Scheduling Using Computational Intelligence

Russell C. Eberhart, Ph.D. Associate Dean for Research

Purdue School of Engineering and Technology Indiana University Purdue University Indianapolis <u>eberhart@engr.iupui.edu</u>

Daniel Reiss CEO Automated Terminal Systems

Outline

- Why computational intelligence?
- The components of computational intelligence and their applications
- Definitions of computational intelligence
- Example of computational intelligence system
- Schedule optimization using computational intelligence
- Particle swarm optimization
- Scheduling system for integrated automated container terminal (IACT)

Why Computational Intelligence?

Components of Computational Intelligence

- Artificial neural networks
- Evolutionary computation algorithms
- Fuzzy logic
- Knowledge "tidbits"

Artificial Neural Networks

 Analysis paradigms very roughly modeled after the massively parallel structure of the brain

 Simulate highly interconnected, parallel computational structures with numerous relatively simple individual *processing elements*

Neural Network Application Areas

Fuzzy Logic

- Non-statistical imprecision and vagueness in information and data
- Fuzzy sets model the properties of imprecision, approximation, or vagueness

◆ *Fuzzy logic* is the logic of approximate reasoning; it is a generalization of conventional logic

Fuzzy Logic Application Areas

Evolutionary Computation

 Machine learning optimization and classification paradigms roughly based on mechanisms of evolution such as natural selection and biological genetics

 Major paradigms are genetic algorithms, evolutionary programming, evolution strategies, genetic programming, and particle swarm optimization

Evolutionary Computation Application Areas

Evolutionary Algorithm Process

- 1. Initialize population of potential solutions (usually randomly).
- 2. Evaluate fitness of each population member.
- 3. Reproduce new population.
- 4. Apply evolutionary algorithm operators (such as crossover, mutation, etc.).
- 5. Terminate process if some condition is met.
- 6. Go to step 2.

Definition of Intelligence

The capability of a system to adapt its behavior^{*} to meet its goals in a range of environments. It is a property of all purpose-driven decision makers.

- David Fogel

* implement decisions

Computational Intelligence: Definition I

A methodology involving computing that exhibits an ability to learn and/or deal with new situations, such that the system is perceived to possess one or more attributes of *reason*, such as generalization, discovery, association, and abstraction.

Silicon-based computational intelligence systems usually comprise hybrids of paradigms such as artificial neural networks, fuzzy systems, and evolutionary algorithms, augmented with knowledge elements, and are often designed to mimic one or more aspects of carbon-based biological intelligence.

Computational Intelligence: Definition II

Computational intelligence comprises practical **adaptation** concepts, paradigms, algorithms, and implementations that enable or facilitate appropriate actions (intelligent behavior) in complex and changing environments.

CI Example: Evolutionary Fuzzy Expert Systems

Evolve fuzzy membership functions and fuzzy rules
 Simultaneously adapt parameters in evolutionary algorithm using fuzzy logic

Can also include artificial neural network models, etc.

Schedule Optimization Using Computational Intelligence

- One of the most common applications of evolutionary algorithm optimization
 - quick to prototype
 - runs fast
- Schedule optimization is an NP-Complete problem
- NP-Complete: Sufficiently complex such that any deterministic search technique that completely searches the problem domain will almost certainly not find an acceptable answer in an acceptable time

The Scheduling Problem

- A task is a time and resource requirement
- A basic decision for any scheduling project is the selection of time resolution
- More time is spent on *rescheduling* than on scheduling

Constraints

Major Components of Scheduling System

Schedule builder

- major job is to build "legal" schedules
- may take (some) soft constraints into account
- Schedule evaluator
 - calculates fitness value for each schedule
 - fitness value assigned according to algorithm
- Schedule optimizer
 - constructs a task order list
 - can be domain independent or domain dependent

Introduction to Particle Swarm Optimization

A "swarm" is an apparently disorganized collection (population) of moving individuals that tend to cluster together while each individual seems to be moving in a random direction

 We also use "swarm" to describe a certain family of social processes

Introduction to Particle Swarm Optimization (PSO), Continued

- A concept for optimizing nonlinear functions
 Has roots in artificial life and evolutionary computation
- Developed by Kennedy and Eberhart (1995)
- Simple in concept
- Easy to implement
- Computationally efficient
- Effective on a variety of problems

Features of Particle Swarm Optmization

- Population initialized by assigning random positions and velocities; potential solutions are then *flown* through hyperspace.
- Each particle keeps track of its "best" (highest fitness) position in hyperspace.
 - This is called "pbest" for an individual particle
 - It is called "gbest" for the best in the population
 - It is called "lbest" for the best in a defined neighborhood

At each time step, each particle stochastically accelerates toward its pbest and gbest (or lbest).

Particle Swarm Optimization Process

- 1. Initialize population in hyperspace.
- 2. Evaluate fitness of individual particles.
- 3. Modify velocities based on previous best and global (or neighborhood) best.
- 4. Terminate on some condition.
- 5. Go to step 2.

PSO Velocity Update Equations

Global version:

$$v_{id} = w_i v_{id} + c_1 rand() \left(p_{id} - x_{id} \right) + c_2 Rand() \left(p_{gd} - x_{id} \right)$$

$$x_{id} = x_{id} + v_{id}$$

Where *d* is the dimension, c_1 and c_2 are positive constants, *rand* and *Rand* are random functions, and *w* is the inertia weight.

For neighborhood version, change p_{gd} to p_{ld} .

Further details of PSO

- Performance of each particle measured according to a predefined fitness function.
- Inertia weight influences tradeoff between global and local exploration.
- Good approach is to reduce inertia weight during run (i.e., from 0.9 to 0.4 over 1000 generations)
- Usually set c_1 and c_2 to 2
- Usually set maximum velocity to dynamic range of variable

Summary

- quick to prototype
- outperforms other approaches
- fast to run

Example: use particle swarm optimization at the core of the process, with fuzzy expert system shell

Scheduling System for Integrated Automated Container Terminal

- Objective develop planning and scheduling algorithm for fully integrated automated container terminals
- Approach Fuzzy system and evolutionary programming

Scheduling System for IACT – Workflow

Scheduling System for IACT – System Overview

Scheduling System for IACT – Algorithm

O-Port: Yard Planning and Scheduling System

Transportation Resource Information

ransportat	A-001	Prext Stop 2	вгоокіуп	Description	
Transportat	Ship-001	Next Stop 3	Brooklyn	Schedule Pr	0
Transportat	Ship	next Stop 4	ddd		
Status	Scheduled	next Stop 5	eee		
Dimensions		next Stop 6	eee		
Container C	0	ETA Zulu			
Owner		ETA Local			
Origination	Achorage	Arrival Poin			
Destination	Auburn	ETD Zulu			
Previous Sta	Auburn	ETD Local			
Next Stop 1	Carol Stream	Departure P			
ord: 🔢 👘	1	▶1 ▶* of 3			

Container Schedule Information

Container Schedule

ATS

Booking No		Container ID		Sta	Status Yard Location 1			Yard Location 2				
4-01	IACT-0101-0101		On	On the Yard D-01-01-01)1						
Yard Loc	ard Location 3 Chassis ID		Co	ntainer Type	Cargo	Cargo Type		L/UL Requ	irements Length			
					Dry		Dry					2
Height	Width	Din	mension Exception O		Owner	5	Gross Weig	Fross Weight He		andling		Handling Priori
	8	8	X.		2 2 90		1.4			w.	j.	ļ
Origination Destination		Pr	evious Stop	Next Stop			Arrival Transportation Resource Typ					
Carol Stream Achorage		Bing	ghampton	Calgary	Calgary			Ship				
Arrival 1	Transporta	tion S	chedule No L	ocation	n on Arr	ival Transporta	uiton Resource	Departure	Transp	ortation Re.	source Ty	ne -
			1					Ship				
Departure Transportation Schedule No Location				tion on 1	on Departure Transportation Resource Description			cription	n Schedule Priority			
	22 Set 19 19 19 19 19 19 19 19 19 19 19 19 19	1.11.11.124		-	doota tutto techto s		2	The Control of March			Concernant and the	(
											-	
Booking No Container ID		é.	Sto	Status Yard		ard Location 1 Yar		Yard Locat	ard Location 2			
4-01	01 IACT-0101-0201		On	On the Yard		D-01-01-02						
Yard Location 3 Ch		Chassis ID		Co	Container Type		Cargo Type		L/UL Requirements		Length	
					Dry		Þry	09785				20
Height	leight Width Dimension Exception C		Owner	14 14	Gross Weight		Han	Handling		Handling Priorit		
1	8	8			8					100		с С
Origination Destination		Pn	Previous Stop Nex.		Next Stop		Arrival Transportation Resource Typ					
						5 7		- Āi-		-		1000
Arrival 1	Fransporta	tion S	chedule No L	ocation	non Arr	ival Transporta	iton Resource	Departure	Transp	ortation Re	source Th	12
								2 2 10 111 0	L'I HALOP			
-												
Domonto	na Terrara	antertio	» Cohadula M	Inco	tion on 1	Domento an Tama	en ostaiton Dou	Da	mintion		Cobach	a Designation
Departu	re Transpo	ortatio	n Schedule No	Loca	tion on 1	Departure Tran	sportaiton Res	ource Desc	cription		Schedul	e Priority

Container Planning Sequences - Animation

