Soil Resistivity Worksheet

Location	Spacing (Test Depth)							
	1.52 m(5 ft.)	3 m(10 ft.)	6.1 m(20 ft.)	9.1 m(30 ft.)	12.2 m(40 ft.)			
	Meter Readings	(steps 2 throu	ugh 5)					
1 of 5								
2 of 5								
3 of 5								
4 of 5								
5 of 5								
s	oil Resistivity	Calculations (s	tep 10)					
ho = 191.5 × A × R ho = soil resistivity in $ ho$ -cm A = Distance between test rods (in feet) R = Resistance obtained from tester	= soil resistivity in Ω-cm = Distance between test rods (in feet) OR			ρ = 628 × A × R ρ = soil resistivity in Ω -cm A = Distance between test rods (in metres) R = Resistance obtained from tester				
1 of 5	ρ=	ρ=	ρ=	ρ=	ρα			
2 of 5	ρα	ρ=	ρ=	ρα	ρω			
3 of 5	ρ=	ρm	ρm	ρ=	ρο			
4 of 5	ρ=	ρ=	ρα	ρ=	ρα			
5 of 5	ρ=	ρω	p=	ρ=	ρm			
Test completed by:	Notes:							
Date:								
Client / Project:								
Site Location/ID:								
Ground Resistance Tester Model: S/N: Calibration date: Soil Description:								
Ambient Conditions Temperature: Present conditions (dry, rain, snow): Date of last precipitation:								

			_
CITE	= NI	ΛМ	┏.
SITE	_ 17/	MIVI	L .

4 POINT WENNER METHOD TESTING LAYOUT

- Test Direction 1
- Test Direction 2
- Test Direction 3
- Test Direction 4
- Test Direction 5

RGANIZATION NAMI SITE NAME

D BY: Ted Sumners
BY: Ted Sumners

APPROVED BY

E1 - 1 SHEET 1 of 4 SITE NAME:

SOIL RESISTIVITY NOMOGRAPH

Single Electrode Ground Resistance (R)

___Ω

Value From Worksheet p= (Ω-cm)

Ω-cm

Depth of Grounding Electrode

feet

Typical 10 ft Ground Rod in 30-in. Deep Trench = 12.5 ft.

Grounding Electrode Diameter

__- Inches

ORGANIZATION NAME SITE NAME State

PROJECT NO:						
DESIGN OFFICE:						
DESIGNED BY:	Ted Sumners					
DRAWN BY:	DRAWN BY: Ted Sumners					
CHK'D BY:						
	APPROVED BY:					
DATE:	03/07/2020	MARK	DESCRIPTION	DATE	APPROVED	

E1 - 2 SHEET 2 OF 4

SITE NAME

GROUNDING ELECTRODE SYSTEM RESISTANCE

Single Rod Ground Resistance (from Nomograph) = (R) 37Ω

Depth of Ground Rods (from Nomograph) = (D) 20 ft.

Diameter of Ground Rods (from Nomograph) <u>3/4</u> in.

Ground Rod Qty (X) 8 ea.

Ground Rod Length < Rod Length > = (L) 10 ft.

Distance Between Rods (d) 20 ft.

Ground Rod Spacing (S) 2L

Combined Resistance Percentage = (Y)

Y = The point on the graph where X intersects L (Horizontal Line)

Combined Resistance of Proposed Grounding Electrode System = CR

 $(CR = R \times Y)$

 $37 \Omega \times 0.17 = 6.29 \Omega$

Instructions:

- 1) Draw a vertical line on Number of Rods (X) in graph.
- 2) Determine diagonal line for **Rod Spacing** (S) based on distance between rods by dividing the Distance between rods (d) by the rod length (L) <S = (d / L)> (1L) 1 rod length, (2L) 2 rod lengths (3L) 3 rod lengths (4L) 4 rod lengths
- 3) At the intersection of the vertical **Number of Rods (X)** line and the diagonal **Rod Spacing (S)** line, draw a horizontal line to the **Combined Resistance (CR)** axis at left.

Note: The point where the horizontal line crosses the Combined Resistance (R) axis is the Percentage (Y) to use in the calculations to determine the Combined Resistance (CR) resistance of the grounding electrode system.

4) Multiply the Single Rod Ground Resistance (R) times the Combined Resistance Percentage (Y) to obtain the Combined Resistance (CR) of the grounding electrode system.

Technical Evaluation and Development Services, LLC (T.E.D.S) isumners@tedswireless.cor

ORGANIZATION NAME SITE NAME State

OJECT NO:
SIGN OFFICE:
SIGNED BY: Ted Summers
AWN BY: Ted Summers

SHEET 3 OF 4

SITE NAME GROUNDING ELECTRODE SYSTEM DESIGN WITH RADIALS

Technical Evaluation and Development Services, LLC (T.E.D.S) tsumners@tedswireless.com (303) 903-6347

ORGANIZATION NAME
SITE NAME

PROJECT NO:
DESIGN OFFICE:
DESIGNED BY: Ted Sumners
CHYD BY:

E3

SHEET 4 OF 4

NEWPORT RANGER STATION

SOIL RESISTIVITY NOMOGRAPH

E1 - 2 SHEET 2 of 4

NEWPORT RANGER STATION

GROUNDING ELECTRODE SYSTEM RESISTANCE

Combined Resistance Percentage = (Y)
Y = The point on the graph where X intersects L (Horizontal Line)

Combined Resistance of Proposed Grounding Electrode System = CR

 $(CR = R \times Y)$

 $37 \Omega \times 0.17 = 6.29 \Omega$

Instructions:

- 1) Draw a vertical line on Number of Rods (X) in graph.
- 2) Determine diagonal line for **Rod Spacing** (S) based on distance between rods by dividing the Distance between rods (d) by the rod length (L) <S = (d / L)> (1L) 1 rod length, (2L) 2 rod lengths (3L) 3 rod lengths (4L) 4 rod lengths
- At the intersection of the vertical Number of Rods (X) line and the diagonal Rod Spacing (S) line, draw a horizontal line to the Combined Resistance (CR) axis at left.

Note: The point where the horizontal line crosses the Combined Resistance (R) axis is the Percentage (Y) to use in the calculations to determine the Combined Resistance (CR) resistance of the grounding electrode system.

4) Multiply the Single Rod Ground Resistance (R) times the Combined Resistance Percentage (Y) to obtain the Combined Resistance (CR) of the grounding electrode system.

Technical Evaluation and evelopment Services, LLC (T.E.D.S) unners@tedswireless.com

ORGANIZATION NAME SITE NAME State

PROJECT NO:
DESIGN OFFICE:
DESIGNED BY: Ted Summers
DRAWN BY: Ted Summers
CHK D BY:

SHEET 3 of 4

Fall-of-Potential Ground Resistance Field Report

Fox Mountain Radio Facility Name:

> Dry, 52 Degrees Conditions:

Facility Type: Remote Radio Facility

Resistance Requirement: 10 or 25 Ohms

Test Company: Technical Evaluation and Development Services (T.E.D.S. LLC)

Tester Name: Ted Sumners **Test Instrument Manufacterer:** Extech

Test Instrument Model: GRT300 Calibration Date: 2/1/2019

Serial Number: _____1804667

GROUND ELECTRODE UNDER TEST

AMMETER (I)

VOLTMETER (E)

AUXILIARY POTENTIAL-ELECTRODE

(I)

AUXILIARY CURRENT ELECTRODE

EARTH

Test Configuration: Z- Probe set 60 ft. from grounding system

Test Procedure: Slope Method (Intersecting Curves)

Y-Probe moved in 20% increments to obtain values R₁, R₂ and R₃

Calculations made to obtain True Resistance Distance

TESTING RESULTS – PASSED or Failed at 27 Ohms

μ	D _P /D _c	μ	D _P /D _c		μ	D _P /D _c
0.40	0.643	0.83	0.575		1.26	0.477
0.41	0.642	0.84	0.573	1	1.27	0.474
0.42	0.640	0.85	0.571	1	1.28	0.471
0.43	0.639	0.86	0.569	1	1.29	0.468
0.44	0.637	0.87	0.567	1	1.30	0.465
0.45	0.636	0.88	0.566	1	1.31	0.462
0.46	0.635	0.89	0.564		1.32	0.458
0.47	0.633	0.90	0.562		1.33	0.455
0.48	0.632	0.91	0.560		1.34	0.452
0.49	0.630	0.92	0.558		1.35	0.448
0.50	0.629	0.93	0.556		1.36	0.445
0.51	0.627	0.94	0.554		1.37	0.441
0.52	0.626	0.95	0.552		1.38	0.438
0.53	0.624	0.96	0.550		1.39	0.434
0.54	0.623	0.97	0.548		1.40	0.431
0.55	0.621	0.98	0.546		1.41	0.427
0.56	0.620	0.99	0.544		1.42	0.423
0.57	0.618	1.00	0.542		1.43	0.418
0.58	0.617	1.01	0.539		1.44	0.414
0.59	0.615	1.02	0.537		1.45	0.410
0.60	0.614	1.03	0.535		1.46	0.406
0.61	0.612	1.04	0.533		1.47	0.401
0.62	0.610	1.05	0.531		1.48	0.397
0.63	0.609	1.06	0.528		1.49	0.393
0.64	0.607	1.07	0.526		1.50	0.389
0.65	0.606	1.08	0.524		1.51	0.384
0.66	0.604	1.09	0.522		1.52	0.379
0.67	0.602	1.10	0.519		1.53	0.374
0.68	0.601	1.11	0.517		1.54	0.369
0.69	0.599	1.12	0.514		1.55	0.364
0.70	0.597	1.13	0.512		1.56	0.358
0.71	0.596	1.14	0.509		1.57	0.352
0.72	0.594	1.15	0.507		1.58	0.347
0.73	0.592	1.16	0.504		1.59	0.341
0.74	0.591	1.17	0.502		1.60	0.338
0.75	0.589	1.18	0.499		1.61	0.335
0.76	0.587	1.19	0.497		1.62	0.331
0.77	0.585	1.20	0.494		1.63	0.328
0.78	0.584	1.21	0.491		1.64	0.325
0.79	0.582	1.22	0.488		1.65	0.322
0.80	0.580	1.23	0.486		1.66	0.319
0.81	0.579	1.24	0.483		1.67	0.316
0.82	0.577	1.25	0.480		1.68	0.313

Reading	Distance to Y Probe (ft.)	Measurment Ohms	R3 - R2 = u R2 - R1	D _P /D _c from Table	Distance to Z Probe (ft.) (DZ)	True Resistance Distance (ft.) = (u x DZ)	True Resistance (Ohms)
R ₁	30	27					
R ₂	20	20.3	0.58	0.617	50	31	27 Ohms
R ₃	10	16.4					

I certify the results depicted on this form regarding grounding system testing and resulting calculations to be accurate and true.

Name: Ted Sumners

Signature:

Date: 09/15/2019

Technical Evaluation and Development Services, LLC (T.E.D.S) tsumners@tedswireless.com - (303) 903-6347