1) B (1)
2.a) A (1)
2.b) D (1)
3) B (1)
4) A (1)
5) D (1)
6) C (1)
/ / /

- 7.a) B (1) 7.b) C (1) 7.c) D (1) 8) A (1)
- 9) D (1)
- 10) B (1)
- 11) C (1) 12)

12)			_
(a)	Pale/light and green/yellow Allow (virtually) colourless	clear yellow green any other colour	1
(b)(i)	Red/brown (solution) Allow yellow Ignore (From) to	Purple (or in combination with red or brown) Pale yellow Orange (or in combination with red or brown) Reject any other colours alone or in combination Grey/black (or any other colour alone or in combination) solid	1
(b)(ii)	$\begin{array}{l} Cl_2(aq) + 2I^-(aq) \rightarrow 2Cl^-(aq) + I_2(aq)/(s) \\ \text{Entities (1)} \\ \text{Balancing and all four state symbols} \\ \text{Dependent on correct entities (1)} \\ Cl_2(aq) + 2KI(aq) \rightarrow 2KCl(aq) + I_2(aq)/(s) \\ 1 \max \\ K^+(aq) \text{ on both sides of otherwise correct} \\ equation 1 \max \end{array}$		2
(c)(i)	Starch (1) Blue/black to colourless Dependent on starch indicator (1) Accept: no indicator needed (1) Yellow to colourless (1) Blank for indicator and yellow to colourless 1max	Any other indicator e.g. methyl orange/ phenolphthalein = 0/2 Colourless to blue/black Blue/black to clear Any mention of purple	2

Harrison	(ii) (vi) Concernation		1
(c)(ii)	(ii) – (vi) General comments:		1
	Allow correct answers with no working in all parts		
	N.B. Mark each part to mark scheme answer first then allow TE from earlier parts.		
	Minimum correct to 2SF. Penalise SF for 1SF once only.		
	But incorrect rounding e.g. 4.525 to 4.52 is penalised once separately as well.		
	Penalise wrong units once only as well.		
	(Mean titre = 9.05)		
	$\frac{9.05 \times 0.01}{1000}$ = 9.05 × 10 ⁻⁵ /0.0000905(mol)	9.(0) x 10 ⁻⁵ / 0.00009(0)	
	Allow 9.1 x 10 ⁻⁵ /0.000091(mol)		
(c)(iii)	$\begin{array}{c} (I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow) \\ & 2I^-((aq)) + S_4O_6^{2-}((aq)) \\ & (1) \end{array}$		2
	Marks stand alone for entities with balancing		
	Either of these on their own scores 1 mark regardless of anything else that is written		
	Multiples/fractions of equation allowed		
	Ignore state symbols even if incorrect		
(-)(:-)	9.05 x 10 ⁻⁵		1
(c)(iv)	= 4.525 × 10 ⁻⁵ /0.00004525(mol)		
	Allow 4.53 x 10 ⁻⁵ /0.0000453 etc		
	Allow TE <u>ans (ii)</u>		
	Accept TE from (iii) if you see it		
(c)(v)	4.525 x 10 ⁻⁵ /0.00004525 (mol) Allow TE = ans (iv)		1
	[Allow `ans (iv)' with no numbers for this part only]		
	4.525 x 10 ⁻⁵ x <u>1000</u> =		1
(c)(vi)	10 4.525/4.53 x 10 ⁻³ /0.004525/0.00453 (mol dm ⁻³)		
	Accept TE ans (v) x 100 [a calculated number must be given]		

	Lilac	Violet	1
(d)(i)	Allow (light) purple or mauve	Reject any other colours alone or in combination	
(d)(ii)	2K + Cl ₂ → 2KCl	K ₂ and/or KCl ₂	1
	Accept multiples/fractions Ignore state symbols even if incorrect		
	Ignore correct charges on ions in KCl	Charges on reactants K and/or Cl ₂	
	Hydrogen chloride	Hydrochloric acid	1
(e)(i)	This may be accompanied by HCl	HCl /HCl(g)/HCl (gas) alone SO ₂ H ₂ S Anything else	
(-)(::)	Dissolves in moisture/water/water vapour	HCl condenses	1
(e)(ii)	(in the air) Or reacts with moisture/water/water vapour (in the air)		
()()	NH4Cl / Ammonium chloride/ ClNH4	Ammonia chloride / NH ₃ Cl	1
(e)(iii)	NH4 ⁺ Cl ⁻ / H4N ⁺ Cl ⁻ / Cl ⁻ NH4 ⁺		
	Ignore any states even if incorrect		
(f)(i)	Any one of: Phosphorus(V) chloride/pentachloride Phosphorus(III) chloride/trichloride Allow (III/V) anywhere	Phosphorus chloride	1
	Concentrated hydrochloric acid Hydrogen chloride (gas) Sodium/potassium chloride and concentrated sulfuric acid Thionyl chloride	Hydrochloric acid/HCl/ HCl(aq) Chlorine	
	Allow correct formula(e) for all above		
	But note: conc HCl /conc H ₂ SO ₄		

	Be generous here			3	
(f)(ii)	Horizontal test tube with ceramic fibre/ any sort of wool except iron (1) soaked in 2-chlorobutane and (alcoholic) potassium hydroxide/reactants/ reagents/ chemicals/reaction mixture with heat (or any diagram of a heat source or the word heat) (1) OR Round bottom/pear shaped flask/sloping test/boiling tube and heat (or any diagram of a heat source or the word heat) (1)	ignor closu cross (-1) Poor e.g. o inter	ed apparatus but re inadvertent res owing to poor s-sectional drawings diagram clear air gaps at mediate joints in the ratus(-1)		
	containing 2-chlorobutane and (alcoholic) potassium hydroxide/reactants/ reagents/ chemicals/reaction mixture (1)	alone	tion/substances trow on its own		
	Ignore: any use of aluminium oxide/pumice reflux/distillation set up Gas collection over water (1) Ignore Bunsen valves Allow: Collection in a gas syringe	flask N.B. betw label Solut alone A por (whic	contradiction een drawing and any ion/substances		
13)		dedu tube troug delive	the should be cted for the delivery through the side of gh and/or the ery tube missing the ction tube.		
(a)(i)	H H .x .x xx H.xC.xC.xSx.H .x .x xx H H All Bonding electrons (1) Ignore any circles/bonds with electrons Two lone pairs on sulfur Dependent on eight electrons around sul (1) Accept all dots/crosses Fully correct methanethiol 1max	fur	missing Hs/Cs (-1)		2
(a)(II)	104.5 (°) (accept 91 to 105)(1) (Four pairs/two bonding pairs and two n bonding pairs of electrons in) minimum repulsion/maximum separation/as apart as possible (tetrahedral arrangement) Ignore the number of pairs of electrons	far	atoms Linear shape (-1)		3
	And lone/non bonding pair(s) of electrons repel more (than bond pairs/ bonds) (1) Mark independently	СН	repel any sort of	atoms	

(b)(i)	Two pairs of electrons/two bonds (around the H atom)	Linear shape on its own	2
	OR Can be shown on a diagram either with electrons or bonds (in approximate straight line) around the hydrogen (1)		
	(Repel to) maximum separation/minimum repulsion/as far apart as possible (1)		
	Dependent on first mark except:		
	Allow: It has a linear shape due to maximum separation/minimum repulsion 1 max		

(b)(ii)	Sulfur is less electronegative (than oxygen)/not electronegative enough	Bigger/higher rmm/ atom/molecule alone	1
	OR oxygen is more electronegative (than sulfur) / electronegative enough		
	OR Hydrogen bonds can only occur between H and either N, O, or F due to the large difference in electronegativity	Hydrogen not bonded to N, O, or F alone	
Number			
(c)(i)	Temporary asymmetrical distribution/ random arrangement of electrons/ charge (density)	Any mention of permanent dipoles = 0/2	2
	Ignore references to atoms/molecules		
	OR instantaneous/temporary dipole (1)	d+ and d- /∂+ and ∂- unless clearly temporary	
	(these produce) induced dipoles OR description of induction (1)	unless clearly temporary	
	Mark independently		
	Ignore references to atoms/molecules		
(c)(ii)	Ethanethiol/sulfur has more electrons (so forces are stronger)	Larger charge cloud/ larger electron cloud/ more outer electrons on their own	1
	Allow sulfur has an extra shell of electrons	Any reference to size/radius/rmm unless with correct answer	
	OR ethanol/oxygen has fewer/less electrons (so forces are weaker)		
	Allow oxygen has one fewer shell of electrons		

Number			
(a)(ı)	Any one from: Bubbles (of gas) /fizzing /effervescence Sodium disappears/dissolves/gets smaller White solid forms	Sodium rushes about (i.e. any confusion with reaction of sodium with water)	1
	Multiple answers: number correct minus number wrong to give a maximum of 1 and a minimum of 0	Flames Steam	
	Ignore: sodium floats or sinks and/or heat given out and/or hydrogen produced		
	Na + CH ₃ CH ₂ SH → CH ₃ CH ₂ SNa + ½H ₂		1
(d)(ii)	Accept multiples	H for hydrogen CH3CH2NaS	
	Ignore charges on sodium salt/state symbols even if incorrect		
	$C_2H_5Br + KOH \rightarrow C_2H_5OH + KBr/K^+ + Br^-$		1
(e)(i)	Accept ionic equation $C_2H_5Br + OH^- \rightarrow C_2H_5OH + Br^-$		
	Allow molecular formula of alcohol, C2H6O		
(e)(ii)	Type – substitution (1) Mechanism – Nucleophilic (1)		2
	Accept words in either order. Both words may be given on either line. N.B. This is the only way to score 2 marks!		
	KSH /NaSH		1
(e)(iii)	Allow KHS/NaHS or H ₂ S		
	Ignore state symbols		
(f)	Sulfur dioxide/SO ₂ (1)	SO3 CO2	2
	Causes acid rain (1)	Attacks ozone layer CO ₂ causes acid rain	
	Allow effects of acid rain e.g. acid lakes/lake pollution/ crop or forest damage/limestone building damage/named metal which corrodes.		
	[It is quite possible candidates will give details of oxidation of sulfur dioxide to sulfur trioxide and formation of sulfuric acid. Ignore any of this additional information.]		
	Allow triggers asthma		
	Ignore any reference to greenhouse gas/ global warming/any reference to sea pollution or sea creatures		
	Second mark dependent on first mark except allow: If SO ₂ not mentioned then, SO ₃ /H ₂ SO ₄ causes acid rain for 1 mark		

14)			
(a)(i)	An atom/ molecule (or ion)/species/entity	Lone/single/free electron	1
(a)(i)	with an unpaired electron	with unpaired electrons	
		A free radical is an unpaired electron	
Hampor	Ignore any references to homolytic bond fission but penalise a reference to heterolytic bond fission		
- Turno en	x x ••		2
(a)(ii)	[×] N _x [×] : O :		
	Double bond (1)	N single bond O	
	Other electrons correct Dependent on double bond (1)	Reject unpaired electron on oxygen	
	Allow: all dots or all crosses or any combination		
	Wherever it appears in the answer:		3
(b)(i)	Ag/silver (oxidized) 0 to +1/1+ (1)		
	Wherever it appears in the answer:		
	N/Nitrogen = +5/5+ (1)		
	(Element reduced) N/nitrogen to +2/2+ (1)		
	N.B. Some candidates give+2/2+ and +5/5+ which is correct for both nitrogen products		
	Only penalise no positive charges once		
t turno ci			
(b)(ii)	$3Ag(s) + 4HNO_3(aq) \rightarrow NO(g) + 3AgNO_3(aq) + 2H_2O(I)$		2
	3Ag reacting to form NO and $3AgNO_3$ (1) 4HNO ₃ and $2H_2O$ (1)		
	mark independently of (b)(i) No TE from (b)(i)		
(c)(i)	The reaction is endothermic (so goes to remove heat/lower the temperature)	Reaction/equilibrium moves to the right/to oppose change without	1
	Allow ΔH is positive (so goes to remove heat/lower the temperature)	any other statement	
(c)(ii)	The yield is not changed		2
	OR No change		
	OR no effect on the equilibrium (1)		
	as there is no change in the number of (moles of) (gaseous) molecules OR as there is no change in the number of (gaseous) moles/particles (1)	Reference to atoms or ions instead of molecules	
	Allow: cylinder surface acts as catalyst (1) And all sites are filled so pressure has no affect (1)		
	Second mark dependent on first in both cases		
	Ignore any comment on rate whether correct or not		

(c)(iii)	Rate increases because (increase in pressure) means more particles per unit volume/less space for molecules/molecules closer together/greater or increased concentration (1) Comment: A correct statement of why the rate increases is needed with rate increases (somewhere in the answer) for the first mark which increases the frequency / increases the number of collisions/more chance of (successful) collisions (between molecules) (1) Ignore any references to (activation/kinetic energy Mark independently	Reference to atoms or ions instead of molecules	2
* (d)(i)	Jet aeroplanes fly (much) close(r)/near(er) to the ozone (layer)/ stratosphere (so more NO to deplete ozone layer) (1) ALLOW: Jet aeroplanes fly in the ozone (layer)/ stratosphere Some NO from cars reacts (e.g. with O ₂ to give NO ₂) OR NO from planes does not react before it can react with the ozone (1)	Anything else e.g. aeroplanes fly in the ionosphere NO absorbed by plants NO from cars dissociates/ decomposes/break down NO from planes does not dissociate/decompose/break down NO from cars takes a long time to reach the ozone layer NO dissolves	2

(d)(ii)	Please underline Key Points with highlighter,	
	or annotate with tick at Key Point,	
	or annotate with Key Point number from mark scheme wherever mark awarded.	
	This ensures that it is easy to count up marks for this part.	
	$\textbf{KP1 NO}(\bullet) + \textbf{O}_3 \rightarrow (\bullet) \textbf{NO}_2 + \textbf{O}_2 \textbf{(1)}$	
	Comment: Dots are not required for KP1	
	KP2 $\bullet NO_2 + O_3 \rightarrow NO_9 + 2O_2$ (1)	
	Comment: Dots can be on either side of both free radicals	
	ALLOW for KP2: $O_3 \rightarrow O\bullet + O_2$ $\bullet NO_2 + O\bullet \rightarrow NO\bullet + O_2$	
	N.B. Both equations required here	
	The overall equation is:	
	KP3 $2O_3 \rightarrow 3O_2$ (1)	Overall equation with nothing cancelled
	ALLOW: equilibrium arrow	nothing cancelled
	This mark is independent of KP1 and KP2	
	KP4 NO/the free radical (Allow Cl•) is regenerated/a catalyst or wtte (1)	If Cl' is referred to as the radical then neither KP4 nor KP5 can be gained
	KP5 and one molecule can break down large numbers of ozone molecules	nor kro can be gamea
	OR NO (Allow Cl•) continues to react (with ozone)/reaction is continuous	
	OR Mention of chain reaction (1)	If the candidate makes clear that any of these
	Ignore any reference to global warming as an additional problem	processes lead to global warming loses KP4 or 5 but not both.
	way te to statu	I