
Scheduling Using
Computational Intelligence

Russell C. Eberhart, Ph.D.
Associate Dean for Research

Purdue School of Engineering and Technology
Indiana University Purdue University Indianapolis

eberhart@engr.iupui.edu

Daniel Reiss CEO Automated Terminal Systems

IUPUI

Outline

Why computational intelligence?
The components of computational intelligence and
their applications
Definitions of computational intelligence
Example of computational intelligence system
Schedule optimization using computational
intelligence
Particle swarm optimization
Scheduling system for integrated automated
container terminal (IACT)

IUPUI

Why Computational Intelligence?

Solve problems previously intractable
Rapid prototyping
Low cost
Use existing PC platforms
CI systems are robust; no “mesa effect”

IUPUI

Components of Computational
Intelligence

Artificial neural networks
Evolutionary computation algorithms
Fuzzy logic
Knowledge “tidbits”

IUPUI

Artificial Neural Networks

Analysis paradigms very roughly modeled after the
massively parallel structure of the brain
Simulate highly interconnected, parallel
computational structures with numerous relatively
simple individual processing elements

IUPUI

Neural Network Application Areas

Classification
Associative memory
Clustering or compression
Simulation or composition
Control systems

IUPUI

Fuzzy Logic

Non-statistical imprecision and vagueness in
information and data
Fuzzy sets model the properties of imprecision,
approximation, or vagueness
Fuzzy membership values reflect the membership
grades in a set
Fuzzy logic is the logic of approximate reasoning; it
is a generalization of conventional logic

IUPUI

Fuzzy Logic Application Areas

Control systems
n  vehicles
n  home appliances

Fuzzy expert systems
n  industrial processes
n  diagnostics
n  finance
n  robotics and manufacturing

IUPUI

Evolutionary Computation

Machine learning optimization and classification
paradigms roughly based on mechanisms of evolution
such as natural selection and biological genetics
Major paradigms are genetic algorithms, evolutionary
programming, evolution strategies, genetic
programming, and particle swarm optimization

IUPUI

Evolutionary Computation Application
Areas

Optimization
n  design
n  scheduling

Classification
n  diagnosis

Discovering computer programs

IUPUI

Evolutionary Algorithm Process

1. Initialize population of potential solutions (usually
 randomly).

2. Evaluate fitness of each population member.
3. Reproduce new population.
4. Apply evolutionary algorithm operators (such as

 crossover, mutation, etc.).
5. Terminate process if some condition is met.
6. Go to step 2.

IUPUI

Definition of Intelligence

The capability of a system to adapt its behavior* to
meet its goals in a range of environments. It is a
property of all purpose-driven decision makers.
 - David Fogel

* implement decisions

IUPUI

IUPUI

Computational Intelligence:
Definition I

A methodology involving computing that exhibits an ability to learn
and/or deal with new situations, such that the system is
perceived to possess one or more attributes of reason , such as
generalization, discovery, association, and abstraction.

Silicon-based computational intelligence systems usually comprise

hybrids of paradigms such as artificial neural networks, fuzzy
systems, and evolutionary algorithms, augmented with
knowledge elements, and are often designed to mimic one or
more aspects of carbon-based biological intelligence.

Computational Intelligence:
Definition II

Computational intelligence comprises practical
adaptation concepts, paradigms, algorithms, and
implementations that enable or facilitate appropriate
actions (intelligent behavior) in complex and
changing environments.

IUPUI

CI Example: Evolutionary Fuzzy Expert
Systems

Evolve fuzzy membership functions and fuzzy rules
Simultaneously adapt parameters in evolutionary
algorithm using fuzzy logic
Can also include artificial neural network models, etc.

IUPUI

Schedule Optimization Using
Computational Intelligence

One of the most common applications of evolutionary
algorithm optimization
n  quick to prototype
n  runs fast

Schedule optimization is an NP-Complete problem
NP-Complete: Sufficiently complex such that any
deterministic search technique that completely
searches the problem domain will almost certainly
not find an acceptable answer in an acceptable time

IUPUI

The Scheduling Problem

Schedulers usually schedule tasks
A task is a time and resource requirement
A basic decision for any scheduling project is the
selection of time resolution
More time is spent on rescheduling than on
scheduling

IUPUI

Constraints

Two major types of constraints exist: hard (strong)
and soft (weak)
Hard constraints cannot be violated by the scheduler
n  example: scheduled maintenance
n  can sometimes be over-ridden manually

Soft constraints can be violated with a penalty
assigned to the fitness function
n  examples: time and resource preferences

IUPUI

Major Components of Scheduling System

Schedule builder
n  major job is to build “legal” schedules
n  may take (some) soft constraints into account

Schedule evaluator
n  calculates fitness value for each schedule
n  fitness value assigned according to algorithm

Schedule optimizer
n  constructs a task order list
n  can be domain independent or domain dependent

IUPUI

Introduction to Particle Swarm
Optimization

A “swarm” is an apparently disorganized collection
(population) of moving individuals that tend to cluster
together while each individual seems to be moving in
a random direction
We also use “swarm” to describe a certain family of
social processes

IUPUI

Introduction to Particle Swarm
Optimization (PSO), Continued

A concept for optimizing nonlinear functions
Has roots in artificial life and evolutionary
computation
Developed by Kennedy and Eberhart (1995)
Simple in concept
Easy to implement
Computationally efficient
Effective on a variety of problems

IUPUI

IUPUI

Features of Particle Swarm
Optmization

Population initialized by assigning random positions
and velocities; potential solutions are then flown
through hyperspace.
Each particle keeps track of its “best” (highest
fitness) position in hyperspace.
n  This is called “pbest” for an individual particle
n  It is called “gbest” for the best in the population
n  It is called “lbest” for the best in a defined neighborhood

At each time step, each particle stochastically
accelerates toward its pbest and gbest (or lbest).

Particle Swarm Optimization Process

1. Initialize population in hyperspace.
2. Evaluate fitness of individual particles.
3. Modify velocities based on previous best and global

(or neighborhood) best.
4. Terminate on some condition.
5. Go to step 2.

IUPUI

PSO Velocity Update Equations

Global version:

() ()v w v c rand p x c Rand p x

x x v
id i id id id gd id

id id id

= + − + −

= +

1 2() ()

Where d is the dimension, c1 and c2 are positive constants,
rand and Rand are random functions, and w is the inertia
weight.

For neighborhood version, change pgd to pld.

IUPUI

Further details of PSO

Performance of each particle measured according to
a predefined fitness function.
Inertia weight influences tradeoff between global and
local exploration.
Good approach is to reduce inertia weight during run
(i.e., from 0.9 to 0.4 over 1000 generations)
Usually set c1 and c2 to 2
Usually set maximum velocity to dynamic range of
variable

IUPUI

Summary

Computational intelligence is a powerful method for
building scheduling systems
n  quick to prototype
n  outperforms other approaches
n  fast to run

Example: use particle swarm optimization at the core
of the process, with fuzzy expert system shell

IUPUI

•  Objective - develop planning and scheduling algorithm for
fully integrated automated container terminals

•  Approach - Fuzzy system and evolutionary programming

Initial state S0 Next state St

Discrete Event Control

State
feedback

u(k)

evolutionary
programming

fuzzy reasoning

facility state

Scheduling System for Integrated
Automated Container Terminal

IUPUI

Yard Planning

Container Sequence
Planning

Machine Planning
Machines

Machine
Worklists

Container
Reservations

Container
Yard

Machine Operations

Container
Locations

Scheduling System for IACT – Workflow

IUPUI

 Query Report

 Management
Function

 Planning
Function

 Operation
Function

 Yard Configuration

Pre-process Database Resource Database

In-process Database

 Machine
 Controller

Container
Reservations

Transportation Resource
Container

Yard
Machine

Yard Plan
Container Sequence Plan

Machine Worklist
Pre-planned Maintenance

Container Yard Database

Schedule
Ship Stowage Plan

Train Manifest
Container Reservation

Scheduling System for IACT – System Overview

IUPUI

Assign sequence
length m an initial

value: m=m0

Evolutionary
computation

staging pattern
is OK?No

m=m+1

Yes

End

Start

m>limit

No

buffer number=N0

buffer=buffer+1 Yes

Scheduling System for IACT – Algorithm

IUPUI

O-Port: Yard Planning and Scheduling System

IUPUI

Transportation Resource Information

Container Schedule Information

Container Planning Sequences - Animation

250 Containers
Move from yard to
staging area along the
berth
Planning results
Number of movements:

IUPUI

