A-level PHYSICS

(7408/3BE)

Paper 3 - Section B (Electronics)

Specimen 2014
Morning
Time allowed: 2 hours

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data and formulae booklet
- a question paper / answer book for Section A.

Instructions

- Answer all questions.
- Show all your working.
- The total time for both sections of this paper is 2 hours.

Information

- The maximum mark for this section is 35 .
Please write clearly, in block capitals, to allow character computer recognition.
Centre number \square Candidate number \square
Surname \square
Forename(s) \square

Candidate signature \qquad

Section B

Answer all questions in this section.

| 0 | 1 | 1 |
| :--- | :--- | :--- | important to extend battery life.

State and explain the property of MOSFET devices that makes them useful in these circuits.
[2 marks]
\qquad
\qquad
\qquad
\qquad

Figure 1 shows an N-channel enhancement mode MOSFET, being used as part of a circuit for the water level alarm in a garden pond.
When the gap between the copper strips is filled with water the MOSFET turns on and the alarm sounds.

Figure 1

\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ The circuit is tested by immersing the copper strips in the water, and bringing them |
| :--- | :--- | :--- | closer together until the alarm sounds.

$V_{\text {th }}$ for the MOSFET in Figure 1 is 2.4 V .
Determine the resistance of the water between the copper strips when the alarm sounds.
\qquad $\mathrm{M} \Omega$

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ Describe what is meant by amplitude modulation (am). $. . .0 \mid$

\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2} .2$ | A radio wave has an unmodulated frequency of 120 kHz . It is amplitude |
| :--- | :--- | :--- | modulated by a signal from an audio transducer of frequency 2.2 kHz .

Calculate the bandwidth of the modulated wave.
bandwidth $=$ \qquad kHz

| $\mathbf{0}$ | $\mathbf{2} .3$ Explain why frequency modulation (fm) is not used for commercial radio |
| :--- | :--- | :--- | transmissions in the medium and long wave bands.

| $\mathbf{0}$ | $\mathbf{2} .4$ | $\mathbf{4}$ State and explain one advantage of transmitting digital signals using frequency |
| :--- | :--- | :--- | modulation (fm) rather than amplitude modulation (am).

\qquad
\qquad
\qquad
\qquad

Figure 2 shows a circuit that includes an ideal operational amplifier. A student uses this circuit to amplify the signal from the sensor before further processing by the system.

Figure 2

0	3	1	Point X in Figure $\mathbf{2}$ is said to be a virtual earth.

Explain the meaning of the term virtual earth in this type of circuit.
\qquad
\qquad
\qquad

| 0 | 3 | 2 | The temperature sensor produces a signal that changes by 10 mV for every |
| :--- | :--- | :--- | :--- | degree Celsius change in temperature. The signal is 0 mV when the temperature of the sensor is $0^{\circ} \mathrm{C}$.

The value of R_{i} is $22 \mathrm{k} \Omega$ and the value of R_{f} is $270 \mathrm{k} \Omega$.
Calculate the output voltage $V_{\text {OUT }}$ of the circuit in Figure $\mathbf{2}$ when the sensor is at a temperature of $50^{\circ} \mathrm{C}$.

| 0 | 3 | 3 |
| :--- | :--- | :--- | The circuit is powered by a $-15 \mathrm{~V}-0-+15 \mathrm{~V}$ supply. Explain why this circuit will not detect temperatures above $122{ }^{\circ} \mathrm{C}$.

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3} .4$ A student suggests a modification to the circuit in Figure $\mathbf{2}$ to form a difference |
| :--- | :--- | :--- | amplifier circuit for a thermostat. The modified circuit is shown in Figure 3.

Figure 3

The output controls a circuit that switches the heater off when the output is positive.

Explain how this circuit operates so that the heater switches off when the temperature reaches a pre-determined level.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 4 |
| :--- | :--- |\quad An engineer uses copper cable to connect an intercom system between her office and workshop. The signals have to travel a long distance and she finds that interference (hum) from the mains supply is a problem.

She reduces the interference using a filter tuned to the frequency of the mains supply. The mains frequency is 50 Hz .

Figure 4 shows her solution which is based on a parallel $L-C$ resonant circuit.

0	$\mathbf{4}$	$\mathbf{1}$ The engineer uses a 2.0 H inductor.

Calculate the required value for C for the filter to operate at 50 Hz .
[2 marks]
capacitance $=$ \qquad F

Figure 5 is the response curve for the inductor-capacitor circuit which shows how the $\mathrm{pd} V$ across the inductor-capacitor circuit varies with frequency.

Figure 5

Question 4 continues on the next page

0	4	2	Calculate, from the graph, the Q factor of the inductor-capacitor circuit.

Q factor = \qquad

| 0 | $\mathbf{4}$ | .3 | The inductor is replaced to one that has an inductance of 8.0 H and a lower |
| :--- | :--- | :--- | :--- | resistance than that of the original inductor. The capacitor is not changed. Describe how this change affects the response curve of the inductor-capacitor circuit.

[2 marks]

| 0 | 5 | Compare the advantages and disadvantages of optic fibre and copper wire for |
| :--- | :--- | :--- | transmitting information.

\qquad

| $\mathbf{0}$ | $6 \quad$ The Boolean equation for a particular logic circuit with inputs A and B and output Q |
| :--- | :--- | is:

$$
\mathbf{Q}=(\mathbf{A} \cdot \mathbf{B})+(\overline{\mathbf{A}} \cdot \overline{\mathbf{B}})
$$

0 6 . 1 Table 1 shows intermediate logic signals for the circuit, and the overall output, Q, for all combinations of the inputs A and B.

Complete the missing two entries in the truth table.

Table 1

\mathbf{A}	\mathbf{B}	$\overline{\mathbf{A}}$	$\overline{\mathbf{B}}$	$\mathbf{A} \cdot \mathbf{B}$	$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	\mathbf{Q}
0	0	1	1	0	1	
0	1	1	0	0	0	0
1	0	0	1	0		0
1	1	0	0	1	0	1

 function as the Boolean equation given in part 6 . Your circuit should contain only two AND gates, two NOT gates, and one OR gate.

Figure 6

B

There are no questions printed on this page.

