Q	uesti	on	Answer	Mark	Guidance
1	а	i	ethanal ✓	1	DO NOT ALLOW acetaldehyde
		ii	acidified / H ⁺ ✓	3	IGNORE any sodium/potassium ions in formula/name
			dichromate / Cr ₂ O ₇ ²⁻ ✓		ALLOW only sulfuric acid / H ₂ SO ₄
			distil ✓		IGNORE fractional ALLOW distillation DO NOT ALLOW if reflux is also stated
		iii	(strong) peak/trough at around 1720 (cm ⁻¹) / anywhere in region 1700-1725 indicates C=O (in carboxylic acid) (NOT PRESENT IN ETHANOL) ✓	3	OR no peak above 3200 (cm ⁻¹) OR in region of 3600-3640 (cm ⁻¹) for –OH in alcohol DO NOT ALLOW No peak/trough at 1050-1300 for C-O in alcohol (cm ⁻¹) since peaks are present in this region
			(broad) peak/trough at around 3100 (cm ⁻¹) / anywhere in region 2500-3200 indicates O-H (in carboxylic acid) (NOT PRESENT IN COMPOUND A) ✓		ALLOW no (strong) peak/trough at around 1720-1740 (cm ⁻¹) for aldehyde group in compound A
			ethanoic acid OR Compound B ✓		DO NOT ALLOW a carboxylic acid
					ALLOW labels on peaks in spectrum
		iv	Any suggestion that indicates that reflux/excessive heating took place / distillation of ethanal as it was formed did not take place OR excess acidified dichromate was used / acidified dichromate was not added slowly to ethanol ✓ (ethanol/ethanal was) oxidised further ✓	2	
1	b	i	ester ✓	1	

Qı	uestion	Answer	Mark	Guidance
	ii	$C_2H_5OH + CH_3COOH \rightarrow CH_3COOC_2H_5 + H_2O$ ethanoic acid correct \checkmark products correct \checkmark	2	ALLOW any correct type of structural formulae
	iii	concentrated sulfuric acid OR H₂SO₄ ✓ act as catalyst OR speed up reaction rate OR absorb water ✓	2	IGNORE references to activation enthalpy
	iv	reduces number of steps / increases atom economy OR could be cheaper OR could be faster OR reduces energy requirements OR can be carried out at low temperature OR can be reused ✓	1	

Que	stion	Answer		Guidance
1	С	ANY 5 POINTS FROM THE FOLLOWING 6:	6	PLEASE ANNOTATE MARKS GIVEN WITH ✓ PUT ✓ for QWC next to 'pencil' icon
		1. enzymes (are proteins / polypeptides) with a specific / <i>AW</i> order / sequence of amino acids ✓		1. enzymes have a sequence of amino acids
		2. if the DNA is damaged the primary structure of the protein / order of the amino acids in the enzyme will be altered / changed ✓		2. damage to DNA leads to different amino acids / primary structure
		3. so the tertiary structure /folding of chains of the enzyme will also alter / change ✓		3. resulting in different tertiary structure
		4. the active site (is part of the tertiary structure and) is where the reaction with the substrate takes place $AW\checkmark$		4. reaction takes place / substrate fits in at active site
		5. an altered active site will not have the correct shape ✓		5. active site shape alters
		6. and (interact with the substrate) by forming the correct / <i>AW</i> intermolecular bonds / forces ✓		6. substrate can not bind/interact with active site OR can not form substrate-complex ALLOW by binding/bonding differently
		AWARD QWC MARK FOR altered/different active site linked to less/no reaction / enzyme does not work AW ✓		
			21	

Q	uesti	on	Answer	Mark	Guidance
2	а	i	$T_{\rm g}$ of PMMA is above RT so will be brittle / not enough energy to break intermolecular bonds / chains can not move over each other \checkmark	2	
			$T_{\rm g}$ of PMA is below RT so will be flexible/ rubbery / enough energy to break intermolecular bonds / chains can move over each other \checkmark		IGNORE any reference to crystallinity
		ii	chains in PMMA cannot move/slide over each other (easily) ORA ✓	1	ORA Chains in PMA can move over each other (easily) ✓
		iii	add a plasticiser / copolymerisation / add a copolymer ✓	1	DO NOT ALLOW cold-drawing
	b	i	intermolecular bonds in propene are instantaneous (dipole) – induced dipole ✓	4	DO NOT ALLOW id-id bonds
			intermolecular bonds in propanone are permanent (dipole) – permanent dipole ✓		ALLOW pd-pd bonds if an abbreviation is used for a second time
			more energy/higher temperature for propanone required ✓		ALLOW 1 mark if answer in terms of increased instantaneous – dipole induced dipole bonds (max mark is
			because intermolecular bonds in propanone are stronger ORA ✓		then 2)
		ii	hydrogen cyanide / cyanide ion ✓	1	ALLOW HCN / CN ⁻
					ALLOW potassium cyanide / sodium cyanide OR KCN / NaCN
					IGNORE acid or alkali

Q	uesti	on	Answer	Mark	Guidance	
2	b	iii	H ₃ C $\xrightarrow{\delta_{-}}$ δ	4	ALLOW mechanism if HCN is shown attacking but arrow must come from H-CN bond Curly arrow from nucleophile MUST come from carbon in either CN ion or HCN ALLOW CN ⁻ for ion if arrow correct	
		iv	(cyanide ion is a nucleophile and) the lone pair/electrons (which attack the electron deficient carbon) are on C (not N) ✓ OR nucleophile is :CN⁻✓	1	ALLOW the negative charge is on C IGNORE any reference to triple bond in CN	
		V	few atoms wasted/high atom economy ✓	1	ALLOW 100% / no waste	
	С	i	(moderately) concentrated acid ✓ (heat under) reflux ✓	2	ALLOW aqueous / dilute acid / H ⁺ and water DO NOT ALLOW conc. sulphuric acid or any form of alkali	
		ii	amide ✓	1	IGNORE any qualification of amide i.e primary etc. IGNORE any given formulae DO NOT ALLOW peptide	
		iii	only F ✓	2	marks are independent	
			there are (2) different groups on each C (of the double bond)		DO NOT ALLOWon each side of C=C	
				20		

Q	Question		Answer	Mark	Guidance
3	а		Tyrosine: phenol ✓ Threonine: alcohol ✓ add (neutral) FeCl₃ / iron(III) chloride ✓ Tyrosine: turns purple/violet AND Threonine remains yellow /does not change colour ✓	4	ALLOW orange BUT NOT brown alone for colour of FeCl₃ ALLOW acidified dichromate ✓ – Threonine goes green AND Tyrosine remains orange / does not change colour ✓
	b		HO HO OH OH OH Tyrosine: correct: 1 chiral centre ✓ Threonine correct: 2 chiral centres ✓	2	
	С		1 mark for correct repeating unit ✓ ester ✓	2	full structural / skeletal formula not required ALLOW multiple repeating units showing correct ester linkage

Question	Answer	Mark	Guidance
3 d i	with HCI 1 mark for -NH₃+ group correct ✓ 1 mark for rest of ion correct ✓ with CH₃COCI H and HCI 1 mark for each acyl group ✓ ✓ 1 mark for HCI (IGNORE number of HCIs) ✓	5	ALLOW correct (full) structures but H's must be shown ALLOW –NH ₃ +ve ion without Cl ⁻ CH ₂ CH ₂ CH ₂ CH ₃
ii	phenols / phenol group / -OH group on tyramine will form ion / react with alkalis ✓ ionic substances / salts are (more) soluble in water OR ions interact / bond / with water (molecules) OR ions are attracted to water (molecules) ✓	2	ALLOW forms salts
		15	

Qı	uesti	on	Answer	Mark	Guidance
4	а		water / H₂O ✓	1	
	b	i	 (fill) burette with KMnO₄ / MnO₄ solution ✓ use bulb / volumetric / graduated / 25 cm³ / 10 cm³ pipette for sodium ethanedioate ✓ to place solution in flask / beaker and then acidify (and warm flask) ✓ then add KMnO₄ / MnO₄ solution slowly (AW) near end point ✓ until permanent pink colour AW ✓ 	5	PLEASE ANNOTATE MARKS GIVEN WITH ✓ QWC: Either burette or pipette must be spelled correctly to get both marks for 1 and 2; 2. pipette must be qualified by type as shown OR by saying 'pipette a known / stated (e.g. 25 cm³) volume' for 1-4 ALLOW different ways of describing each solution, either by an appropriate name or formula 3. If acid is named ONLY ALLOW sulfuric acid 4. ALLOW alternatives − e.g. swirling and use of white tile 5. ALLOW pink colour persists / remains /is constant ALLOW 'pale pink/purple' BUT NOT 'purple' alone DO NOT ALLOW if indicator is used IF SOLUTIONS REVERSED 1 AND 2 score 1 mark only 5. becomes permanent AW colourless solution So max mark = 4 IGNORE any reference to rough titrations
4	b	ii	moles of sodium ethanedioate = 0.0500 x 250/1000 (= 0.0125) ✓	2	the marks are awarded for the working out given in bold
			mass = ((moles of ethanedioate) x 134) correctly evaluated $(1.675(0) \text{ g}) \checkmark$		ALLOW 2 - 5 sig. figs. ecf for moles in mass calculation

Q	uesti	on	Answer	Mark	Guidance
		iii	1. moles of $C_2O_4^{2-} = 0.0500 \times 10/1000 (= 0.000500) \checkmark$ 2. moles of $MnO_4^- = 2/5 \times 0.0500 \times 10.0/1000 (= 0.000200)$ 3. concentration = $2/5 \times 0.0500 \times 10/1000 \times 1000/26.0 \checkmark$ 4. = $0.00769 / 7.69 \times 10^{-3}$ 3 significant figures \checkmark	4	the marks are awarded for the working out given in bold IF FINAL ANSWER IS INCORRECT PLEASE ANNOTATE MARKS GIVEN WITH ✓ 1. moles of C ₂ O ₄ ²⁻ = correct concentration x correct volume in dm ³ 2. moles of MnO ₄ ⁻ = 2/5 x moles of C ₂ O ₄ ²⁻ 3. concentration = moles of MnO ₄ ⁻ x 1000/26.0 4. must be to 3 significant figures ecf from 2 and 3
4	C	i	 transition metal ion / Cu²+ reacts with one of reactants (to form a product) OR reacts to form an intermediate (compound) ✓ oxidation state of the transition metal ion / Cu²+ changes OR metal ion can be oxidised or reduced OR metal ion can lose or gain electrons ✓ new ion / intermediate then reacts to reform the original transition metal ion / Cu²+ AW OR form original oxidation state at end of reaction AW ✓ activation enthalpy / energy for this reaction is lower than without the transition metal ion / Cu²+ ✓ 	4	PLEASE ANNOTATE MARKS GIVEN WITH ✓ IGNORE any name / formulae given to the intermediate ALLOW transition metal ions have variable oxidation states
		ii	Homogeneous ✓	1	

Q	Question		Answer	Mark	Guidance
	d	i	during the reaction only the $[MnO_4^-]$ would be effectively changing AW OR the $[C_2O_4^{2-}]$ and $[H^+]$ would be (effectively) constant $AW \checkmark$	1	
		ii	calculate at least 2 half-lives (construction lines for two half lives shown on graph) ✓ value of at least 2 half-lives quoted as 14.5±1 (s) ✓ half-life is constant ✓	3	
		iii	6.7 x $10^{-4} = k x 1.20 x 10^{-3} \checkmark$ $k = 0.56 (0.558) \checkmark$ units = $s^{-1} \checkmark$	3	ALLOW 2+ sig figs IGNORE time ⁻¹
				24	

Qı	Question		Answer	Mark	Guidance
5	а	i	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	ALLOW single arrow in either direction
		ii	Cu forms an <u>ion</u> with an incompletely/partly filled set of <u>d</u> orbitals / (sub) shells / energy levels ✓	1	
	b	i	the E ^e of oxygen/OH⁻ is more positive/less negative than that for Cu²+/Cu ORA ✓	2	ORA The <i>E</i> ° of Cu ²⁺ /Cu is less positive/more negative than oxygen/OH ⁻ DO NOT ALLOW more/less electronegative/electropositive DO NOT ALLOW higher/lower
			O_2 /oxygen will oxidise Cu / gain electrons from Cu (forming Cu ²⁺)√		ORA
		ii	the E° of Fe ²⁺ /Fe is more negative/less positive than that for Cu ²⁺ /Cu so Fe reacts/corrodes instead of Cu $AW \checkmark$	1	
	С		Fe ³⁺ (aq) + 3OH ⁻ (aq) → Fe(OH) ₃ (s) equation correct ✓ state symbols correct ✓	2	EQUATION MUST BE BALANCED

Q	uestion	Answer	Mark	Guidance
5	d	EITHER barrier protection:		
		Paint / grease / plastic coating / galvanising ✓ prevents copper reacting/corroding with oxygen/air AND water ✓		
		OR sacrificial protection:		
		coat with/strap on blocks of Mg or Zn / galvanise ✓ the more reactive Mg or Zn corrodes/reacts instead of Cu ✓		
			10	