CHEM 8410_6410_4410 – Organic Synthesis

Mid-Term Exam 1

Time: 10:00 am - 11:00 am Date: February 16, 2017 Room: BO 2059

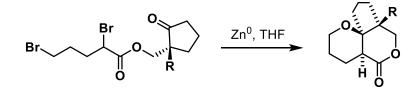
100 Points - Total

- 1. Problem: Please provide mechanisms for 5 of the following 10 named reactions: (25 PTS)
 - 1. Baeyer-Villiger Reaction
 - 2. Bishler-Napieralski Reaction
 - 3. Barton-McCombie Reaction
 - 4. Benzoin Condensation
 - 5. Bergman Reaction

- 6. Birch Reduction
- 7. Biginelli Reaction
- 8. Beckmann Rearrangement
- 9. Aldol Condensation
- 10. Baylis-Hillman Reaction

Answers:

CHEM 8410_6410_4410 – Organic Synthesis THE UNIVERSITY OF TOLEDO 1872


2. **Problem:** Rationalize the *syn*-selectivity of the following reaction with a clear 3-D representation of the Zimmerman-Traxler transition state. (**25 PTS**)

R-CHO	+	Ph_COO <i>t-</i> Bu OH	Et ₃ N (5 mol%) Ti(O <i>i</i> Pr) ₄	→ R → COO <i>t</i> -Bu HO Ph
	R	yield	(%) ratio	o (syn/anti)
	Me Et <i>i</i> -Pr	70 75 78		55:45 79:21 94:06

Answer:

3. Problem: Provide a mechanism that accounts for observed stereochemistry of the illustrated transformation. (25 PTS)

Answer:

Problem: Show how you would synthesize the following molecule. Use retro-synthetic analysis to break the pertinent bonds. Provide mechanisms for every step you use. As a hint, start with cyclohexanone and some other compound of your choice (From Quiz #2). (25 PTS)

Answer: