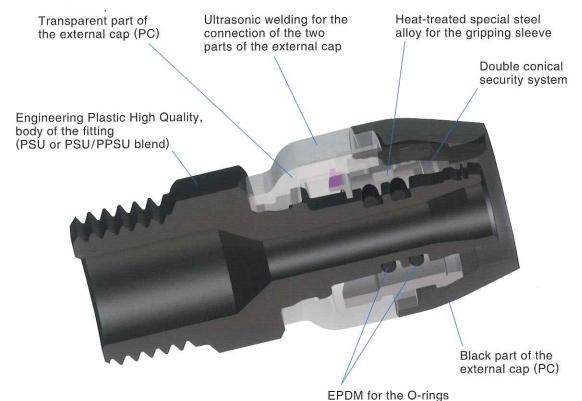


New Generation!

"MECHFit" is the new name for "ixPress"

The innovative system for plastic piping application.

- ★One Push, No tool required.
- ★Less Labor and thus improve productivity with cost savings
- ★Eco Fitting with long term warranty



COCOMECH

Made in Japan

MECHA

The "MECH Fit" system uses the best combination of new generation of metal and plastic materials:

New generation!

We introduce the new "MECHFit" fitting, the only press-fitting without tools, more reliable than traditional press-fittings, that is compatible with Multilayer and PEX pipes.

"MECHFit" connects tightly with both Multilayer and PEX pipes, without typical problems associated with fitting systems that require tools.

The new "MECHFit" fitting gives 25 years guarantee and the snap-on solution makes connection incredibly fast without any tool!

An astonishingly simple and reliable solution than traditional press-fittings.

CLAMP RING METHOD pat.

Simple and Reliable!

Can you believe in such an apparently simple fitting system that requires neither tool nor elaborate training for the installers?

Yes you would. The system is so simple enough that any person could operate the installation.

High Productivity!

This apparent simplicity is an engineering innovation by COCOMECH, working with the most stringent Japanese customers looking for quality solution.

We are encouraged by the success of these fittings in the Japanese market where customers want leak-free, tight union and pipe fittings. Till date, more than 50 million fittings have been sold.

The new "MECHFit" is an evolution of toolfree fittings used in Japan for many years, made by COCOMECH under thorough research and engineering innovation.

The large offerings from the new "MECHFit" fitting system for use in all kinds of sanitary, heating and chill water (FCU system) installations give you best opportunity for cost down and improvement of productivity.

How the "MECHFit" Works?

The exclusive technology of the "MECHFit" is based on its clamp ring feature, that grips the pipe, making it the only press fitting without tools.

The patented "MECHFit" clamp ring is made from a heat-treated special spring steel. This unrivaled patented technology comes from the Japanese automobile industry.

After inserting the pipe into the fitting, the small red Jumping Pin pushed out from the ring and the clamp ring starts compressing the pipe from the outside, absorbing the dimensional changes that occur in the pipe.

> One Push, No tool required.

COCOMECH PEX-AL-PEX 32 X 3.0 ISO 21003

COCOMECH PEX-AL-PEX 25 X

The key feature of the "MECHFit" clamp ring is that its spring effect guarantees a long-term water tightness connection. For the constant pressing force applying to the pipe, any possible fluctuation in the pipe dimension could be absorbed. All the other tool-free fittings, like the push-fit types, are called old generation and they are struggling how to absorb the dimensional fluctuation of the pipe.

Actually the pipes never have the nominal dimensions, either because of the manufacturing tolerance, the standards permit tolerance in the external diameter and in the wall thickness of the pipe, or because of the dimensional changes that the pipe suffers when functioning connected to the fitting, the well-known creep effect.

MECHFit Product Introduction

MECHEL LINE UP

Super Engineering Plastic Model

Elbow

Code No.	Size	pcs/BOX
0005	16	108
0006	20	72
0010	25	32
0012	32	20

Equal a	na Reaucing	rees
Code No	. Size	pcs/BOX
0005	16	64
0006	20	40
0010	25	24
0012	32	10
1605	20×20×16	44
1705	20×16×16	56
1806	20×16×20	44
1906	25×20×20	30
1908	25×16×25	34
1910	25×20×25	32
2006	$32 \times 20 \times 32$	14
* 2007	32×25×25	42
2009	32×25×32	10

Fig.#232

Equal	and	Reducing	Union
O CONTRACTOR AND ADDRESS OF	Trans.	O CONTROL OF THE PARTY OF THE P	TO OV

Code No.	Size	pcs/BOX
0005	16	136
0006	20	70
0010	25	48
0012	32	30
0605	20×16	70
1005	25×16	48
1006	25×20	48
1210	32×25	30

with Male Thread

Code No.	Size	pcs/BOX
0504	16×1/2	192
0604	$20 \times 1/2$	112
0606	$20 \times 3/4$	112
1006	$25 \times 3/4$	48

with Female Thread

Code No.	Size	pcs/BOX
0504	16×1/2	120
0604	$20 \times 1/2$	120
1006	$25 \times 3/4$	76

Fig.#235

Elbow with Fixing Base (Short)

Code No.	Size	pcs/BOX
0504	16×1/2	68
0604	$20 \times 1/2$	68

Fig.#237

Teminal Elbow

Code No.	Size	pcs/BOX
0504	16×1/2	114
0604	$20 \times 1/2$	102
1006	$25 \times 3/4$	48

Terminal Elbow with Threaded Male End

Title Tilloudou de Itidae		
Code No.	Size	pcs/BOX
0504	16×1/2	108

Code No.	Size	pcs/BOX
0010	16×20×25	40
0012	$32 \times 32 \times 32$	10

Brass Model

Fig.#251 **Equal and Reducing Tees**

Code No.	Size	pcs/BOX
*1211	32×32×25	10
*2011	25×25×20	24

1205 32×16 30

with Male Thread

Code No.	Size	pcs/BOX
0504	16×1/2	192
0604	20×1/2	112
0606	$20 \times 3/4$	112
1006	$25 \times 3/4$	48
1010	25×1	48
1210	32×1	30
1212	$32 \times 1 - 1/4$	30

Fig.#254 Fixed Fitting with Female Thread

Code No.	Size	pcs/BOX
0504	16×1/2	120
0604	$20 \times 1/2$	120
0606	$20 \times 3/4$	120
1006	$25 \times 3/4$	76
1010	25×1	70
1210	32×1	30

Fig.#255 Elbow with **Short Fixing Base**

Code No.	Size	pcs/BOX		
0504	16×1/2	68		
0604	$20 \times 1/2$	68		
0606	$20 \times 3/4$	68		

Fig.#257

Teminal Elbow with Threaded Female End

Code No.	Size	pcs/BOX
0504	$16 \times 1/2$	114
0604	$20 \times 1/2$	102
0606	$20 \times 3/4$	68
1006	$25 \times 3/4$	48
1010	25×1	60
1210	32×1	28

Tee with Female Threaded End

Code No.	Size	pcs/BOX		
0504	16×1/2	60		
0604	$20 \times 1/2$	44		
0606	$20 \times 3/4$	44		

Fig.#263

Code No.	Size	pcs/BOX		
0005	16	192		
0006	20	192		

Code No. 1006 25×3/4

Fig.#277 **Teminal** Elbow with Threaded Male End

Code No.	Size	pcs/BOX		
0504	$16 \times 1/2$	108		
0604	$20 \times 1/2$	84		
0606	$20 \times 3/4$	84		
1006	25×3/4	40		

Copper Adapter Long

Code No.	Size	pcs/BOX		
0515	16×CU15	40		

			- TO C.	0.00
Fig.#28	31	Code No.	Size	pcs/BOX
Hub		0001	20-20-16-16	12
Heade	er	0002	20-16-16-16	12
		0003	20-16-16	15

Fig.#282	Code No.	Size	pcs/BOX
Terminal	0001	20-20-16	15
Header	0002	20-16-16	18
	0003	20-16	24

NEWLY ADDED COCOMECH Brand pipes!!!

SYSTEM PROPOSAL of WORLD-LEADING PIPES + MOST ADVANCED FITTING

PEX pipe and PEX/AI/PEX pipe which meet the dimension and performance requirement of ISO15875 (PEX) and ISO21003 (PEX/AL/PEX) with MECHFit will make the Plumbing work extremely easy, simple and reliable!!

These pipes are now considered as the best piping material for hot and cold water supply system in the world by the following properties.

- Flexibility / Coiled-Light Weight of the pipe improve the workability in all process of the work.
 Delivery, Handling, and contributing to less joint which reduces the
- Excellent Corrosion Resistance, Chlorine Resistance, Electrical Resistance, Pipe-Creep Resistance, etc.
- Coverage of wide temperature and pressure range in the use.
- Absolute harmless from any toxic or substance & promotes healthier water.

Pipe	dimensiona	al standard
------	------------	-------------

Size	O.D.	I.D.	Thickness
D16	16.0	12.0	2.0
D20	20.0	16.0	2.0
D25	25.0	20.0	2.5
D32	32.0	26.0	3.0
D40	40.0	33.0	3.5

Technical Properties of Pipes		16×2		20×2		25×2.5		32×3	
Toolinida Froperties of Fipes			PEX-AL-PEX	PEX	PEX-AL-PEX	PEX	PEX-AL-PEX	PEX	PEX-AL-PEX
Outside pipe diameter	mm		16		20		25		32
Thickness pipe	mm		2		2		2.5		3
Thickness of aluminum layer	mm	-	0.2		0.2	_	0.3	-	0.4
Weight of 1m pipe	kg/m	0.089	0.099	0.115	0.127	0.174	0.206	0.275	0.323
Internal volume of 1m pipe I/m		0.	113	0.201		0	.314	0.531	
Heat conduction coefficient	Watt/m*K	0.38	0.4	0.38	0.4	0.38	0.4	0.38	0.4
Coefficient of linear expansion	mm/m*K	0.14	0.025	0.14	0.025	0.14	0.025	0.14	0.025
Roughness of internal surface	mm	0.0004 0.0004		0.0004		0.0004			
Oxygen diffusion for antioxygen barrier tubes	mg/l*d	< 0.1	-	< 0.1		< 0.1	-	<0.1	-
Maximum punctual temperature	င	1	10	1	110		110	1	110
Maximum operating temperature	°C	9	95		95		95		95
Minimum temperature of tube manipulation	℃	=	-40	-	-40		-40	8	-40
Minimum bending radius without internal spring	mm	160	80	200	100	250	125	320	160
Minimum bending radius with the use of internal s	spring mm	80	64	100	80	125	100	1	60
Gel content	%	>	65	>	>65	>	>65	>	>65

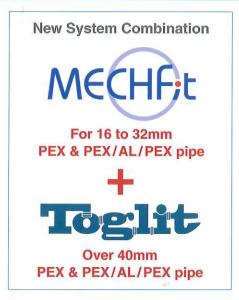
^{*} Based on pipe manufacturer's specifications

risk of troubles etc.

NEWLY ADDED LINEUP for Larger diameter pipes!!!

Togit for Over 40mm pipes

A unique combination system with MECHFit for 16-32mm pipes & Toglit for over 40mm pipe can enhance the Workability and High Productivity that directly link to


TIME-SAVING and COST REDUCTION.

Expand the Coverage of piping by COCOMECH's High Quality Fittings!!

Toglit Product Introduction

MECHA

Less Labor and thus improve productivity with cost savings

WHAT REGULATIONS HAVE LED THE DESIGN AND TESTING OF THE NEW MECHFit?

The design of the new "MECHFit" has met a standard of European regulation EN 1254-Part 3a regarding the thickness to be used in the nipple and the inside diameters, so that it guarantees the minimum flow of water required by the regulations.

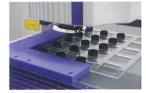
The new "MECHFit" satisfies requirements of regulations "ISO 15875" (PEX pipes) and "ISO 21003" (PEX-AL-PEX pipes) and complies with all the required tests.

3-axis Assemble Machine

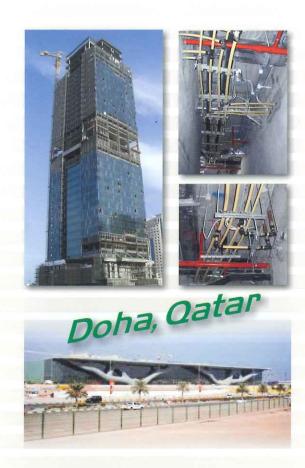
Ultrasonic welding of the nut

Injection Mold

Polysulfone injection molding


3D Measuring Contracer

Fatigue Test Machine


Thermal cycle Test Machine



Dimentional control of the nut

			Pressure		Tempe-		T-1 D-1	In all manages and	Results
			Multi	PEX	rature	Hour Cycle	Test Procedure	Judgment	Hesuits
	ISO 15875 Part 5	Internal Pressure	12.5 Bar	7.58 Bar	95°C	1,000Hr	Continuous pressurized test for 1,000Hr at 95℃	No-Leakage	Pass
National Standard		Bending	33.9 Bar	20.4 Bar	20℃	1Hr Hold	Bending Radius: 5-time of ND	No-Leakage Find Burst	Pass
		Pull-Out			23 & 90℃	1Hr Hold	23°C=1.5F, 90°C=F	No-separation	Pass
		Thermal Cycle	10 Bar	8 Bar	23 & 95℃	5,000 Cycle	95°C×15Min→20°C×15Min Cycling test for 5,000 Cycle	No-Leakage	Pass
		Pressure Cycle	15 Bar & 0.5 Bar	9 Bar & 0.5 Bar	23℃	10,000 Cycle	15Bar→0.5Bar Pulse pressure 30cycle/min.	No-Leakage	Pass
		Vacuum	-0.8 Bar Vacuum	-0.8 Bar Vacuum	23℃	1Hr Hold	Vacuum -0.8Bar 1Hr hold	Within 0.05Bar	Pass
	ASTM F877 F2262	Thermo- Cycle	0.69 MPa	0.69 MPa	16℃ Water 82℃ Water	1,000 Cycle	82°CWater Immersion:10Min. 16°CWater Immersion:3Min. (ASTM:Min 2-Minutes)	No-Leakage Find Burst	Pass
	High Ter Pressure	mp. e Cycle Test	10 Bar & 3 Bar	10 Bar & 3 Bar	95℃	1,000,000 Cycle	10Bar→3Bar Pulse pressure 30cycle/min.	No-Leakage Find Burst	Pass
Higashio's Excessive Test	Pull Pulsation Fatigue Cycle		Equivalent of internal pressure 3 MPa		23°C	1,000,000 Cycle	Tensile fatigue force of equivalent internal pressure 3 MPa	No-Leakage No-deformation	Pass
	Water Pressure Test at High Temp.		Injection bursting internal water pressure		95°C	-	Increased water pressure until pipe bursting, after the specimen curing at 95°C for 8h	No pull out defect at connecting points	Pass
	Slant Cut Pipe Insertion						Check the disposition of O-ring under the 3mm slant cut pipe	No-disposition of O-ring	Pass
	Slant Insertion of Pipe						Check the disposition of O-ring under practical slant insertion	No-disposition of O-ring	Pass

PSB Singapore

COMPANY PROFILE

Management Policy

"One for All, and All for One"

COCOMECH respects the long established Collaboration Spirit, and aims to be an enterprise with the significance of existence which is appreciated by the employees, customers and local communities.

1. Growth and Healthy Management of the company

No Future without Growth. We aim for the compatibility of Growth and Health (Soundness).

We work through Bigger share, Product development, Technical innovation, and Global evolution recognizing the corporate environment.

2. Providing Products consistent with the Era

We inject management resources for offering and growing "Only-One Product" with considering changes of market and user's intention.

3. Compliance with Agreements and **Promises**

We aim for the trustful company with implementing faithfully the Agreements and Promises.

We observe the Rules, Standards, Directions and Plans.

We construct and uphold the structure to secure the Quality and Due date.

4. Management with Humanity

We provide Safety work, Allocation of achievement, Management information and Education opportunity to the employees. We request activities that are conductive to Increase the sales, Securing profit, Technology accumulation, and Personal growth to the employees.

History capital (K¥)

350000

300000

250000

200000

150000

100000

0 100 t Co 2 17

A

JOA

ISO14001 Registration

No. JQA-EM 5370

2012 Mr. Yoshinori Inoue assumed the presidency Mr. Mitsuaki Higashio assumed the office of Chairman 2011 Launched MECHFit (Clamp Ring Fitting) Launched Conic Joint (Conical Method Fitting)

2010 Start EU contract on RTM (Clamp Ring Fitting) Launched O'zzone Boy CZ 2009 Launched Pile-Fit & ANP fittings

Launched Correct Flare nut 2007 Start EU contract on ixPress, Clamp Ring system Launched Planet Socket Fitting for floor heating PEX piping

2008 Launched plastic header manifold system

Launched Metagrip fittings for Multilayer pipe Launched Pequit fittings for PEX pipe

2006 Launched ABACUS-CW fitting for refrigerant copper pipe Launched SNAP-E joint fittings for PEX plastic pipe

Registered to Quality Management System ISO14001 at Japan

2004 Launched ABACUS-CX fittings for refrigerant copper pipe 2003 Launched OneLoch Fittings for circulated water heating Launched ABACUS-C fittings for refrigerant copper pipe

Launched Metatch fittings for Multilayer plastic pipe

2001 Launched Snap Joint fittings & EsloKatchit fittings for plastic pipe Launched ABACUS fittings for stainless steel pipe Business allance formed with TOYO Valve Co., Ltd.

1998 Registered to Quality Management System ISO9001 at Japan Quality Assurance Organization 1995 Awarded TPM Excellent Prize First Category from Japan Plant Maintanance Association

unched high temperature resistant uPVC lined

1989 Company name changed to Higashio Mech Co., Ltd. 1986 Launched uPVC lined fittings

1984 Launched exterior surface plastic covered fittings TPM Excellence Prize First Category

1980 Mr. Mitsuaki Higashio (Incumbent) elected to the representative director and president 1977 Lanuched heat resistant plastic coated fittings Started OEM tie-up with Sekisui Chemical Co., Ltd

1970 Launched epoxy coated fittings

1968 Launched mechanical type fittings for steel pipe

50000 1952 Marking of Japanese Industrial Standard JIS B 2301 was approved, production volume increased

ISO9001 Registration No. JQA-2447

ISO 9001

1950 Higashio Fittings Co., Ltd. was founded Started manufaccturing malleable cast iron fittings

'10 '60 '65 '70 '75 '80 '90 '05 '15 (year)

Outline

Company Name HIGASHIO MECH CO.,LTD. / COCOMECH

S / //// Trade Mark

8-22 Kikusuicho, Kawachinagano 586-0012 Address

Osaka, Japan

Tel:+81(0)721 53 2221 Fax:+81(0)721 53 2279

Established March-1950

Employee

170

4.6 million US\$ (Capital reserve 3.6 million) Capital

70 million US\$ (2012 Turnover) **Annual Sales**

Industrial Property Rights

	Applied	Published
Patent	Japan 98, Overseas 40	6
Utility Model	189	15
Mark	5	4
Design	33	1
Overseas Application	10	7

Main Products

Malleable Cast Iron Pipe Fittings

Black, White, Coat, Rust-Proof Lined fittings

Plastic (Crosslinked PE, PB) Pipe Fittings

Katchit fittings, Snap Joint fittings

Clamp Ring Fittings

Light Gauge Stainless Steel Pipe Fittings ABACUS fittings

Refregerant Copper Pipe Fittings

O'zzone Boy CZ

Plastic Multi-Layer Pipe Fittings

Metatchi fittings C.C.Box Cable Duct Steel Pipe Fittings

EasyTreat (S type, W type)

Plastic (Crosslinked PE, Multilayer) Pipe Fittings MECHFit, Carrit, Toglit

Ground Foundation Improvement System Fittings

US\$1.00=JP¥95.00-

Information in this document is subject to change without notice.

COCOMECH HIGASHIO MECH CO., LTD.

http://www.mech.co.jp/

http://www.youtube.com/watch?v=07rl3lyu41Y

