

Customer Details Contractor Details Wise Energy Efficiency Solutions P.O Box 864101 Plano, TX 75023 214-228-7283 Address Location Main Contact (Residential) Tested by System Area Served on Jan 30, 2017 12:00 AM Home Entire house

Initial Performance Results

2074 Sq. Ft.

Packaged Heat Pump w/Direct Drive F...

Heating System Effective Efficiency

Test ID: T:5036:6998

This percentage represents a snapshot of the current performance of your heating system. Out of 100% of the system's capacity, you're operating at the level displayed. Multiply your utility bill by this percentage to see what value you are getting for your energy dollar.

81% Efficiency

Heating Equipment Effective Efficiency

Your heating equipment is designed by the manufacturer to operate at a specific efficiency level. This percentage represents a snapshot of the current performance of your heating equipment. Out of 100% of the system's design efficiency, you're operating at the level displayed.

92[%] Efficiency

Total Static Pressure

Entering Pressure	Exiting Pressure	Total Static Pressure	Rated Total Static Pressure	Percent of Rated
0.13 in. w.c.	0.38 in. w.c.	0.51 in. w.c.	0.6 in. w.c.	85%

High static pressure can best be understood by comparing it to high blood pressure. Just as high blood pressure causes many negative health consequences and shortens life, high static pressure has the same affect on your heating system. High total static pressure is the most common reason for low airflow.

Air Filter

Entering Pressure	Exiting Pressure	Pressure Drop	Pressure Budget	Percent of Rated
0.13 in. w.c.	0.18 in. w.c.	0.05 in. w.c.	0.12 in. w.c.	42%

Air filters are intended to clean the air in your heating system. However, when air filters are improperly sized or dirty, the efficiency of your system can be reduced by 25%. This percentage represents a snapshot of the current performance of your air filter. Percentages above 100% indicate the air filter is restricting airflow.

Coil

Entering Pressure	Exiting Pressure	Pressure Drop	Pressure Budget	Percent of Rated
0.18 in. w.c.	0.3 in. w.c.	0.12 in. w.c.	0.18 in. w.c.	67%

When a coil is improperly sized or dirty, the efficiency of your system can be reduced up to 30%. This percentage represents a snapshot of the current performance of your coil. Percentages above 100% can indicate the coil is restricting airflow.

Supply Duct System

Supply Duct Pressure	Pressure Budget	Percent of Budget
0.38 in. w.c.	0.3 in. w.c.	127%

Conditioned air is supplied through a duct system into each room of your home. Improperly sized or restricted supply ducts directly affect comfort of individual rooms and heating system efficiency. This percentage represents a snapshot of the current performance of your supply ducts. Percentages above 100% can indicate undersized or restrictive supply ducts.

Return Duct System

Return Duct Pressure	Pressure Budget	Percent of Budget
0.13 in. w.c.	0.3 in. w.c.	43%

Your return duct system brings back the air in your home to be heated again. 90% of homes require return duct modifications to improve comfort and heating system efficiency. This percentage represents a snapshot of the current performance of your return ducts. Percentages above 100% can indicate undersized or restrictive return ducts.

Fan Airflow

Required Fan Airflow	Measured Fan Airflow	Percent of Required Fan Airflow
1200 CFM	1100 CFM	92%

The system's fan moves heated air from the equipment through your duct system. To achieve the comfort and efficiency you expect and deserve, fan airflow must be 90% or higher. Low fan airflow is a leading cause of discomfort, high utility bills, and premature equipment failure. High static pressure is the most common cause of low fan airflow.

