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Abstract
Many viruses require reduced sulfhydryl groups for cell fu-
sion and entry. Corona viruses, including SARS-CoV-2 (the 
cause of the condition now named coronavirus disease 
2019 or COVID-19), are rich in cysteine, which residues 
must be intact for viral activity. Sulfhydryl groups are vulner-
able to oxidation. Ozone therapy, a very inexpensive and 
safe modality may safely exploit this critical vulnerability in 
many viruses, inclusive of SARS-CoV-2.
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CoMMentaRy

Check for
updates

The purpose of this manuscript is to bring attention to 
ozone therapy as a novel treatment for “conventional-
ly” untreatable viral illnesses.

Ozone Science
Ozone is triatomic oxygen (O3), the most powerful 

oxidant found in nature. Our bodies actually produce 
ozone, observed in a stunning discovery at Scripps In-
stitute [2]. Ozone therapy (OT) utilizes 1-5% ozone in 
95-99% oxygen as a gas (~10-70 mcg ozone per cc gas). 
This mixture is called “medical ozone”. Ozone therapy 
has been in use since the late 1800s, but is little known. 
It is not patentable for profit; thus, corporate interests 
have no incentive to develop and disseminate it. Con-
sequently, few formal studies have been performed. 
Yet many scientific articles have been published, con-
ducted in Germany, Russia, Italy, Cuba and elsewhere, 
demonstrating powerful biochemical effects. Bocci and 
Menendez both published books summarizing their re-
search groups published basic science findings [3,4].

Briefly, OT improves blood rheology, oxygen deliv-
ery, oxygen utilization, endothelial nitric oxide produc-
tion, and immune modulation via cytokine induction. 
Bocci privately regarded OT ascreating “super-gifted 
red cells” with increased oxygen delivery via increased 
2,3 diglycerophosphate. He thought of OT as the “ideal 
cytokine inducer”. His work found ozone to induce gam-
ma interferon [5], known to be as essential part of the 
body’s antiviral defense [6].

When blood is treated with ozone, it instantly re-
acts with electron-rich double bonds of lipids and oth-

Background
“Novel coronavirus” SARS-CoV-2 is rapidly spreading 

worldwide with a significant mortality rate. There is real 
threat of a global pandemic of an easily transmissible 
disease, with a significant morbidity and mortality, from 
this epidemic if not another in the future. According to 
the World health Organization, SARS-CoV-2 carries at 
least a 14-day incubation period [1]. Infected people 
will escape simple detection by temperature, permitting 
rapid global transmission. China placed tens of millions 
of people on lockdown to respond to the outbreak.

Mainstream medicine has little in its arsenal for vi-
ral disease, and its therapies for bacterial infections are 
waning as well. Coronaviruses have abundant cysteine 
in their spike proteins that may be easily and safely 
exploitable with ozone (or other oxidation) therapy. 
Cysteine residues are also abundant in viral membrane 
proteins and must be “conserved” for viral cell entry. 
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er molecules. This creates longer lasting downstream 
weaker oxidant metabolites called ozonides: Reactive 
oxygen species and lipid oxidation products, inclusive 
of peroxides, peroxyls, alkenes, alkanes, these mole-
cules appear to act as messengers for the key biochemi-
cal and immune modulating effects of the therapy. The 
Menendez Cuban group found that preconditioning 
animals with ozone is as powerful as dexamethasone 
in reducing tumor necrosis factor α in subsequent en-
dotoxic shock [7]. This could be exceptionally valuable 
as a means of safely suppressing “cytokine storm”, 
often the cause of final lethality from pulmonary viral 
infection [8], including coronavirus [9,10].

Elvis and Etka summarized ozone therapy: “..effects 
are proven, consistent, safe and with minimal and pre-
ventable side effects. Medical O3 is used to disinfect and 
treat disease. Mechanism of actions is by inactivation of 
bacteria, viruses, fungi, yeast and protozoa, stimulation 
of oxygen metabolism, activation of the immune system 
[11].”

Viral Vulnerability
In his recent review article [12], Rowen states: “OT 

may be ideal therapy for viruses. In order to success-
fully penetrate cells, many viruses require membrane 
glycoproteins to be in the reduced R-S-H form rather 
than oxidized (R-S-S-R)” Ozone inactivates many virus-
es directly. Norwalk, collophage MS3, hepatitis A, and 
poliovirus are dependent on reduced sulfhydryl groups 
[13-18]. “Reflecting on the reduction of “critical” disul-
fide bonds for vaccinia virus’ cellular entry, Ryser found 
that protein disulfide isomerase inhibitors limited HIV-1 
entry into T cells [19].”

Mirazmi, et al. found cytomegalovirus loses infec-
tivity if its thiol groups are oxidized [20]. Re-reducing 
the oxidized thiols (by dithiothreitol) enabled the virus 
to regain 65% infectivity. HIV is dependent on reduced 
sulfhydryl groups for infectivity [21], as also reported 
for Ebola virus to enter cells [22].

Like Ebola, corona virus structure also has regions 
rich in cysteine [23], inclusive of the spike and envelope 
proteins [24]. Cysteine is an amino acid carrying a sulf-
hydryl (R-S-H) residue, also called a “thiol” group. Alter-
ations of these residues have been found to “cripple” 
virus growth properties at least 2 logs lower than wild 
type virus. Active cysteine is essential for membrane fu-
sion [25]. This is consistent with the sulfhydryl non-co-
rona viral research discussed above. The redox status 
(reduced cysteine residues vs. oxidized residues) can 
“switch” protein activity to “on” or “off” [26]. Thiol S-H 
bonds are far weaker than the O-H bonds in alcohols, 
and vulnerable to oxygen based oxidants, which can ox-
idize the sulfur to sulfonic acid residues (R-SO3-H). Virus-
es have a limited “shelf life” on surfaces. Coronaviruses 
reportedly retain infectivity up to 9 days on surfaces, 
temperature dependent, and are quickly inactivated by 

oxidizing disinfectants [27]. Atmospheric oxygen may 
slowly degrade thiol groups, and more quickly at higher 
temperatures.

Cysteine is highly vulnerable to oxidation to disulfide 
(R-S-S-R) or other residues; which effect will cripple its 
biochemical activity in proteins, altering their three-di-
mensional structure. Enzymes may become inactive 
when reduced thiols are oxidized. Ozone itself will ox-
idize SH groups instantly on contact.

Knowing ozone extinguishes itself virtually instant-
ly on contact with blood creating ozonides, one might 
then ask, “How will ozone reach deep reservoirs of vi-
rus?” Ozonides are oxidants in their own right. They 
have a prolonged life according to the works of Bocci 
and Menendez, providing ongoing protection after a 
single treatment. These molecules are less reactive 
than ozone, but still possess oxidizing power and serve 
as biochemical signaling molecules modulating the im-
mune system. Creating a more “oxidized” environment, 
ozone therapy may assist the body in inactivating thi-
ols in viruses in blood and tissues. (Our immune system 
is well known to create reactive oxidant species, such 
as hydrogen peroxide, superoxide, nitric oxide, hypo-
chlorous acid, etc. and even ozone itself as mentioned 
previously to defend against infection). Viruses, unlike 
“living” cells, have no mechanism of self-repair.

Ozone’s ability to inactivate cysteine dependent pro-
teins was reported as an ozonide attack on cysteine-de-
pendent papain, believed to inactivate the enzyme by 
oxidizing the active sulfhydryl group to sulfenate or 
sulfenic acid [28]. Furthermore, coronavirus spike pro-
tein is also rich in tryptophan [29], which is second to 
cysteine in vulnerability to oxidation [30].

Based on the foregoing Rowen surmised that ozone 
therapy might be the ideal treatment for deadly Ebola. 
On the invitation of the President of Sierra Leone, we 
traveled to the country in October, 2014 to bring ozone 
therapy for the epidemic. Our team treated 5 cases of 
Ebola, two in physicians, one in the female consort of 
a physician who died of the disease, and two exposed 
aides. All survived without any deterioration of symp-
toms after ozone therapy began, nor did they have any 
post Ebola complications. The epidemic claimed 60% 
of its victims and scarred survivors with a 70+% rate of 
complications [31]. The key method was directly admin-
istering oxygen/ozone gas intravenously (DIV), 20 cc 
at 55 mcg of ozone/cc of gas over a few minutes. The 
material cost is negligible, and leaves virtually no med-
ical waste - only a small 27 g butterfly needle and its 
attached short tubing.

The treatment requires an ozone generator, medi-
cal grade compressed oxygen, a syringe (and a butter-
fly needle for DIV method). The generator can be run 
off a car battery in remote areas. Ozone therapy is 
exceptionally safe, with a reported complication rate 
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reported significant or lasting untoward effects due to 
the therapy [36]. We have observed “Herxheimer” re-
actions, presumably due to “die-off” of infecting organ-
isms.

Few in our field are not familiar with the great 1918 
influenza pandemic. However, few are also aware that 
inexpensive intravenous hydrogen peroxide was uti-
lized by British physician Oliver, who halved the death 
rate from influenza pneumonia in India [37]. Similarly, 
another oxidation therapy, ultraviolet blood irradiation 
therapy, was successfully used to cure 15 of 15 cases 
of viral pneumonia in hospitalized patients in the 1940s 
[38]. Ultraviolet energy is well accepted to destroy mi-
croorganisms, and is used as a sterilizing agent, and in 
air purification. Ultraviolet energy destroys cysteine in 
microorganisms [39].

Ozone’s challenge is that it does not bring profit 
to justify private research to advance it towards reg-
ulatory agency “approval”, a process requiring tens 
of millions of USD. Hence, few in the medical field 
are aware of it, and fewer will consider “unapproved” 
therapy even to save lives [40]. It suffers from the 
“tomato effect” [41], because many of its achieve-
ments are regarded as impossible to believe. Virtually 
all use is in private offices, where most practitioners 
have no access to an institutional review board, now 
a requirement to gain acceptance of research for 
publication. Hence, advancement of ozone therapy 
into mainstream medicine languishes, and most pa-
tients, with no alternatives to conventional thera-
pies, suffer.

Conclusion
The world already has a most inexpensive, safe, and 

likely effective remedy for deadly viral diseases, which 
exploits their redox vulnerability at critical membrane 
cysteine/tryptophan fusion sites. Ozone therapy could 
be easily deployed worldwide, even in very poor coun-
tries. With few conventional treatments for viral pneu-
monia, this epidemic could provide impetus to study 
ozone therapy very ethically under the auspices of an 
institution’s review board in treating, with ozone ther-
apy, seriously ill patients, who might otherwise expire. 
Milder cases could also be treated to study the ability 
of ozone therapy to slow or halt clinical deterioration. 
Such study could bring ozone therapy to the forefront 
of all-around infectious disease management, providing 
answers to our growing problems with resistant infec-
tion. Governments should take notice.
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of only 0.7 per 100,000 treatments. Most all untow-
ard effects were found to be secondary to improper 
administration [32].

Direct intravenous gas administration does carry a 
risk of temporary chest tightness and cough, and can 
irritate veins. Compared to a lethal disease, however, it 
is a negligible price to pay. DIV oxygen has been routine-
ly (and safely) used around the world for generations, 
with significant positive effects on modulating inflam-
mation [33,34]. Oxygen is a metabolic gas and is rapidly 
consumed, unlike “air” which is 80% nitrogen. Another 
method of delivery is called “major autohemotherapy” 
(MAH). Blood is withdrawn into a bottle, ozone added, 
mixed, and the ozonated blood reinfused. However, 
considering that this method is both time consuming, 
requires large veins and has a large amount of medical 
waste, the DIV method may be preferable in epidemics.

Comments
Ozonide drugs are now postulated to possibly rem-

edy the growing resistance of plasmodium to arte-
misinin, which molecule carries a rare natural oxidiz-
ing endoperoxide bridge at its active site. Industry is 
searching for drugs of this class [35]. Meanwhile ozone 
therapy, a direct method of creating endogenous 
ozonides, has been utilized for a century with an ex-
cellent background of researched effects, safety, and 
minimal costs, depending on the method and location 
where administered. Ozone therapy has been report-
ed as exceptionally safe [32].

Ozone therapy is versatile and can be used for pre-
vention and treatment of acute and chronic diseases. 
Our offices treat both acute (non-hospitalized cases) 
and chronic viral and bacterial illnesses with ozone. 
There have been no reports of conflicts with standard 
medical care, inclusive of drug therapy.

Dosing depends on mode of application. DIV ozone 
generally begins with 1100 mcg ozone (20 cc of gas at 
55 mcg of ozone per cc of gas) with increases up to 
6600 mcg (120 cc gas) as needed and tolerated by the 
patient. Treatment time is a few to several minutes. A 
more recent ozone innovation is a variant of the MAH 
technique, called hyperbaric ozone. Two hundred ml of 
blood is ozonated with 200 cc medical ozone gas at 70 
mcg/cc under pressure and returned under pressure. 
This constitutes a single “pass” (about 15 minutes for 
a treatment). A common practice in Europe and Amer-
ican clinics is repeating this for 10 passes at one sitting 
(45-90 minutes for a treatment, depending on vein “co-
operation”). This will deliver 144,000 mcg ozone in a 
single treatment session. Our clinics are using this latter 
method, which appears to enhance rapid recovery from 
Lyme disease even in antibiotic treatment failure pa-
tients. Rowen trains physicians from around the world 
in this method, and has surveyed them for safety. Out 
of a known 4,000 “ten-pass’ treatments, there were no 
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