Answer all the questions.

1 PLA is a biodegradable polymer made from corn starch. The structure of part of a PLA chain is shown below.

PLA

(a)	(i)	On the structure of PLA above, circle the repeating unit.	[1]
	(ii)	Give the name of the functional group joining the repeating units.	
			. [1]

(b) In the box below, draw the structural formula of the monomer, **A**, that could be used to form PLA. Water would also be produced in this reaction.

[1]

(c) In practice, monomer A cannot be used directly to form PLA because the water produced in the process reacts with the polymer.

Instead, corn starch is processed to form compound **B**. A bond in **B** is then broken and the molecules join together to form PLA.

compound B

(i)	On the structure of B above, indicate with an arrow a bond that would be broken in this process.
(ii)	Explain why the process for producing PLA from ${\bf B}$ is more successful than the one starting with ${\bf A}$.
	[2]
(iii)	The polymerisation of ${\bf B}$ to form PLA is more environmentally friendly than the reaction using ${\bf A}$.
	Explain why, in terms of atom economy.

(d)	Mol	ecules of compound B are chiral. This means that PLA can exist in several different forms.
	(i)	Explain what is meant if a molecule is referred to as being <i>chiral</i> .
		[1]
	(ii)	Circle two carbon atoms on the structure below that are responsible for B being chiral.
		H_3C CH_3
		compound B
		[1]
(e)		particular chiral forms of PLA can be blended together to produce a more crystalline erial than normal PLA.
	(i)	Give the meaning of the term <i>crystallinity</i> when it is used to discuss the properties of polymers.
		[1]

- (ii) The physical properties of a polymer depend on temperature.
 - **Describe** the properties of a polymer at temperatures above its $T_{\rm m}$.
 - **Describe and explain** the properties of a polymer at temperatures below its $T_{\rm q}$.
 - \bullet Suggest a reason why the blended polymer has a higher $T_{\rm m}$ than normal PLA.

B	In your answer, you should clearly relate the difference in T _m of the polymers to the intermolecular bonds between the polymer chains.
	[5]
(f)	PLA has some similar uses to poly(ethene). In addition to its biodegradability, suggest one reason why PLA is considered to be a 'greener' product than poly(ethene).
	[1]
	[Total: 17]

Turn over

2 The main ore of chromium contains iron(II) chromite, FeCr₂O₄, from which pure chromium is extracted by the process outlined in the flowchart below.

- (a) Roasting the chromite ore with sodium carbonate in air produces the gas X.
 - (i) Identify gas X.

(ii)	Use oxidation	states to	determine t	the elements	oxidised in the	he roasting	process.	Give

.....[11]

(ii) Use oxidation states to determine the elements oxidised in the **roasting** process. Give reasons for your answer.

 	•••••	 •••••

.....[3]

(iii) Give the systematic name of Na₂CrO₄.

.....[1]

(b) Write a balanced equation for the reaction of Na₂CrO₄ with H₂SO₄.

State symbols are not required.

[2]

(C)	suggest a method for removing Fe_2O_3 from the mixture formed after the reaction with sulfuric acid.
	[1]
(d)	Iron is made from its ores by carbon reduction.
	Using this information and evidence from the flowchart, compare the relative oxidising strengths of ${\rm Fe_2O_3}$ and ${\rm Cr_2O_3}$.
	[1]

QUESTION 2 CONTINUES ON THE NEXT PAGE

- (e) A student further investigated the redox chemistry of chromium by measuring E^{\bullet} values.
 - (i) Complete the diagram below to show a cell that could be used to measure the standard electrode potential, E° , of the Cr³⁺(aq)/Cr(s) half-cell.

Label the diagram and state the standard conditions.

[3]

(ii) A student recorded a value of -0.74V for the standard electrode potential, E^{\bullet} , of the $Cr^{3+}(aq)/Cr(s)$ half-cell.

Write an ionic equation, with state symbols, for the overall reaction taking place in the student's cell in (i) when the cell is operating.

[2]

	(111)	the Fe ²⁺ (aq)/Fe(s) half-cell.
		The student then used the two E^{\bullet} measurements to conclude incorrectly :
		$^{\circ}$ Cr ³⁺ (aq) is a stronger oxidising agent than Fe ²⁺ (aq) because the <i>electronegativity</i> of Cr is larger than that of Fe.'
		Explain the meaning of the term <i>electronegativity</i> .
		Give the correct conclusion with reasoning.
		electronegativity
		conclusion and reasoning
		[4]
f)	Нус	lrated chromium(III) salts react with water to set up the equilibrium below.
		$[Cr(H_2O)_6]^{3+} + H_2O \rightleftharpoons [Cr(H_2O)_5OH]^{2+} + H_3O^+$
	Exp	lain why this is an example of an acid-base equilibrium.
	Give	e the two chemical species that are acting as acids.
		[2]

(g)	Chr	comium(III) forms a complex ion with the bidentate ligand H ₂ NCH ₂ CH ₂ NH ₂ .	
	(i)	Name the ligand H ₂ NCH ₂ CH ₂ NH ₂ .	
	(ii)	Draw a 'dot-and-cross' diagram for H ₂ NCH ₂ CH ₂ NH ₂ .	[1]
	(iii)	Use your answer to (ii) to explain why H ₂ NCH ₂ CH ₂ NH ₂ is a <i>bidentate ligand</i> .	[2]
(h)		e formula of the complex ion formed between chromium(III) and the ligand NCH ₂ CH ₂ NH ₂ is [Cr(H ₂ NCH ₂ CH ₂ NH ₂) ₃] ³⁺ .	
	(i)	State the coordination number of Cr ³⁺ in the complex.	
			[1]
	(ii)	Draw a diagram to show the three-dimensional shape of this complex ion.	
			[2]
	(iii)	State the bond angle formed by a ligand–Cr–ligand bond.	
			[1]
	(iv)	Use your diagram from (ii) to suggest a reason why this complex ion can exist as o stereoisomers.	ptical
			[1]
			I: 30]

3 Casein is a protein found in cows' milk. The tripeptide shown below illustrates a common amino acid sequence in the peptide chains found in casein.

(a) Underline **one** of the following terms which best describes the reaction in which proteins are formed from amino acids.

acid-base	addition	condensation	dehydration	redox	
					[1]

- **(b)** The sequence of amino acids in the tripeptide shown above can be represented as Tyr–Gly–IIe.
 - (i) Give the chemical reagent and conditions used in the laboratory to break down casein into its constituent amino acids.

reagent	 	 	 	
conditions	 	 	 	[2]

(ii) In the space below, draw the structural formula of the amino acid represented by Tyr.

(c)		A student set out to follow the rate of enzyme-catalysed breakdown of casein by attempting to use a colour-change reaction to measure the rate of production of Tyr.						
	The	student added iron(III) chloride to the reaction mixture at pH 7.						
	(i) Give the name of the technique the student would use to measure the cha concentration of Tyr.							
		[1]						
	(ii)	Describe and explain what happens when iron(III) chloride is added to Tyr.						
		[2]						
(d) Casein, unlike enzymes, does not have a protein tertiary structure and so is reunaffected by small changes in pH.								
	(i)	Explain the term tertiary structure.						
(ii) Explain why a protein with a tertiary structure is affected by pH change.								
In your answer give a group that would be affected by lowering the pH, stating formed.								
		[2]						

(e) Casein is insoluble in water forming a milky suspension. The enzyme trypsin will hydrolyse casein forming a clear solution. A student investigated the effect of temperature on the rate of this reaction by measuring the time for the mixture to clear. The student used two test-tubes for each temperature studied, as shown below. Black card was placed behind the test-tubes.

QUESTION 3 CONTINUES ON THE NEXT PAGE

What is the purpose of the right-hand test-tube?

(iii) The student's results were processed and plotted on a graph, as shown below.

	Describe how you would use the graph to find the relative rates of reaction at two different temperatures.
	[1]
(iv)	Explain why the curve on the graph shown in (iii) rises and then falls sharply.
	In your answer you should use appropriate technical terms spelled correctly.
	[4]
	[4]

(1)	order with respect to the substrate. When the concentration of the enzyme is 0.010mol dm^{-3} the rate of reaction is $3.08 \times 10^{-3} \text{mol dm}^{-3} \text{s}^{-1}$.
	Calculate the value of the rate constant at 40 °C and state the units of the rate constant.
	Give your answer to an appropriate number of significant figures.
	rate constant = units = [3]
(g)	The reaction sequence of an enzyme, ${\bf E}$, with a substrate, ${\bf S}$, to form the product, ${\bf P}$, can be represented as shown below.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	When the substrate concentration is high, state the order of reaction with respect to the substrate.
	Explain your answer.
	[2]
	[Total: 23]

4 Cinnamon oil is thought to have health benefits for people suffering from diabetes as it lowers blood-sugar levels. The oil does not mix with water and is a skin irritant.

Three of the main constituents of the oil are cinnamaldehyde, linalool and eugenol. The structures of these compounds are shown below.

(a)	Suggest one pro diabetic patient.	blem o	chemists	must	solve in	deciding	on a	suitable	dose o	of the o	oil for a
											[1]

(b)	Describe how thin-layer chromatography can be used to show that cinnamaldehyde, linalool and eugenol are present in cinnamon oil.
	[5]
(c)	Name three functional groups present in eugenol other than a benzene ring.
	1
	2
	3 [2]
(d)	A student devised a test to distinguish between eugenol and linalool. The student made an aqueous suspension of each compound in a separate test-tube. Sodium hydroxide solution was added to each test-tube and the test-tubes were shaken. The suspension of eugenol and water formed a solution; the linalool in water remained cloudy.
	Explain the difference in behaviour when shaking the two suspensions with aqueous sodium hydroxide.
	[2]

Turn over

cinnamaldehyde

- (e) A student attempts to react cinnamaldehyde with hydrogen. If a reaction takes place, two products, **X** and **Y**, are possible:
 - X is formed if just the C=C bond reacts
 - Y is formed if the C=C reacts and the C=O is reduced to an alcohol.

The student's infrared spectrum of the product of the reaction is shown below.

Use the *Data Sheet* and the spectrum to work out what is produced in the reaction. On the next page, give your reasoning and draw the structure of the compound responsible for the spectrum.

	reasor	ing				
		structure of compound responsible for the spectrum				
			F0.1			
			[3]			
(f)	Cinnar	naldehyde can be converted to cinnamic acid.				
	Give the reagents and conditions that are used in the laboratory to convert an aldehyde into a carboxylic acid.					
	reager	ts				
	conditi	ons	[2]			

QUESTION 4 CONTINUES ON THE NEXT PAGE

Turn over

(g) A student found the solubility in water of cinnamic acid, C₈H₇COOH, by titrating a saturated solution of cinnamic acid with a standard solution of sodium carbonate, Na₂CO₃, at 25 °C.

$$\mathrm{Na_2CO_3} + 2\mathrm{C_8H_7COOH} \rightarrow 2\mathrm{C_8H_7COONa} + \mathrm{CO_2} + \mathrm{H_2O}$$

The student made a standard Na_2CO_3 solution by dissolving 0.6625 g of anhydrous Na_2CO_3 in water and making it up to $1000\,\mathrm{cm}^3$ of solution. $50.0\,\mathrm{cm}^3$ of the cinnamic acid solution reacted with exactly $10.80\,\mathrm{cm}^3$ of the standard Na_2CO_3 solution.

$$M_{\rm r}$$
 (cinnamic acid) = 148.2 and $M_{\rm r}$ (Na₂CO₃) = 106.0

Calculate the mass in grams of cinnamic acid that will dissolve in 1.00 dm³ of water at 25 °C.

mass of cinnamic acid = g [5]

[Total: 20]

END OF QUESTION PAPER