0.165\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \checkmark
\end{aligned}
\] \\
At \(25^{\circ} \mathrm{C}, \Delta \mathrm{G}=+178-298 \times 0.165\)
\[
\begin{array}{ll}
=(+) 129 \checkmark \& \text { units: } \mathrm{kJ} \mathrm{~mol}^{-1} \checkmark \\
\text { OR }(+) 129,000 \checkmark \& \text { units: } \mathrm{J} \mathrm{~mol}^{-1} \checkmark
\end{array}
\] \\
As \(\Delta G>0\), reaction is not feasible OR as \(\Delta G>0, \mathrm{CaCO}_{3}\) is stable \(\checkmark\) \\
Minimum temperature for feasibility when
\[
\begin{aligned}
\& 0=\Delta H-T \Delta S \text { OR } \Delta H=T \Delta S \text { OR } T=\frac{\Delta H}{\Delta S} \\
\& =\frac{178}{0.165}=1079 \mathrm{~K} \mathrm{OR} 806^{\circ} \mathrm{C}
\end{aligned}
\] \\
The units must be with the stated temperature
\end{tabular} \& 4

2 \& | ANNOTATE WITH TICKS AND CROSSES, etc |
| :--- |
| Mark is for the working line: $40+214-89=165$ |
| UNITS have a separate mark |
| ALLOW 129 to calculator value of 128.83 |
| DO NOT ALLOW 128 (incorrect rounding) |
| IF $25^{\circ} \mathrm{C}$ used rather than 298 K , credit by ECF, calculated ΔG |
| $=174$ to calculator value of 173.875 |
| ENTROPY APPROACH- |
| ALLOW At $25^{\circ} \mathrm{C}, \Delta S_{\text {total }}=0.165-\frac{178}{298} \checkmark$ $=-0.432 \checkmark \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \checkmark$ $\text { OR -432 } \checkmark \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \checkmark$ |
| As $\Delta S<0$, reaction is not feasible |
| ENTROPY APPROACH- |
| Minimum temperature for feasibility when $0=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }} \text { OR } \quad \Delta S_{\text {system }}=\frac{\Delta H}{T}$ |
| ALLOW 1080 K up to calculator value of 1078.787879 , correctly rounded, eg 1078.79 is correct value to 6SF DO NOT ALLOW 1078 (incorrect rounding) |
| IF 1079 K is given and additional temperature in ${ }^{\circ} \mathrm{C}$ is incorrect, IGNORE ${ }^{\circ} \mathrm{C}$ temperature (and vice versa) | \\

\hline \& \& Total \& 11 \& \\
\hline
\end{tabular}

Question			Answer	Mark	Guidance
6	(a)	(i)	$\left(K_{\mathrm{w}}=\right.$) $\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right] \checkmark$	1	IGNORE state symbols ALLOW $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=2.3 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$, award 2 marks IF answer $=2.34 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$, award 1 mark \qquad $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=4.27 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \\ & {\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{4.27 \times 10^{-5}}} \\ & =2.34 \times 10^{-10} \\ & =2.3 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark} \end{aligned}$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 4.3×10^{-5} up to calculator: $4.265795188 \times 10^{-5}$ ALLOW 0.0000427 Answer MUST be to 2 SF (in question) ALLOW $=2.3 \times 10^{-x}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ for 1 mark (must be a negative power) ALLOW alternative approach based on pOH : $\begin{aligned} & \mathrm{pOH}=14-4.27=9.63 \checkmark(\text { DO NOT ALLOW 9.6 }) \\ & {\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}=10^{-9.63}=2.3 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \end{aligned}$
	(b)	(i)	Endothermic because K_{w} increases with temperature	1	Endothermic AND reason required for the mark ALLOW Endothermic because increasing temperature shifts equilibrium/reaction to the right
		(ii)	K_{w} value from graph from 2.2 to $2.6 \times 10^{-14}\left(\mathrm{~mol}^{2}\right.$ $\left.\mathrm{dm}^{-6}\right)^{\vee}$ Using 2.4×10^{-14}, $\left[\mathrm{H}^{+}\right]=\sqrt{2.4 \times 10^{-14}}$ OR $1.55 \times 10^{-7} \checkmark$ $\begin{aligned} & \mathrm{pH}=-\log \left(1.55 \times 10^{-7}\right)=6.81 \\ & \left(\text { using } K_{\mathrm{w}}=2.4 \times 10^{-14}\right)^{\checkmark} \end{aligned}$	3	ANNOTATE WITH TICKS AND CROSSES, etc Actual $K_{w}=2.38 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ For this mark, candidate must use a value between 2.0 and $3.0 \times 10^{-14}\left(\mathrm{~mol}^{2} \mathrm{dm}^{-6}\right)$, ie from the approximately correct region of the graph, ALLOW 6.8 up to calculator value Note: You will need to calculate the pH value from the candidate's estimate of K_{w} at $37^{\circ} \mathrm{C}$ before awarding the 3 rd marking point ONLY award an ECF pH mark if candidate has generated a value of $\left[\mathrm{H}^{+}\right]$by attempting to take a square root of a value between 2.0 and 3.0×10^{-14}

Question		Answer	Mark	Guidance
6	(d)	Ionic radius Potassium ion OR K ${ }^{+}$OR K ion is smaller OR K^{+}has greater charge density \checkmark Lattice enthalpy Lattice enthalpy of KF is more negative than RbF \checkmark OR K^{+}has greater attraction for F^{-} Hydration enthalpy ΔH (hydration) of K^{+}is more negative than Rb^{+} OR K^{+}has greater attraction for $\mathrm{H}_{2} \mathrm{O}$ Enthalpy change of solution Idea that ΔH (solution) is affected more by lattice enthalpy than by hydration enthalpy \checkmark	4	ANNOTATE WITH TICKS AND CROSSES, etc Throughout question, ORA in terms of Rb^{+} Throughout question, ALLOW energy for enthalpy DO NOT ALLOW potassium OR K OR reference to atoms (ie reference to ions is required throughout a response) ALLOW lattice enthalpy of KF > lattice enthalpy of RbF ALLOW more energy needed to separate K^{+}AND F^{-} IGNORE KF has stronger bonds ALLOW ΔH (hydration) of $\mathrm{K}^{+}>\Delta H$ (hydration) of Rb^{+} ALLOW more energy needed to separate K^{+}AND $\mathrm{H}_{2} \mathrm{O}$ IGNORE K^{+}has a stronger bond to $\mathrm{H}_{2} \mathrm{O}$ ALLOW a correct attempt to link the contribution of lattice enthalpy and hydration enthalpy to ΔH (solution), ie lattice enthalpy is a more important factor than hydration enthalpy
	(e)	(During dissolving,) entropy/disorder increases OR disorder increases $T \Delta S>\Delta H$ OR $T \Delta S$ is more positive than ΔH OR $\Delta H-T \Delta S$ is negative \checkmark	2	ALLOW entropy change is positive OR ΔS is positive OR $T \Delta S$ is positive ALLOW $\Delta \mathrm{S}$ (system) $>\Delta H / T$ ALLOW ΔS (system) is more positive than $\Delta H / T \checkmark$ ALLOW ΔS (system) $+\Delta S$ (surroundings) is positive ALLOW Energy contribution from increase in entropy is greater than decrease in energy from enthalpy change OR entropy change outweighs enthalpy change IGNORE ΔG is negative
		Total	20	

| Question | | Answer | Mark | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | (a) | (i) | amount $\mathbf{S}_{2} \mathbf{O}_{3}{ }^{2-}$ used
 $=0.00100 \times \frac{24.6}{1000}=2.46 \times 10^{-5} \mathrm{~mol} \checkmark$
 amount \mathbf{O}_{2} in $25 \mathrm{~cm}^{3}$ sample
 $=\frac{2.46 \times 10^{-5}}{4}=6.15 \times 10^{-6} \mathrm{~mol} \checkmark$
 Concentration of \mathbf{O}_{2} in sample
 $=6.15 \times 10^{-6} \times \frac{1000}{25}=2.46 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$
 mass concentration of \mathbf{O}_{2} in $\mathrm{mg} \mathrm{dm}^{-3}$
 $=2.46 \times 10^{-4} \times 32 \mathrm{~g}=7.872 \times 10^{-3}\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$
 $=7.872\left(\mathrm{mg} \mathrm{dm}^{-3}\right) \checkmark$ | ANNOTATE WITH TICKS AND CROSSES, etc
 ALLOW $0.0000246(\mathrm{~mol})$ |

Question			Answer	Mark	Guidance
7	(b)	(ii)	$\begin{aligned} & 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{I}^{-}+2 \mathrm{NO}_{2}^{-} \longrightarrow 2 \mathrm{NO}+\mathrm{I}_{2}+4 \mathrm{OH}^{-} \\ & \begin{array}{l} \mathrm{OR} 2 \mathrm{H}^{+}+2 \mathrm{I}^{-}+2 \mathrm{NO}_{2}^{-} \longrightarrow 2 \mathrm{NO}+\mathrm{I}_{2}+2 \mathrm{OH}^{-} \\ \text {species } \checkmark \\ \text { balance } \checkmark \end{array} \end{aligned}$	2	IGNORE state symbols ALLOW multiples For species ONLY, IGNORE any extra $\mathrm{H}_{2} \mathrm{O}$ or e^{-}on either side of the equation ALLOW on LHS: $2 \mathrm{HI}+2 \mathrm{NO}_{2}{ }^{-}$OR $2 \mathrm{I}^{-}+2 \mathrm{HNO}_{2}$ ALLOW species and equation involving $\mathrm{N}_{2} \mathrm{H}_{2}$: $\begin{aligned} & \quad 6 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{I}^{-}+2 \mathrm{NO}_{2}^{-} \longrightarrow \mathrm{N}_{2} \mathrm{H}_{2}+4 \mathrm{I}_{2}+10 \mathrm{OH}^{-} \\ & \text {OR } 6 \mathrm{H}^{+}+8 \mathrm{I}^{-}+2 \mathrm{NO}_{2}^{-} \longrightarrow \mathrm{N}_{2} \mathrm{H}_{2}+4 \mathrm{I}_{2}+4 \mathrm{OH}^{-} \\ & \text {species } \checkmark \\ & \text { balance } \checkmark \end{aligned}$
			Total	8	

