

Ministry of Energy and Mines BC Geological Survey

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)] Geochemical Sampling Report - Nat Project	TOTAL COST \$13619.00
_{AUTHOR(S)} Ken Galambos	SIGNATURE(S)
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S)	YEAR OF WORK016
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S) 5692466
PROPERTY NAME Nat Property	
CLAIM NAME(S) (on which work was done) 1053902, 1051398	
COMMODITIES SOUGHT copper, gold, moybdenum, silver	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN 093M 162	
MINING DIVISION Omineca	NTS_093M/01
LATITUDE 55 o 05 , 23 " LONGITUDE	126 o 04 . 11
OWNER(S)	
1) Ken Galambos	_ 2)
MAILING ADDRESS 1535 Westall Ave.	
Victoria, BC V8T 2G6	
OPERATOR(S) [who paid for the work]	
Kan Calambas	_ 2)
MAILING ADDRESS 1535 Westall Ave.	
Victoria, BC V8T 2G6	2
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structur Jurassic, Cretaceous, Eocene, volcanics, sediments, Babir	e, alteration, mineralization, size and attitude): ne Plutonic Suite, quartz-diorite to diorite; diorite, Takla fault
potassic, argillic alteration of BFP intrusive float, quar	tz scinter
pyrite, chalcopyrite, gold, silver	

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS 16785, 16292, 32485, 33500, 33936 35107, 36499

TYPE OF WORK IN EXTENT OF THIS REPORT Geochemical (IN METRIC 2400m)		PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)		
Ground, mapping		
Photo interpretation		
GEOPHYSICAL (line-kilometres)		
Ground		
Magnetic		
Electromagnetic		
Induced Polarization		
Radiometric		
Seismic		
Other		
Airborne		
GEOCHEMICAL	1030816, 1045981, 1045989	
(number of samples analysed for)	(35 ()100)	\$11708
soil 49 Ah - humus		<i></i>
Silt		
Rock 8 Rock	1045981	\$1911
Other		10 10
DRILLING (total metres; number of holes, size)		
Core		
Non-core		
RELATED TECHNICAL		
Sampling/assaying		
Petrographic		
Mineralographic		
Metallurgic		
PROSPECTING (scale, area)		
PREPARATORY/PHYSICAL		
Line/grid (kilometres)		
Topographic/Photogrammetric (scale, area)		2
Legal surveys (scale, area)		
Road, local access (kilometres)/trail		
Trench (metres)		
Underground dev. (metres)		
Other		
	TOTAL COST	\$13619

Mineral Titles Online

 Mineral Claim Exploration and Development Work/Expiry Date Change

 Recorder:
 GALAMBOS, KENNETH D (109109)
 Submitter:
 GALAMBOS, KENNETH D (109109)

 Recorded:
 2018/APR/06
 Effective:
 2018/APR/06

 D/E Date:
 2018/APR/06
 Effective:
 2018/APR/06

Confirmation

If you have not yet submitted your report for this work program, your technical work report is due in 90 days. The Exploration and Development Work/Expiry Date Change event number is required with your report submission. **Please attach a copy of this confirmation page to your report.** Contact Mineral Titles Branch for more information.

Confirmation

Event Number: 5692466

Work Type: Technical Work

Technical Items: Geochemical, PAC Withdrawal (up to 30% of technical work required)

Work Start Date: 2017/AUG/11

Work Stop Date: 2018/APR/06

Total Value of Work: \$13619.00

Mine Permit No:

Summary of the work value:

Title Number	Claim Name/Property	lssue Date	Good To Date	New Good To	# of Days For-			Sub- mission Fee	
--------------	------------------------	---------------	--------------------	-------------------	----------------------	--	--	------------------------	--

				Date	ward			
1051398	PIM	2017/APR/13	2018/APR/13	2022/oct/26	1657	296.18	\$ 11271.23	\$ 0.00
1053902	NAT	2017/AUG/10	2020/JAN/10	2022/oct/26	1020	240.65	\$ 8178.10	\$ 0.00

Financial Summary:

Total applied work value:\$ 19449.33

PAC name: Ken Galambos

Debited PAC amount: \$5830.33

Credited PAC amount: \$0

Total Submission Fees: \$ 0.0

Total Paid: \$0.0

Please print this page for your records.

The event was successfully saved.

Click here to return to the Main Menu.

Geochemical Sampling Report Nat Project

Omineca Mining Division Tenure Numbers: 1053902, 1051398

NTS: 093M/01 Latitude 55° 05' 23" N Longitude 126° 04' 11" W

Zone 09 U (NAD 83) Easting 687000 Northing 6108700

Work performed August 11, 2017 - April 06, 2018 by Ken Galambos Ralph Keefe Brian Keefe

> For Ken Galambos 1535 Westall Ave. Victoria, British Columbia V8T 2G6

Ken Galambos, P.Eng. KDG Exploration Services 1535 Westall Ave. Victoria, British Columbia V8T 2G6

June 30, 2018

Table of Contents

TITLE

Item 1:	Summary	1
Item 2:	Introduction	. 2
2.1	Qualified Person and Participating Personnel	. 2
2.2	Terms, Definitions and Units.	
2.3	Source Documents	3
2.4	Limitations, Restrictions and Assumptions	3
2.5	Scope	3
Item 3:	Reliance on Other Experts	.3
Item 4:	Property Description and Location	
Item 5:	Accessibility, Climate, Local Resources, Infrastructure and Physiography	. 5
Item 6:	History	
Item 7:	Geological Setting and Mineralization	12
7.1	Regional Geology	12
7.2	Property Geology	17
Item 8:	Deposit Types	17
8.1	Porphyry Cu+/-Mo+/-Au (Calcalkaline porphyry Cu, Cu-Mo, Cu-Au.)	17
8.1.1	Babine Lake District Porphyry Copper-Gold Deposits	21
8.2	Polymetallic Vein	21
Item 9:	Exploration	24
Item 10:	Drilling	30
Item 11:	Sample Preparation, Analyses and Security	30
Item 12:	Data Verification	30
Item 13:	Mineral Processing and Metallurgical Testing	30
Item 14:	Mineral Resource Estimates	30
Item 15:	Adjacent Properties	30
15.1	Bell Copper Mine (Minfile 093M 01, rev. McMillan, 1991)	31
15.2	Granisle Mine (Minfile 093L 146, rev. Duffett, 1987)	32
15.3	Morrison–Hearne Hill Project (From Simpson, 2007)	33
15.4	Wolf (Minfile 093M 008, rev. McMillan, 1991)	34
15.5	Fireweed (Minfile 093M 151, rev. Payie, 2009)	
15.6	Equity Silver (Minfile 093L 001, rev. Robinson, 2009)	
Item 16:	Other Relevant Data and Information	37
Item 17:	Interpretation and Conclusions	37
Item 18:	Recommendations	38
Item 19:	References	40
Item 20:	Date and Signature Page	44
Item 21:	Statement of Expenditures	45
Item 22:	Software used in the Program	
Appendic	ies	47

List of Illustrations

Figure 1:	Nat Property Location Map	4
Figure 2:	Nat Project Claim Map	5
	Regional Geology map	
	Property Geology map	
	North Transect - Precious Metals	
Figure 6:	North Transect - Base Metals	27
Figure 7:	South Transect - Precious Metals	28
Figure 8:	South Transect - Base Metals	28
Figure 9:	Road Transect - Precious Metals	.29
Figure 10:	Road Transect - Base Metals	29

List of Tables

Claim Data	
Geology Legend	14
Rock Sample Descriptions	24
Humus Sample Descriptions	25
Resources and Production of major Babine Porphyry Deposits	
	Claim Data Geology Legend Rock Sample Descriptions Humus Sample Descriptions Resources and Production of major Babine Porphyry Deposits

List of Photographs

Plate 1:	Satellite Image of Nat Project	6
Plate 2:	2012 Humus-Ah Transects	9
Plate 3:	Sample 42464	9
Plate 4:	Close up photo of Sample 42464	
Plate 5:	Sample 42465	10
Plate 6:	Sample 103551	11
Plate 7:	Sample 103551 - Angular frothy Quartz veining	
Plate 8:	Satellite Image with Response Ratios	
Plate 9:	Cu 1-4 showing mineralization	24

Item 1: Summary

The Nat property consists of 2 claims (29 cells) covering an area of 536.83ha lying approximately 78 km northeast of the community of Smithers and 17km north-northeast of the former producing Granisle mine in west-central British Columbia. The claims are situated on map sheet NTS 93M/01, at latitude 55° 05' 23" N longitude 126° 04' 11" W, UTM Zone 9, 687000E, 6108700N. Logging roads extend from the ferry landing at Nose Bay roughly 30km through to the centre of the property. The Nat North geophysical target covered by the claims has been logged in the past and is road accessible.

The project area lies on the northwest side of the Skeena Arch within the Intermontane tectonic belt of west-central B C. The Babine Lake area is underlain principally by Mesozoic layered rocks, the most widespread in this area being volcanic and sedimentary rocks of the Jurassic Hazelton and Bowser Lake Groups. These are intruded by plutonic rocks of various ages including lower Jurassic Topley intrusions, Omineca intrusions of early Cretaceous age, late Cretaceous rhyolite and granodiorite porphyrites and Babine intrusions of early Tertiary age. Deformation consists of moderate folding, transcurrent boundary faults, thrusting and normal faulting. Younger early Cretaceous Skeena Group undivided sedimentary rocks and subvolcanic rhyolite domes are preserved in a large cauldera setting roughly 24km in diameter that sits between the West Arm and Fisheries Arm of Babine Lake to the west of the Nat property.

The best known style of mineralization in the Babine Lake area is porphyry copper mineralization associated with small stocks and dyke swarms of biotite feldspar porphyry of the Babine intrusions. Eocene aged BFP hosts annular porphyry copper deposits such as the Bell Mine (296 mT of 0.46% Cu and 0.2 gpt Au), the Granisle Mine (119 mT of 0.41% Cu and 0.15 gpt Au) (Carter et al, 1995) and the Morrison Deposit (207 mT of 0.39% Cu and 0.20 gpt Au) (Simpson, 2007).

The Babine/Takla Lakes area has been explored since the discovery of copper mineralization on McDonald Island in 1913. Extensive exploration has occurred since the mid 1960's following the recognition of the potential of porphyry copper mineralization and the Granisle and Bell deposits. Exploration for Equity Silver type massive sulphides occurred through the 1980's following the decline in copper prices and the sharp rise in precious metal values during that time. The focus returned to copper in the early 1990's with extensive exploration programs by Noranda and others. Little information exists in the public domain of exploration in the area over the past 20 years.

Prospecting down ice from the Nat North target located a number of well mineralized cobbles and small boulders over a small area which assayed up to 3390ppm Cu, 0.224ppm Au. Angular float rock of possible quartz scinter material was found in the same general area and returned 0.863ppm Au and 61.5ppm Ag with highly anomalous epithermal indicators lead, arsenic and antimony.

In 2016, the author with assistance from Ralph Keefe and Brian Keefe expanded on the humus-Ah sampling over the Nat North target area to further define the subtle multielement anomaly discovered in 2012. Sampling returned anomalous Response Ratios for gold up to 164 x background with anomalous molybdenum, silver, copper and lanthanum. In 2017, following the acquisition of the Pim claim additional humus-Ah sampling was completed in an effort to expand the anomalies located the previous year.

The Nat property has been held by the author since 2008. The claims that are subject to this report are 100% owned by K. Galambos in partnership with Ralph Keefe of Francois Lake, B.C.

It is the author's belief that previous exploration programs on the Nat property and surrounding area suggested a potential for significant porphyry style mineralization. These programs also failed to adequately test this potential. Additional exploration in the form of geological, geophysical and geochemical surveys and drilling is warranted to determine if one or more economic mineralized bodies are present within the existing property boundaries.

Item 2: Introduction

This report is being prepared by the author for the purposes of filing assessment on the Nat property and to create a base from which further exploration will be completed.

2.1 Qualified Person and Participating Personnel

Mr. Kenneth D. Galambos P.Eng. conducted the current exploration program, and completed the evaluation and interpretation of data to focus further exploration and to make recommendations to test the economic potential of the area.

This report describes the property in accordance with the guidelines specified in National Instrument 43-101 and is based on historical information, a prospecting and geochemical sampling program conducted on the property from August 11-13, 2017 and a review of data from the property by the author.

2.2 Terms, Definitions and Units

- All costs contained in this report are denominated in Canadian dollars.
- Distances are primarily reported in metres (m) and kilometers (km) and in feet (ft) when reporting historical data.
- GPS refers to global positioning system.
- Minfile showing refers to documented mineral occurrences on file with the British Columbia Geological Survey.
- The term ppm refers to parts per million, equivalent to grams per metric tonne (g/t).
- ppb refers to parts per billion.
- The abbreviation oz/t refers to troy ounces per imperial short ton.
- The symbol % refers to weight percent unless otherwise stated. 1% is equivalent to 10,000ppm.

• Elemental and mineral abbreviations used in this report include: antimony (Sb), arsenic (As), copper (Cu), gold (Au), iron (Fe), lead (Pb), molybdenum (Mo), zinc (Zn), chalcopyrite (Cpy), molybdenite (MoS₂) and pyrite (Py).

2.3 Source Documents

Sources of information are detailed below and include the available public domain information and private company data.

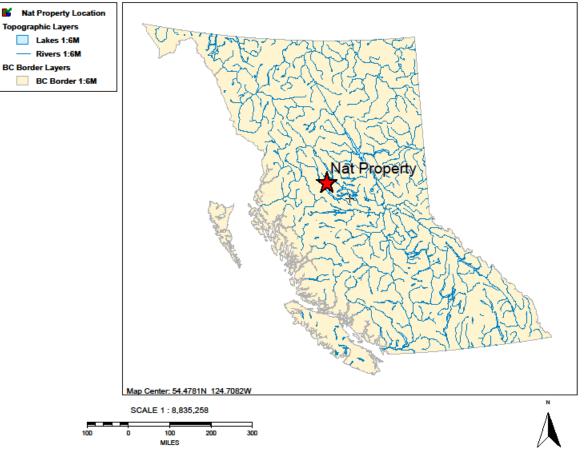
- Research of the Minfile data available for the area at http://www.empr.gov.bc.ca/Mining/Geoscience/MINFILE/Pages/default.aspx
- Research of mineral titles at https://www.mtonline.gov.bc.ca/mtov/home.do
- Review of company reports and annual assessment reports filed with the government at
 - http://www.empr.gov.bc.ca/Mining/Geoscience/ARIS/Pages/default.aspx
- Review of geological maps and reports completed by the British Columbia Geological Survey at http://www.empr.gov.bc.ca/Mining/Geoscience/MapPlace/MainMaps/Pages/defa ult.aspx.
- Published scientific papers on the geology and mineral deposits of the region and on mineral deposit types.

2.4 Limitations, Restrictions and Assumptions

The author has assumed that the previous documented work in the area of the property is valid and has not encountered any information to discredit such work.

2.5 Scope

This report describes the geology, previous exploration history, interpretation of regional geophysical, geochemical surveys including the Quest West surveys. Research included a review of the historical work that related to the immediate and surrounding areas. Regional geological data and current exploration information have been reviewed to determine the geological setting of the mineralization and to obtain an indication of the level of industry activity in the area.


Item 3: Reliance on Other Experts

Some data referenced in the preparation of this report was compiled by geologists employed by various companies in the mineral exploration field. These individuals would be classified as "qualified persons" today, although that designation did not exist when some of the historic work was done. The author believes the work completed and results reported historically to be accurate but assumes no responsibility for the interpretations and inferences made by these individuals prior to the inception of the "qualified person" designation.

Item 4: Property Description and Location

The Nat property consists of 2 claims (29 cells) covering an area of 536.83ha lying approximately 78 km northeast of the community of Smithers and 17km north-northeast of the former producing Granisle mine in west-central British Columbia. The claims are situated on map sheet NTS 93M/01, UTM Zone 9, 687000E, 6108700N. Logging roads

extend from the ferry landing at Nose Bay roughly 30km through to the centre of the property. The Nat North geophysical target covered by the claims has been logged in the past and is road accessible. One claim was subdivided to assist with filing of assessment credits.

Nat Property Location Map

Figure 1: Nat Property location map

Upon acceptance of this report, the highlighted mineral tenures will have their expiry dates moved to Oct 26, 2022.

	Table	1:	Claim	Data
--	-------	----	-------	------

Tenure #	Claim	Issue date	Expiry date	Area (Ha)	Owner
1053902	Nat	2017/Aug/10	2022/Oct/26	240.65	Galambos Kenneth D. 100%
1051398	Pim	2017/Apr/13	2022/Oct/26	296.18	Galambos Kenneth D. 100%
			Total	536.83	

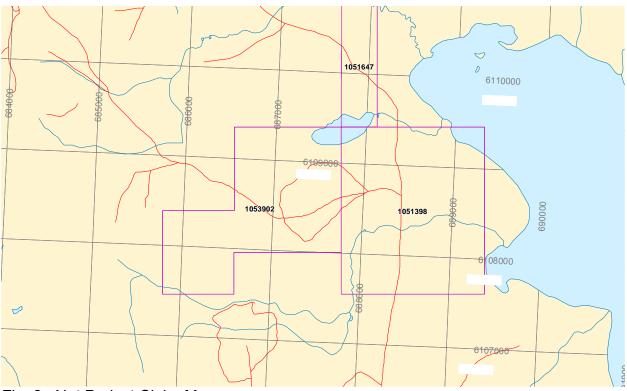


Fig. 2: Nat Project Claim Map

The Claims comprising the Nat property as listed above are being held as an exploration target for possible hardrock mining activities which may or may not be profitable. Any exploration completed will be subject to the application and receipt of necessary Mining Land Use Permits for the activities recommended in this report. There is no guarantee that this application process will be successful.

The Claims lie in the Traditional territories of a number of local First Nations and to date no dialog has been initiated with these First Nations regarding the Natlan property. There is no guarantee that approval for the proposed exploration will be received.

Item 5: Accessibility, Climate, Local Resources, Infrastructure and Physiography Most parts of the Property are accessible by a network of private logging roads. These roads are usable during spring to fall, but are not reliably maintained when snowcovered. Connection from the provincial highway system can be obtained by private barge from Topley Landing to the east shore of Babine Lake. Alternatively, the Property is accessible year-round by helicopter from Smithers, Houston or Burns Lake.

Climate in the region is continental, periodically modified by maritime influences. Summers are cool and moist, and winters cold. Following climate statistics from Environment Canada are for Burns Lake, the town with climate most analogous to Babine Lake region. Mean January temperature is -10.5°C, and for July is 14.3°C. Extreme winter temperature may fall below -30°C for brief periods. Annual rainfall is 291.4mm and annual snowfall is 189.1mm, with mean snow accumulation of 45cm. Anecdotal evidence indicates that the Babine Lake area can retain more than a metre of snow depth. Snow-free field operations season for exploration spans May through October, dependent on elevation and aspect relative to the sun.

The Property occupies the northern part of the Nechako Plateau, within the Intermontane Belt of north-central British Columbia. Topography consists of rolling to locally steep hills, with low-relief valleys, containing many lakes and wetlands. The property is adjacent to Babine Lake, which is the longest natural lake in British Columbia, at approximately 100km length. Vegetation is dominated by boreal mixed forest of coniferous (spruce and pine) and deciduous (alder, poplar and birch) trees, with understory of willow, berry bushes and devil's club. Wetland sedges and grasses occupy parts of poorly-drained lowlands. Approximately 70% of the Property has been logged in the past three decades, and resultant clear-cuts are in the early stage of regrowth. A smaller area adjacent to the shoreline of Babine Lake has been logged in earlier decades, and now contains an established second-growth forest.

Plate 1: Satellite Image of Nat Project

Infrastructure adequate for mine development is present in the region. A residential capacity powerline connecting Fort Babine with Takla Lake exists 36km north of the

Property. Also, power connection to the British Columbia grid exists at the village of Granisle, on the opposite shore of Babine Lake, 16km southwest of the Property. During operations of the Bell Copper and Granisle open pit mines, power was conducted from the Granisle substation via lake-bottom power cables. Similar infrastructure could be installed for mine development on the Nat property. The Property hosts a network of private logging roads. These roads are connected to the provincial highway system by private barge from Topley Landing (near Granisle village). Babine Lake is able to supply any quantity of water needed for property development. The lower-relief portions of the property, especially the central part, contain adequate space for concentrator site, tailing ponds or waste dumps required in any contemplated mine operation. The village of Granisle, originally constructed to serve the Granisle open-pit mine, contains adequate accommodation and basic services to support a mining operation. The communities of Northwestern British Columbia contain industrial and consumer suppliers, and a pool of labour skilled in mining trades and professions.

Item 6: History

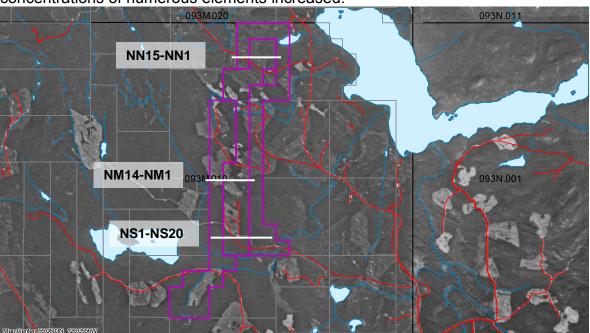
The Babine/Takla Lakes area has been explored since the discovery of copper mineralization on McDonald Island in 1913. Extensive exploration has occurred since the mid-1960's following the recognition of the potential of porphyry copper mineralization and the Granisle and Bell deposits. Various companies such as Granby Mining Company Ltd., Bethex Explorations Ltd., Canadian Superior Exploration Limited, Quintana Minerals Corporation and Noranda Exploration held claims in the area and conducted geochemical, geophysical surveys and drilled various targets without much success.

Exploration for Equity Silver type massive sulphides occurred through the 1980's following the decline in copper prices and the sharp rise in precious metal values during that time.

In 1984, Northair Mines Inc. and Vital Pacific Resources Inc. completed VLF-EM and magnetic geophysical surveys over the Newsam 1-6 claims, which covered the southern part of the present day Nat claims near Nizik Lake. Numerous VLF conductors were discovered and one magnetic anomaly thought to be caused by a small intrusion. No further work was completed by the companies.

Gold Canyon Resources Inc. explored their Danny Boy claims west of Natowite Lake with VLF-EM, magnetic and horizontal loop EM geophysical surveys and geochemical surveys. Eight conductors were discovered in an area now covered by the northern half of the Nat claims. No further work is recorded by the company.

A small geochemical program was conducted by Joe Hidber and Roy Woolverton over the extension of a small silver-lead-zinc vein located in a road cut west of Natowite Lake. Samples were analysed in field for heavy metals using a Bloom Geochemical kit. A number of sample sites were found to be anomalous but no further work was recorded. The focus returned to copper in the early 1990's with extensive exploration programs by Noranda Exploration. In 1991, the company drilled two BQ sized drill holes for a total of 295.1m to test previously detected ground magnetic and electromagnetic anomalies in search of a massive sulphide body.


In 1992, Noranda completed geochemical surveys on a number of claim groups in the area. Maximum values from patchy chalcopyrite in andesite volcanics was 10,356ppm Cu.

Noranda flew a combined Airborne magnetic, electromagnetic and VLF-EM survey over their Nat Lake property in early 1993. The company hoped to find geophysical signatures characteristic of porphyry deposits.

Little information exists in the public domain of exploration in the area over the past 20 years.

In 2012, the author completed a review and interpretation of all public domain data including Regional Geochemical Survey (RGS) data to determine drainages containing anomalous elements commonly associated with porphyry copper-molybdenum deposits. An interpretation of the regional geophysical surveys, including Quest West geophysical and geochemical data, was completed to assess the claim area for magnetic electromagnetic and gravity anomalies. Finally a detailed magnetic survey was flown over the Nat property by Astorius Resources Limited of Vancouver as part of a larger survey completed over their Babine property which surrounds the Nat claims on three sides. The survey data was graciously supplied by the company despite its confidential nature. The survey revealed a narrow magnetic high coring the magnetic low feature which current exploration is targeting.

That same year, the author with the assistance of Ralph Keefe, completed geochemical transects across three of the four magnetic low targets identified from Government airborne surveys. Three geochemical transects were completed over the "Nat North", "Nat Middle" and "Nat South" targets, NN, NM and NS respectively, in an effort to see through the extensive glacial till blanket covering the area. Humus-Ah samples were collected as per Heberlein in the GSB 2010-03 publication "An Assessment of Soil Geochemical Methods for Detecting Copper-Gold Porphyry Mineralization through Quaternary Glaciofluvial Sediments at the Kwanika Central Zone. North-Central British Columbia". Response Ratios were calculated for each of the lines using background values calculated from the collective data set. Although the transect lines covered each of the targets, it is believed that the lines were not long enough to collect a sufficient number of samples with background values. As a result, the background values as determined for the 1st guartile of the results were somewhat elevated, resulting in slightly subdued anomalies. Response Ratios for the data set are a ratio or the sample value as compared to the background value. Multi-element anomalies were returned from each transect line for both precious and base metal values. Elements such as manganese, strontium, calcium and zinc often return "Rabbit Ear" anomalies peripheral to the better copper and gold values. In many instances, where the sampling crossed

the narrow magnetic anomaly(s) identified in the Astorius airborne survey, concentrations of numerous elements increased.

Plate 2: 2012 Humus-Ah Transects

The Nat North transect returned 500m of anomalous humus with anomalous Response Ratios to background for gold, silver, copper, molybdenum, iron, arsenic, antimony, bismuth and lanthanum, a REE often associated with porphyry deposits.

The Nat Middle transect returned a number of narrower 100-150m targets with elevated Response Ratios for gold, silver, copper, iron, arsenic, antimony and lanthanum.

The Nat South transect also returned a number of narrower 100-150m wide areas of anomalous humus with elevated RRs for gold, silver, copper, iron, arsenic, antimony and lanthanum.

Plate 3: Sample 42464

The program also collected a number of float samples, two of which returned highly anomalous copper and gold values roughly 800m down-ice of the Nat North target. Sample 42464 assayed 2767ppm Cu and 0.106ppm Au from a 15cm rough boulder of fine-grained, potassic-altered intrusive containing 2% Py and 2-3% Cpy. Sample 42465 collected nearby returned values of 3390ppm Cu and 0.224ppm Au from a 10cm cobble of strong potassic-altered intrusive with 2% Py and 1% Cpy.

Plate 4: Close up photo of Sample 42464

Plate 5: Sample 42465

The following year, sample 103551 collected in the same general area as those above, assayed 0.863ppm Au, 61.5ppm Ag, 179.6ppm Cu, 521.5ppm Pb, 2432 ppm As and 136.6ppm Sb. The sample may be of quartz scinter (epithermal related) or simply a late quartz vein which may be associated with the Nat North target.

Plate 6: Sample 103551

Plate 7: Sample 103551 - Angular, frothy Quartz veining

In 2016, market conditions were such that the Nat property was reduced to only cover the Nat North target. Claims held by others in the area also lapsed, allowing the author to acquire the ground over the Copper 1-4 Minfile showing (093M 162) and claims to the east of the Nat North target prior to the commencement of the program.

The NN humus line was extended 500m to the east and a second line was run 350m to the south across the area of mineralized float. The sampling revealed an area of Au enrichment on the east end of both lines over widths to 200m with Response Ratios (RRs) to 164 x background. The area is also anomalous in Cu, As and Sb.

The Copper 1-4 Minfile was not located south of the access road where its position plots using Minfile coordinates. The narrow Pb/Zn Ag vein showing is believed to be located in the vicinity of sample 103810 which returned RRs for Pb of 58, Zn 21, Cd 16 and a RR for Ag of 5 x background.

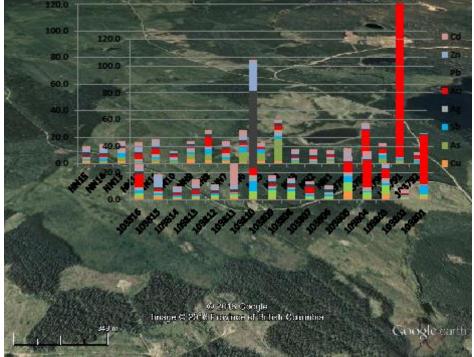


Plate 8: Satellite Image with Response Ratios

Item 7: Geological Setting and Mineralization

7.1 Regional Geology

The project area lies on the northwest side of the Skeena Arch within the Intermontane tectonic belt of west-central B C. The Babine Lake area is underlain principally by Mesozoic layered rocks, the most widespread in this area being volcanic and sedimentary rocks of the Jurassic Hazelton and Bowser Lake Groups. These are intruded by plutonic rocks of various ages including lower Jurassic Topley intrusions, Omineca intrusions of early Cretaceous age, late Cretaceous rhyolite and granodiorite porphyrites and Babine intrusions of early Tertiary age. Deformation consists of moderate folding, transcurrent boundary faults, thrusting and normal faulting. Younger early Cretaceous Skeena Group undivided sedimentary rocks and subvolcanic rhyolite domes are preserved in a large cauldera setting roughly 24km in diameter that sits between the West Arm and Fisheries Arm of Babine Lake to the west of the Nat property.

A very late structural event (possibly Eocene or later) has been noted by the author in an area that stretches from Takla Lake to the east to at least the Natlan Peak area on the west. This event is believed to be a fairly close spaced dextral shearing 800m-2km between shears with only 200-300m of right lateral offset. Evidence for this event was first noted with the Don showing, Minfile 093N 220, where a northeast-striking fault defines a 300m apparent dextral offset to the contact between the volcanic and eastern clastic units. A review of the regional 1st derivative magnetic data from MapPlace in the area of the Don showing shows a repeated dextral offset of 200-300m to a magnetic high anomaly that cuts across Takla Lake. This northeast trending late structural event is noted at many of the Minfile occurrences in the Babine and Takla Lake areas, including at the former Bell and Granisle mines and other more advanced showings in the area. In the Natlan area, mineralization is hosted in northeast trending quartz veins at American Boy (Minfile 093M 047), Mohawk (Minfile 093M 051), Babine (Minfile 093M 116) and Ellen (Minfile 093M 123) and in guartz stockworks at Mt Thomlinson (093M 080). At the Ellen showing, veins and veinlets in granites occur in association with shear zones trending between 020° and 040°, dipping steeply 70° east to west. The mineralization is late in the evolution of the granitic complex, post-dating hornfelsing and post-dating the guartz-molybdenite mineralization. The mineralization process is multiphased, as demonstrated by the distinctive banding of quartz and sulphides (Reid, 1985). This structural event is important in that it hosts high grade base metal mineralization as at the Granisle and Bell mines and is shown to carry significant precious metal values as at the Ellen showing and the Mohawk and American Boy past producing mines. At the Granisle pit, coarse-grained chalcopyrite is widespread, occurring principally in quartz filled fractures with preferred orientations of 035° to 060° and 300° to 330° with near vertical dips.

In the Nat project area, this same late structural event is seen as the north and northeast trending Takla fault that lies immediately east of the property. A second northnortheast structure is suggested by a number of narrow diorite intrusions that occur along the western margin of the property. This second fault may also control the late dyke present in the Granisle pit that hosts significant high grade mineralization.

The best known style of mineralization in the Babine Lake area is porphyry copper mineralization associated with small stocks and dyke swarms of biotite feldspar porphyry of the Babine intrusions. Eocene aged BFP hosts annular porphyry copper deposits such as the Bell Mine (296 mT of 0.46% Cu and 0.2 gpt Au), the Granisle Mine (119 mT of 0.41% Cu and 0.15 gpt Au) (Carter et al, 1995) and the Morrison Deposit (207 mT of 0.39% Cu and 0.20 gpt Au) (Simpson, 2007).

Copper molybdenum mineralization is also known to occur in late phases of the Topley intrusions and in late Cretaceous granodiorite porphyrites. Other deposit types include narrow veins with base and precious metal values which commonly occur marginal to porphyry deposits and disseminated copper mineralization in Hazelton Group volcanic rocks (Carter, 1985).

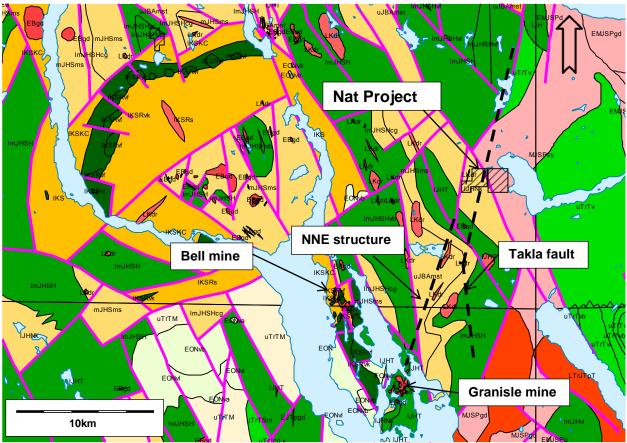


Figure 3: Regional Geology Map

Table 2

Geology Legend

Bounding Box: North: 55.236 South: 54.903 West: -126.648 East: -125.878 NTS Mapsheets: 093L, 093K, 093N, 093M

Eocene

Babine Plutonic Suite

EBgd	Biotite-Feldspar Porphyritic Phase: granodioritic intrusive rocks
EBqd	Quartz Diorite to Granodiorite Phase: quartz dioritic intrusive rocks

Nechako Plateau Group

EON	Newman Formation: andesitic volcanic rocks
EONva	Newman Formation - Mafic Flows Member: andesitic volcanic rocks
EONvb	Newman Formation - Porphyritic Flows Member: basaltic volcanic rocks
EEvl	Endako Formation: coarse volcaniclastic and pyroclastic volcanic rocks
EONvI	Newman Formation - Breccia Member: coarse volcaniclastic and pyroclastic volcanic rocks

Late Cretaceous to Eocene

LKdr dioritic intrusive rocks

Late Cretaceous

Bulkley Plutonic Suite

LK

LKBdr Diorite Phase: dioritic intrusive rocks

Early Cretaceous

EKqm	Wedge Mountain Stock: quartz monzonitic to monzogranitic intrusive
скуш	rocks

Skeena Group

IKSRvk	Rocky Ridge Formation - Subvolcanic Rhyolite Domes: alkaline volcanic rocks		
IKSRvf Rocky Ridge Formation - Subvolcanic Rhyolite Domes: rhyolite, fe			
IKS	undivided sedimentary rocks		
IKSKC	Kitsuns Creek Formation: undivided sedimentary rocks		
IKSRs	Red Rose Formation: undivided sedimentary rocks		

Middle to Late Jurassic

Bowser Lake Group

uJBAmst	Ashman Formation: argillite, greywacke, wacke, conglomerate turbidit	
uJBT	Trout Creek Formation: conglomerate, coarse clastic sedimentary rocks	

Middle Jurassic

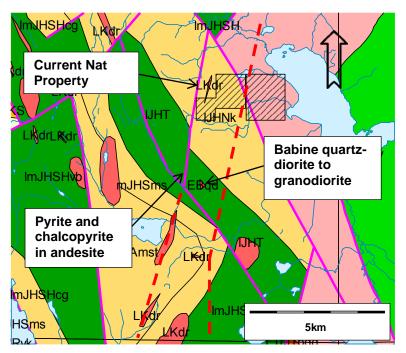
Hazelton Group

mJHSms	Smithers Formation: marine sedimentary and volcanic	rocks

Spike Peak Intrusive Suite

MJSPgd	Quartz Monzonite Phase: granodioritic intrusive rocks
--------	---

MJSPsy syenitic to monzonitic intrusive rocks


Early to Middle Jurassic

Hazelton Group

ImJHSHva Saddle Hill Formation - Megacrystic Porphyry Member: andesitic volcanic rocks	
ImJHSHvb Saddle Hill Formation - Mafic Submarine Volcanic Member: bas volcanic rocks	
lmJHvl	coarse volcaniclastic and pyroclastic volcanic rocks
ImJHSHcg	Saddle Hill Formation - Volcaniclastic-Sedimentary Member: conglomerate, coarse clastic sedimentary rocks
ImJHSHvf	Saddle Hill Formation - Subvolcanic Rhyolite Domes: rhyolite, felsic volcanic rocks
ImJHSH	Saddle Hill Formation: undivided volcanic rocks

ImJHSHvc	Saddle Hill Formation - Intermediate Volcanic Member: volcaniclastic rocks		
Spike Peak Intru	sive Suite		
EMJSPd	dioritic intrusive rocks		
EMJSPgd	granodioritic intrusive rocks		
Early Jurassic			
Hazelton Group			
IJH	andesitic volcanic rocks		
IJHT	Telkwa Formation - Felsic to Intermediate Volcanic Member: andesitic volcanic rocks		
IJHNk	Nilkitkwa Formation: argillite, greywacke, wacke, conglomerate turbidites		
IJHT	Telkwa Formation - Mafic Volcanic Member: basaltic volcanic rocks		
Lower Jurassic			
IJHNk	Nilkitkwa Formation: undivided sedimentary rocks		
Late Triassic to	Early Jurassic		
uTrJcg	conglomerate, coarse clastic sedimentary rocks		
Topley Intrusive	Suite		
LTrJTpT	Tochcha Lake Stock: dioritic intrusive rocks		
EJTpfp	Megacrystic Porphyry Dykes: feldspar porphyritic intrusive rocks		
LTrJTpgd	Granodiorite to Monzonite Phase: granodioritic intrusive rocks		
EJTpgd	Porphyritic Phase: granodioritic intrusive rocks		
Late Triassic			
Takla Group			
uTrTva	andesitic volcanic rocks		
uTrTM	Moosevale Formation: argillite, greywacke, wacke, conglomerate turbidites		
uTrTvb	basaltic volcanic rocks		
uTrTSm	Savage Mountain Formation: basaltic volcanic rocks		
uTrTvl	coarse volcaniclastic and pyroclastic volcanic rocks		
uTrTv	undivided volcanic rocks		
Early Permian			
Asitka Group			
PAIs	limestone, marble, calcareous sedimentary rocks		

7.2 Property Geology

The main feature noted in the geology of the area near the Nat property is the number of narrow Cretaceous aged diorite intrusions that are seen paralleling various faults mapped by the BC Geological survey. Of interest is that no fault has been identified along the southwestern edge of the former Nat claim group despite the linear alignment of a number of these same diorite intrusions in a north-northeast trend. The Takla fault is mapped to the west of Natowite Lake but not shown on the geological image from MapPlace. (Schiarizza and MacIntyre, 1998)

Figure 4: Property Geology Map

It is proposed that the fault mapped along the northwestern boundary of the Nat claims actually extends to the southwest and acted as a zone of weakness allowing for the emplacement of the diorite dykes present. The younger Eocene aged Babine quartzdiorite to granodiorite plug mapped to the south of the present claim group intruded near the intersection of the northwest and two north-northeast faults.

Item 8: Deposit Types

The most important mineral occurrences in the area of the Property are porphyry copper-molybdenite-gold deposits associated with the Late Cretaceous Bulkley intrusions and the Eocene Babine intrusions. There is also epithermal or high sulphidation VMS potential with silver-lead- zinc mineralization similar to that at the Fireweed prospect in Skeena Group rocks. Potential also exists for Besshi-type massive sulphides, volcanic redbed copper deposits, polymetallic veins with silver-lead-zinc and possibly gold, and intrusion related gold-pyrrhotite deposits. The most important focus for exploration on the Property is for calc-alkaline porphyry copper-molybdenum-gold deposits and polymetallic vein deposits.

8.1 Porphyry Cu+/-Mo+/-Au (Calcalkaline porphyry Cu, Cu-Mo, Cu-Au.)

Panteleyev (1995) describes the deposit type as stockworks of quartz veinlets, quartz veins, closely spaced fractures and breccias containing pyrite and chalcopyrite with lesser molybdenite, bornite and magnetite occur in large zones of economically bulk-mineable mineralization in or adjoining porphyritic intrusions and related breccia bodies. Disseminated sulphide minerals are present, generally in subordinate amounts. The mineralization is spatially, temporally and genetically associated with hydrothermal alteration of the hostrock intrusions and wallrocks.

The geological setting has high-level (epizonal) stock emplacement levels in volcanoplutonic arcs, commonly oceanic volcanic island and continent-margin arcs. Virtually any type of country rock can be mineralized, but commonly the high-level stocks and related dikes intrude their coeval and cogenetic volcanic piles.

Intrusions range from coarse-grained phaneritic to porphyritic stocks, batholiths and dike swarms; rarely pegmatitic. Compositions range from calcalkaline quartz diorite to granodiorite and quartz monzonite. Commonly there is multiple emplacement of successive intrusive phases and a wide variety of breccias. Large zones of hydrothermally altered rock contain quartz veins and stockworks, sulphide-bearing veinlets; fractures and lesser disseminations in areas up to 10 km2 in size, commonly coincident wholly or in part with hydrothermal or intrusion breccias and dike swarms. Deposit boundaries are determined by economic factors that outline ore zones within larger areas of low-grade, concentrically zoned mineralization. Cordilleran deposits are commonly subdivided according to their morphology into three classes - classic, volcanic and plutonic.

Volcanic type deposits (e.g. Island Copper) are associated with multiple intrusions in subvolcanic settings of small stocks, sills, dikes and diverse types of intrusive breccias. Reconstruction of volcanic landforms, structures, vent-proximal extrusive deposits and subvolcanic intrusive centres is possible in many cases, or can be inferred. Mineralization at depths of 1 km, or less, is mainly associated with breccia development or as lithologically controlled preferential replacement in hostrocks with high primary permeability. Propylitic alteration is widespread and generally flanks early, centrally located potassic alteration; the latter is commonly well mineralized. Younger mineralized phyllic alteration commonly overprints the early mineralization. Barren advanced argillic alteration is rarely present as a late, high-level hydrothermal carapace.

Classic deposits (e.g., Berg) are stock related with multiple emplacements at shallow depth (1 to 2 km) of generally equant, cylindrical porphyritic intrusions. Numerous dikes and breccias of pre, intra, and post-mineralization age modify the stock geometry. Orebodies occur along margins and adjacent to intrusions as annular ore shells. Lateral outward zoning of alteration and sulphide minerals from a weakly mineralized potassic/propylitic core is usual. Surrounding ore zones with potassic (commonly biotiterich) or phyllic alteration contain molybdenite + chalcopyrite, then chalcopyrite and a generally widespread propylitic, barren pyritic aureole or 'halo'.

Plutonic deposits (e.g., the Highland Valley deposits) are found in large plutonic to batholithic intrusions immobilized at relatively deep levels, say 2 to 4 km. Related dikes and intrusive breccia bodies can be emplaced at shallower levels. Hostrocks are phaneritic coarse-grained to porphyritic. The intrusions can display internal compositional differences as a result of differentiation with gradational to sharp boundaries between the different phases of magma emplacement. Local swarms of dikes, many with associated breccias, and fault zones are sites of mineralization. Orebodies around silicified alteration zones tend to occur as diffuse vein stockworks

carrying chalcopyrite, bornite and minor pyrite in intensely fractured rocks but, overall, sulphide minerals are sparse. Much of the early potassic and phyllic alteration in central parts of orebodies is restricted to the margins of mineralized fractures as selvages. Later phyllic-argillic alteration forms envelopes on the veins and fractures and is more pervasive and widespread. Propylitic alteration is widespread but unobtrusive and is indicated by the presence of rare pyrite with chloritized mafic minerals, saussuritized plagioclase and small amounts of epidote.

Ore mineralogy: Pyrite is the predominant sulphide mineral; in some deposits the Fe oxide minerals magnetite, and rarely hematite, are abundant. Ore minerals are chalcopyrite; molybdenite, lesser bornite and rare (primary) chalcocite. Subordinate minerals are tetrahedrite/tennantite, enargite and minor gold, electrum and arsenopyrite. In many deposits late veins commonly contain galena and sphalerite in a gangue of quartz, calcite and barite.

Texture/structure: Quartz, quartz-sulphide and sulphide veinlets and stockworks; sulphide grains in fractures and fracture selvages. Minor disseminated sulphides commonly replacing primary mafic minerals. Quartz phenocrysts can be partially resorbed and overgrown by silica. Gangue minerals in mineralized veins are mainly quartz with lesser biotite, sericite, K-feldspar, magnetite, chlorite, calcite, epidote, anhydrite and tourmaline. Many of these minerals are also pervasive alteration products of primary igneous mineral grains.

Alteration mineralogy: Quartz, sericite, biotite, K-feldspar, albite, anhydrite/gypsum, magnetite, actinolite, chlorite, epidote, calcite, clay minerals, tourmaline. Early formed alteration can be overprinted by younger assemblages. Central and early formed potassic zones (K-feldspar and biotite) commonly coincide with ore. This alteration can be flanked in volcanic hostrocks by biotite-rich rocks that grade outward into propylitic rocks. The biotite is a fine-grained, 'shreddy' looking secondary mineral that is commonly referred to as an early developed biotite (EDB) or a 'biotite hornfels'. These older alteration assemblages in cupriferous zones can be partially to completely overprinted by later biotite and K-feldspar and then phyllic (quartz-sericite-pyrite) alteration, less commonly argillic, and rarely, in the uppermost parts of some ore deposits, advanced argillic alteration (kaolinite-pyrophyllite). Secondary (supergene) zones carry chalcocite, covellite and other Cu*2S minerals (digenite, djurleite, etc.), chrysocolla, native copper and copper oxide, carbonate and sulphate minerals. Oxidized and leached zones at surface are marked by ferruginous 'cappings' with supergene clay minerals, limonite (goethite, hematite and jarosite) and residual quartz.

Ore controls: Igneous contacts, both internal between intrusive phases and external with wallrocks; cupolas and the uppermost, bifurcating parts of stocks, dike swarms. Breccias, mainly early formed intrusive and hydrothermal types. Zones of most intensely developed fracturing give rise to ore-grade vein stockworks, notably where there are coincident or intersecting multiple mineralized fracture sets.

Geochemical signature: Calcalkalic systems can be zoned with a cupriferous (* Mo) ore zone having a 'barren', low-grade pyritic core and surrounded by a pyritic halo with

peripheral base and precious metal-bearing veins. Central zones with Cu commonly have coincident Mo, Au and Ag with possibly Bi, W, B and Sr. Peripheral enrichment in Pb, Zn, Mn, V, Sb, As, Se, Te, Co, Ba, Rb and possibly Hg is documented. Overall the deposits are large-scale repositories of sulphur, mainly in the form of metal sulphides, chiefly pyrite.

Geophysical signature: Ore zones, particularly those with higher Au content, can be associated with magnetite-rich rocks and are indicated by magnetic surveys. Alternatively the more intensely hydrothermally altered rocks, particularly those with quartz-pyrite-sericite (phyllic) alteration produce magnetic and resistivity lows. Pyritic haloes surrounding cupriferous rocks respond well to induced polarization (I.P.) surveys but in sulphide-poor systems the ore itself provides the only significant IP response.

Other exploration guides: Porphyry deposits are marked by large-scale, zoned metal and alteration assemblages. Ore zones can form within certain intrusive phases and breccias or are present as vertical 'shells' or mineralized cupolas around particular intrusive bodies. Weathering can produce a pronounced vertical zonation with an oxidized, limonitic leached zone at surface (leached capping), an underlying zone with copper enrichment (supergene zone with secondary copper minerals) and at depth a zone of primary mineralization (the hypogene zone).

British Columbia porphyry Cu * Mo \pm Au deposits range from <50 to >900 Mt with commonly 0.2 to 0.5 % Cu, <0.1 to 0.6 g/t Au, and 1 to 3 g/t Ag. Mo contents are variable from negligible to 0.04 % Mo. Median values for 40 B.C. deposits with reported reserves are: 115 Mt with 0.37 % Cu, *0.01 % Mo, 0.3g /t Au and 1.3 g/t Ag.

In the Canadian Cordillera these deposits formed primarily in the Triassic/Jurassic (210-180 Ma) and Cretaceous/Tertiary (85-45 Ma). Elsewhere deposits are mainly Tertiary, but range from Archean to Quaternary.

British Columbia examples include Volcanic type deposits (Cu + Au * Mo) - Fish Lake (092O 041), Kemess (094E 021,094), Hushamu (EXPO, 092L 240), Red Dog (092L 200), Poison Mountain (092O 046), Bell (093M 001), Morrison (093M 007), Island Copper (092L 158). Classic deposits (Cu + Mo * Au) - Brenda (092HNE047), Berg (093E 046), Huckleberrry (093E 037), Schaft Creek (104G 015). Plutonic deposits (Cu * Mo) - Highland Valley Copper (092ISE001,011,012,045), Gibraltar (093B 012,007), Catface (092F 120).

Associated deposit types include: Skarn Cu, porphyry Au, epithermal Au-Ag (low sulphidation) or epithermal Cu-Au-Ag (high-sulphidation) enargite-bearing veins, replacements and stockworks; auriferous and polymetallic base metal quartz and quartz-carbonate veins, Au-Ag in base metal.

8.1.1 Babine Lake District Porphyry Copper-Gold Deposits

Common features shared by porphyry copper-gold deposits in the Babine Lake district include (Carter et al, 1995) porphyritic host lithology, concentric alteration, pyrite halo, polymetallic peripheral veins and coincident north to northwest trending regional faults.

Associated biotite-feldspar, hornblende-feldspar, or feldspar porphyry plugs and dikes are commonly less than one square kilometre. They are ubiquitously mineralized with magnetite. The cores of the deposits show a potassic alteration that is dominated by biotite, and commonly contains magnetite. Annular phyllic (quartz-sericite-pyrite) alteration surrounds the core sections. Pyrite halos surrounding deposits are up to 300 metres wide.

Mineralization is principally chalcopyrite and pyrite, with lesser bornite, and possibly molybdenite, occurring as disseminations, fracture coatings and in fine stockworks of quartz.

Exploration guides (Carter et al, 1995) are summarized:

- 1. Ubiquitous magnetite in the host intrusive, and common magnetite in the central potassic alteration zone make an excellent target for magnetic surveys.
- 2. Pyrite halos provide a broad target for which induced polarization (IP) technique is very effective.
- 3. Copper signature in soil samples ranges from 100ppm to 500ppm for individual deposits.
- 4. Zinc signature in soils is effective in detecting the outer margin of the pyrite halo.
- 5. Target grades for economic deposits are 0.45% Cu and 0.23 g/t Au.

Panteleyev (1995) indicates that central zones with Cu commonly have coincident Mo, Au and Ag with possibly Bi, W, B and Sr anomalies. Peripheral enrichment in Pb, Zn, Mn, V, Sb, As, Se, Te, Co, Ba, Rb and possibly Hg is documented.

8.2 Polymetallic Vein

Lefebure (1996) describes the deposit type as sulphide-rich veins containing sphalerite, galena, silver and sulphosalt minerals in a carbonate and quartz gangue. These veins can be subdivided into those hosted by metasediments and another group hosted by volcanic or intrusive rocks. The latter type of mineralization is typically contemporaneous with emplacement of a nearby intrusion. These veins occur in virtually all tectonic settings except oceanic, including continental margins, island arcs, continental volcanics and cratonic sequences.

Metasediment hosted veins are emplaced along faults and fractures in sedimentary basins dominated by clastic rocks that have been deformed, metamorphosed and intruded by igneous rocks. Veins postdate deformation and metamorphism. Igneous hosted veins typically occur in country rock marginal to an intrusive stock. Typically veins crosscut volcanic sequences and follow volcano- tectonic structures, such as caldera ring-faults or radial faults. In some cases the veins cut older intrusions. In many

districts there are felsic to intermediate intrusive bodies with mafic igneous rocks less common. Many veins are associated with dikes following the same structures. Veins are typically steeply dipping, narrow, tabular or splayed veins. Commonly occur as sets of parallel and offset veins. Individual veins vary from centimetres up to more than 3 m wide and can be followed from a few hundred to more than 1000 m in length and depth. Veins may widen to tens of metres in stockwork zones.

Compound veins with a complex paragenetic sequence are common. A wide variety of textures, including cockade texture, colloform banding and crustifications and locally druzy. Veins may grade into broad zones of stockwork or breccia. Coarse-grained sulphides occur as patches and pods and fine- grained disseminations that are confined to the veins.

Ore mineralogy (Principal and *subordinate*): Galena, sphalerite, tetrahedrite- tennantite, other sulphosalts including pyrargyrite, stephanite, bournonite and acanthite, native silver, chalcopyrite, pyrite, arsenopyrite, stibnite. Silver minerals often occur as inclusions in galena. Native gold and electrum in some deposits. Rhythmic compositional banding sometimes present in sphalerite. Some veins contain more chalcopyrite and gold at depth and Au grades are normally low for the amount of sulphides present.

Gangue mineralogy (Principal and *subordinate*): Metasediment host: Carbonates (most commonly siderite with minor dolomite, ankerite and calcite), quartz, barite, fluorite, magnetite, bitumen. Igneous host: Quartz, carbonate (rhodochrosite, siderite, calcite, dolomite), sometimes specular hematite, hematite, barite, fluorite. Carbonate species may correlate with distance from source of hydrothermal fluids with proximal calcium and magnesium-rich carbonates and distal iron and magnese-rich species.

Macroscopic wall rock alteration is typically limited in extent (measured in metres or less). The metasediments typically display sericitization, silicification and pyritization. Thin veining of siderite or ankerite may be locally developed adjacent to veins. In the Coeur d'Alene camp a broader zone of bleached sediments is common. In volcanic and intrusive hostrocks the alteration is argillic, sericitic or chloritic and may be quite extensive. Black manganese oxide stains, sometimes with whitish melanterite, are common weathering products of some veins. The supergene weathering zone associated with these veins has produced major quantities of manganese. Galena and sphalerite weather to secondary Pb and Zn carbonates and Pb sulphate. In some deposits supergene enrichment has produced native and horn silver.

Ore controls include regional faults, fault sets and fractures, however veins are typically associated with second order structures. In igneous rocks the faults may relate to volcanic centers. Significant deposits restricted to competent lithologies. Dikes are often emplaced along the same faults and in some camps are believed to be roughly contemporaneous with mineralization. Some polymetallic veins are found surrounding intrusions with porphyry deposits or prospects. The styles of alteration, mineralogy,

grades and different geometries can usually be used to distinguish the polymetallic veins from stringer zones found below syngenetic massive sulphide deposits.

Historically these veins have been considered to result from differentiation of magma with the development of a volatile fluid phase that escaped along faults to form the veins. More recently researchers have preferred to invoke mixing of cooler, upper crustal hydrothermal or meteoric waters with rising fluids that could be metamorphic, groundwater heated by an intrusion or expelled directly from a differentiating magma. Any development of genetic models is complicated by the presence of other types of veins in many districts. For example, the Freiberg district has veins carrying F-Ba, Ni-As- Co-Bi-Ag and U.

Exploration guides: Geochemical signature: Elevated values of Zn, Pb, Ag, Mn, Cu, Ba and As. Veins may be within arsenic, copper, silver, mercury aureoles caused by the primary dispersion of elements into wallrocks or broader alteration zones associated with porphyry deposit or prospects. Geophysical signature: May have elongate zones of low magnetic response and/or electromagnetic, self potential or induced polarization anomalies related to ore zones. Strong structural control on veins and common occurrence of deposits in clusters can be used to locate new veins.

Typical grade and tonnage of Individual vein systems range from several hundred to several million tonnes grading from 5 to 1500 g/t Ag, 0.5 to 20% Pb and 0.5 to 8% Zn. Average grades are strongly influenced by the minimum size of deposit included in the population. For B.C. deposits larger than 20 000 t, the average size is 161 000 t with grades of 304 g/t Ag, 3.47 % Pb and 2.66 % Zn. Copper and gold are reported in less than half the occurrences, with average grades of 0.09 % Cu and 4 g/t Au.

The most common deposit type in British Columbia with over 2 000 occurrences; these veins were a significant source of Ag, Pb and Zn until the 1960s. They have declined in importance as industry focused more on syngenetic massive sulphide deposits. Larger polymetallic vein deposits are still attractive because of their high grades and relatively easy benefication. They are potential sources of cadmium and germanium.

Age of mineralization is Proterozic or younger and mainly Cretaceous to Tertiary in British Columbia.

Examples (British Columbia - *Canada/International*): Metasediment host: Silvana (082FNW050) and Lucky Jim (082KSW023), Slocan-New Denver-Ainsworth district, St. Eugene (082GSW025), Silver Cup (082KNW027), Trout Lake camp; *Hector-Calumet and Elsa, Mayo district (Yukon, Canada), Coeur d'Alene district (Idaho, USA), Harz Mountains and Freiberg district (Germany), Pr;bram district (Czechoslavakia).* Igneous host: Wellington (082ESE072) and Highland Lass - Bell (082ESW030, 133), Beaverdell camp; Silver Queen (093L 002), Duthie (093L 088), Cronin (093L 127), Porter-Idaho (103P 089), Indian (104B 031); *Sunnyside and Idorado, Silverton district and Creede (Colorado, USA), Pachuca (Mexico).*

Item 9: Exploration

The Nat property was expanded in April 2017 prior to the start of the field season to cover the area to the east where previous sampling returned highly anomalous gold in humus over widths to 200m. The new claims also covered a prominent bullseye magnetic high anomaly. A total of forty nine Ah-humus samples and eight rock samples were collected as part of the program.

Sample #	Easting	Northing	Sample Type	Sample Description
1043621	689163	6108466	float grab	angular, rusty weathering, black chert with white quartz veinlets and 5% iron oxide, trace Py.
1043622	689283	6108443	float grab	angular boulder, medium grey, fine grained volcanic rock with trace Py and 5% clots of secondary magnetite. Rock is strongly magnetic.
1043623	688729	6108782	float grab	angular, manganese-stained, medium-grey siliceous intrusive, 3-5% Py, trace Cpy
1043624	687108	6108444	broken bedrock grab	medium-grey, fine-grained sediment with 5% splotches iron oxide, 2% galena, 1% Cpy?
1043625	687113	6108428	broken bedrock grab	semi-massive sulphide with 20% Py veining
1043626	687112	6108423	broken bedrock grab	rusty, pebble-conglomerate with 20-30% Py, trace Cpy
1043627	687144	6108476	broken bedrock, float grab	cobbles of quartz, galena, Cpy veining from nearby pit of Cu 1-4 Minfile showing
1043628	687141	6108476	broken bedrock, float 15cm chip	15cm wide x 40cm long piece of galena, sphalerite, Cpy veining from Cu 1-4 Minfile showing. 15cm representative sample across veining.

Table 3:	Rock Sample Descriptions

Cobbles and boulders of massive sulphide were located at the edge of a large pit which is believed to be the location of the Copper 1-4 Minfile showing. These pieces of broken bedrock. up to 15cm wide and 40cm long, contained massive galena, sphalerite, pyrite and chalcopyrite. A representative sample across this polymetallic vein returned >20% Pb, 21.4% Zn, 939ppm Ag and 1305ppm Cu while smaller cobbles assayed as high as 1295ppm Ag and 5850ppm Cu with significant Pb and Zn. Angular float boulders overlying the magnetic anomaly to the east contained significant secondary magnetite and pyrite with traces of chalcopyrite. The rock sample location map is located in Appendix A and sample certificates are located in Appendix B.

Plate 9: Cu 1-4 showing mineralization

The east-west oriented Nat North humus lines were extended a further 1200m to the east in an effort to expand the gold anomalies which were returned from the 2016 sampling. The lines also crossed the magnetic high anomaly located on the newly acquired claims. A perpendicular line was also run along the northerly trending Jinx Main logging road through the middle of the magnetic anomaly. Results from the program revealed numerous areas of anomalous Au in humus with Response Ratios (RRs) to 96 x background and widths to 300m. Results from the road transect were quite subdued in comparison and may have been the result of sampling humus over disturbed ground adjacent to the road. Minor spot anomalies were returned over the central and northern parts of this line. The humus sample location map is located in Appendix C, humus results in Appendix D and sample certificates in Appendix E.

Sample #	Easting	Northing	Sample Type
2353651	688100	6108447	Ah
2353652	688200	6108451	Ah
2353653	688298	6108453	Ah
2353654	688400	6108451	Ah
2353655	688499	6108449	Ah
2353656	688599	6108450	Ah
2353657	688705	6108454	Ah
2353658	688799	6108449	Ah
2353659	688902	6108450	Ah
2353660	689002	6108451	Ah
2353661	689101	6108448	Ah
2353662	689203	6108450	Ah
2353663	689301	6108452	Ah
2353664	689301	6108801	Ah
2353665	689197	6108800	Ah
2353666	689100	6108804	Ah
2353667	688998	6108801	Ah
2353668	688902	6108802	Ah
2353669	688798	6108798	Ah
2353670	688703	6108799	Ah
2353671	688602	6108800	Ah
2353672	688496	6108802	Ah
2353673			void, duplicate of road sample
2353674	688298	6108810	Ah
2353675	688200	6108804	Ah
2353676	688097	6108801	Ah
2353677	687156	6108497	Ah - 25m north of the Cu 1-4 showing
1043651	688400	6107700	Ah
1043652	688415	6107800	Ah
1043653	688420	6107900	Ah
1043654	688415	6108000	Ah
1043655	688410	6108100	Ah
1043656	688410	6108200	Ah
1043657	688410	6108300	Ah
1043658	688411	6108400	Ah
1043659	688416	6108480	Ah
1043660			missed sample tag
1043661	688418	6108590	Ah

Table 4: Humus Sample Descriptions

1043662	688413	6108665	Ah
1043663	688400	6108800	Ah
1043664	688380	6108900	Ah
1043665	688358	6109000	Ah
1043666	688318	6109100	Ah
1043667	688323	6109200	Ah
1043668	688345	6109300	Ah
1043669	688332	6109400	Ah
1043670	688330	6109500	Ah
1043671	688361	6109615	Ah
1043672	688363	6109703	Ah
1043673	688343	6109798	Ah

Response Ratios (RRs) are an efficient method of handling trace and ultra-trace data where absolute values are often meaningless. RRs using results from different laboratories and/or analytical methods can be calculated separately and then merged to create a single plot. Stacked profiles offer a visual picture of areas that are considered anomalous compared to background values. The following charts offer transects across the property at three locations. The data is presented from the north transect to the south transect with charts having west to the left and east to the right. (ie. looking north). The north-south trending road transect is presented with south to the left and north to the right (ie looking west).

The original Nat North line, was believed to have subdued Response Ratios (RRs) due to the limited number of samples collected in 2012. Additional sampling was completed over the target area to ensure that proper background values were obtained. The expanded line shows the presence of a subtle As/Sb +/- Au/Cu anomaly over 400m between NN4 and NN9. The 2016 program revealed a number of single station, strong Au anomalies with RRs ranging up to 164 x background in sample 103791 (off-scale on Figure 7). The 2017 program expanded the anomalous area to a width of 1500m. Four Au anomalies are evident from the new sampling. A 100m wide Au anomaly is present between samples 2354676 and 2353675 with RRs to 96 x background. A second Au anomaly lies to the east of a minor As anomaly with RRs of up to 8 x background. This 300m wide Au anomaly with RRs of up to 38 x background is present between samples 2353669. The area is also moderately anomalous in Sb with RRs to 7 x background and Ag with RRs to 4 x background. A single spot Au anomaly is present at sample 2353667 with a RR of 26 x background. A second single station Au anomaly is present at sample 2353665 with a RR of 56 x background.

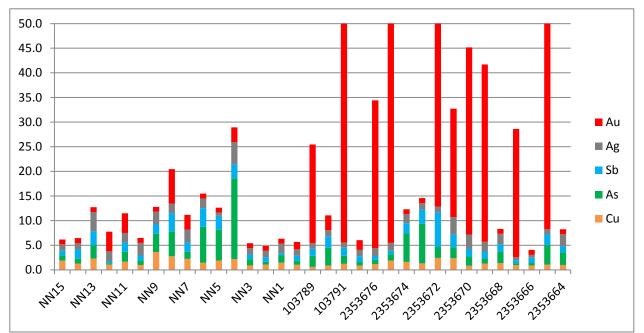


Figure 5: North Transect-Precious Metals

A review of the base metal results shows Mo appearing to build on the west end of the line with RRs up to 6 x background. The western half of the central As/Sb(Au/Cu) anomaly, samples NN7-NN9 a distance of 200m is also anomalous in lanthanum (La) which is often found in acid intrusions. The eastern 300m wide Au anomaly is bisected with the western half and the minor As anomaly also anomalous in La +/- Cd from samples 2353674 to 2353671.

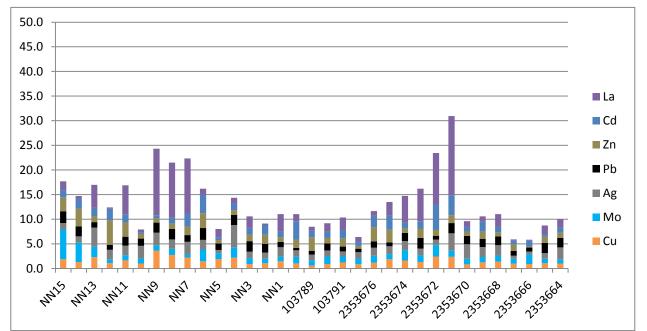


Figure 6: North Transect-Base Metals

The second line, sampled 350m to the south, revealed a similar Au enrichment on the eastern end of the line over a width of at least 1300m. RRs for Au reached as high as 56 x background at station 2353654 which lies at the eastern edge of a 400m wide Au anomaly. A second 300m wide Au anomaly with RRs to 52 x background lies between stations 2353656 and 2353659. A final open ended 200m wide Au anomaly lies east of station 2353661 with RRs to 26 x background.

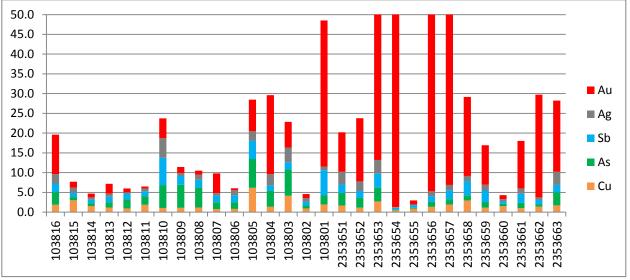


Figure 7: South Transect-Precious Metals

The Copper 1-4 Minfile was located approximately 50m east of sample 103810 which returned RRs for Pb of 58, Zn 21, Cd 16, Sb 7 and a RR for Ag of 5 x background. No other anomalies were noted in the base metal elements other than the Cu previously mentioned in samples103803 and 103805 which were also anomalous in Au and moderately anomalous in As and Sb. Sample 2353653 which is highly anomalous in Au is also anomalous in La with a RR of 33 x background.

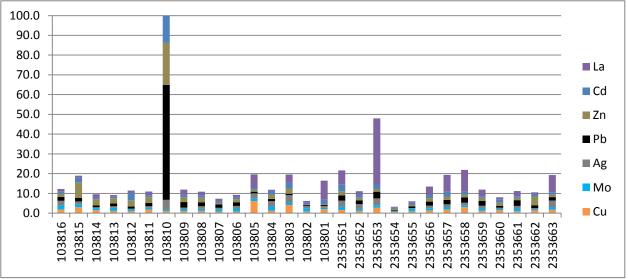


Figure 8: South Transect-Base Metals

The road transect is quite subdued in comparison to the other lines which may have resulted from sampling humus over disturbed ground adjacent to but not in the immediate vicinity of the road. A weak As anomaly persists over much of the transect with a minor Au anomaly over 300m near the southern end between samples 1043653 and 1043656. A central As anomaly is accompanied by spot Au anomalies with RRs to 28 x background at sample 1043661. At the northern end of the line a single station Au anomaly is present at sample 1043672.

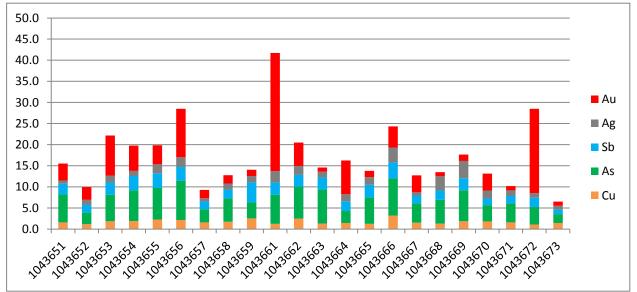


Figure 9: Road Transect-Precious Metals

A review of the base metal and indicator elements shows a moderate La anomaly over much the same area as the As and Au anomalies.

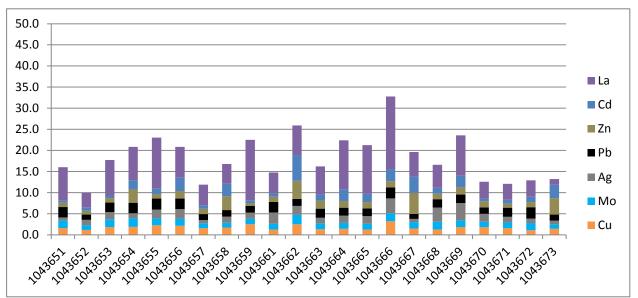


Figure 10: Road Transect-Base Metals

Item 10: Drilling

No drilling was completed as part of the exploration program.

Item 11: Sample Preparation, Analyses and Security

All rock samples collected were placed in clean 12x20 poly bags with a sample tag and tied closed with flagging tape. Ah-humus samples were collected in clean 9x12 poly bags, labeled with a sample tag and tied closed with flagging tape. The samples were transported to Francois Lake where they were placed into a woven rice bag and sealed with a zip tie. Samples were then transported to Prince George and then shipped to the ALS Minerals laboratory in North Vancouver.

Rocks were initially crushed to 70% passing 2mm. A 250g sub-sample was then split and pulverized to 85% passing 75 microns. Rock samples were analyzed for 52 elements plus gold. 30g splits were subjected to an Ultra Trace Aqua regia digestion prior to elemental determination using ICP-MS (ME-MS41). Gold determinations were completed using a Fire Assay of a 30g split (ICP21). Samples with overlimit Ag, Pb and Zn were further analyzed by Aqua regia (OG46) using a 0.4g sample.

Humus samples were screened to -180micron (-80 mesh). A 0.5g sub-sample was split and leached in hot aqua regia digestion prior to using Super Trace analytical procedures (ME-MS41L). Humus samples were analyzed for 52 elements plus gold. Gold determinations were also completed using a Fire Assay of a 25g split (ICP21).

Item 12: Data Verification

No data verification was completed as part of the exploration program.

Item 13: Mineral Processing and Metallurgical Testing

No mineral processing or metallurgical testing was completed as part of the exploration program.

Item 14: Mineral Resource Estimates

No mineral resource estimates were completed as part of the exploration program

Item 15: Adjacent Properties

Porphyry copper-gold deposits and occurrences in the Babine district, located approximately 9km to the southwest, described below, serve as analogues to the exploration model applied to the Property. The table below lists resources and production from major deposits in the district. The values from Bell and Granisle predate NI 43-101 reporting standards and should not be considered reliable. They are included as geological information only.

Table 5: Resources and Production of major Babine Porphyry Deposits

Property	Mineral F	Resourc	e	Mined			Reference	Category
	Million Tonnes	Cu %	Au g/t	Million Tonnes	Cu %	Au g/t		
Bell	296	0.46	0.20	77.2	0.47	0.26	Carter et al, 1995	non NI 43-101 compliant

Granisle	119	0.41	0.15	52.7	0.47	0.20	Carter et al, 1995	non NI 43-101 compliant
Morrison	207	0.39	0.2				Simpson, 2007	measured+ indicated
Hearne Hill	0.14	1.73	0.8				Simpson, 2008	indicated

The author has been unable to verify the information on mineral occurrences and deposits detailed below. Mineralization style and metal grades described are not necessarily representative of mineralization that may exist on the subject Property, and are included for geological illustration only. The mine and mineral occurrence descriptions described as follows are modified after the BC MINFILE occurrence descriptions and BC ARIS assessment report files.

15.1 Bell Copper Mine (Minfile 093M 01, rev. McMillan, 1991)

The Bell mine is a porphyry copper deposit hosted primarily in a biotite-feldspar porphyry (BFP) stock of the Eocene Babine Intrusions. The stock is crosscut by the northwest trending Newman fault which juxtaposes the two groups that host the intrusion. These groups are the Lower Jurassic Telkwa Formation (Hazelton Group) and the Lower Cretaceous Skeena Group. Telkwa Formation rocks are primarily fine grained tuffs and andesites and the younger Skeena Group rocks are mostly fine grained greywackes. The deposit overlaps onto both of these assemblages. The mineralization has been dated at 51.0 million years (Bulletin 64).

Chalcopyrite and lesser bornite occur as disseminations in the rock matrix, in irregular quartz lenses and in a stockwork of 3 to 6- millimetre quartz veinlets which cut the feldspar porphyries and the siltstones. Molybdenite is rare, and occurs in the feldspar porphyry in the northern part of the mineralized zone. Gold occurs as electrum associated with the copper mineralization. Specular hematite and magnetite are common in quartz veinlets and hairline fractures. There is also significant supergene enrichment with chalcocite coating chalcopyrite. A supergene chalcocite zone capped the deposit and extended to depths of 50 to 70 metres. Some gypsum together with copper-iron sulphate minerals and iron oxides were also present (Open File 1991-15).

The ore zone has pervasive potassic (mainly biotitization) alteration with a surrounding concentric halo of chlorite and sericite-carbonate alteration (propylitic and argillic) which corresponds to the two kilometre pyrite halo which surrounds the deposit. A late quartz-sericite-pyrite-chalcopyrite alteration has been superimposed on part of the earlier biotite-chalcopyrite ore at the western part of the ore body. A number of late-stage breccia pipes cut the central part of the ore zone near the Newman fault and alteration associated with their intrusion has apparently depleted the copper grades in the area of the pipes. Veinlets of gypsum are present in the upper part of the ore body. Anhydrite is a significant component in the biotite chalcopyrite zone but is not present in other alteration facies. Monominerallic veinlets of anhydrite are rare (Open File 1991-15).

The copper mineralization occurs in a crescent-shaped zone along the western contact of the porphyry plug. Better grades of copper mineralization are contained in a 60 by 90-metre thick flat-lying, blanket-like deposit which is connected to a central pipe-like zone,

centred on the western contact of the intrusive. The pipe-like zone of copper mineralization is 150 metres in diameter and extends to a depth of at least 750 metres.

Reserves in the open pit and in the Extension zone were (in 1990) 71,752,960 tonnes grading 0.23 gram per tonne gold, 0.46 per cent copper and 0.48 gram per tonne silver (Noranda Inc. Annual Report 1990).

15.2 Granisle Mine (Minfile 093L 146, rev. Duffett, 1987)

MacDonald Island is underlain by Lower-Middle Jurassic Telkwa Formation (Hazelton Group) volcanics comprised of green to purple waterlain andesite tuffs and breccias with minor intercalated chert pebble conglomerates in the central and eastern part of the island. These rocks strike northerly and dip at moderate angles to the west and are overlain in the western part of the island by massive and amygdaloidal andesitic flows and thin bedded shales.

Copper mineralization at the Granisle mine is associated with a series of Eocene Babine Intrusions which occur in the central part of the island. The oldest is an elliptical plug of dark grey quartz diorite approximately 300 by 500 metres in plan. The most important intrusions are biotite-feldspar porphyries of several distinct phases which overlap the period of mineralization. The largest and oldest is a wide north easterly trending dike which is intrusive into the western edge of the quartz diorite pluton. The contact is near vertical and several small porphyry dikes radiate from the main dike. Several of the phases of the porphyry intrusions are recognized within the pit area. Potassium-argon age determinations on four biotite samples collected in and near the Granisle ore body yielded the mean age of 51.2 Ma plus or minus 2 Ma (Minister of Mines Annual Report 1971).

The wide porphyry dike which strikes northeast is bounded by two parallel northwest striking block faults. The westernmost crosses the island south of the mine and the eastern fault extends along the channel separating the island from the east shore of Babine Lake.

An oval zone of potassic alteration is coincident with the ore zone. The main alteration product is secondary biotite. This potassic alteration zone is gradational outward to a quartz-sericite- carbonate-pyrite zone which is roughly coaxial with the ore zone. Within this zone, the intrusive and volcanic rocks are weathered to a uniform buff colour with abundant fine-grained quartz. Mafic minerals are altered to sericite and carbonate with plagioclase clouded by sericite. Pyrite occurs as disseminations or as fracture-fillings. Beyond the pyrite halo, varying degrees of propylitic alteration occurs in the volcanics with chlorite, carbonate and epidote in the matrix and carbonate-pyrite in fractured zones. Clay mineral alteration is confined to narrow gouge in the fault zones.

The principal minerals within the ore zone are chalcopyrite, bornite and pyrite. Coarsegrained chalcopyrite is widespread, occurring principally in quartz-filled fractures with preferred orientations of 035 to 060 degrees and 300 to 330 degrees with near vertical dips. Bornite is widespread in the southern half of the ore zone with veins up to 0.3 metres wide hosting coarse-grained bornite, chalcopyrite, quartz, biotite and apatite.

Gold and silver are recovered from the copper concentrates. Molybdenite occurs within the ore zone, most commonly in drusy quartz veinlets which appear to be later than the main stage of mineralization. Magnetite and specularite are common in the north half of the ore zone where they occur in fractures with chalcopyrite and pyrite. Pyrite occurs in greatest concentrations peripheral to the orebody as blebs, stringers and disseminations.

Mining at Granisle was suspended in mid-1982. Production from 1966 to 1982 totalled 52,273,151 tonnes yielding 69,752,525 grams of silver, 6,832,716 grams of gold, 214,299,455 kilograms of copper and 6,582 kilograms molybdenum.

Unclassified reserves are 14,163,459 tonnes grading 0.442 per cent copper (Noranda Mines Ltd. Annual Report 1984).

Remaining in situ reserves, as modelled in 1992 using a 0.30 per cent copper cutoff, are estimated to be 119 million tonnes grading 0.41 per cent copper and 0.15 grams per tonne gold (CIM Special Volume 46, page 254).

15.3 Morrison–Hearne Hill Project (From Simpson, 2007)

The Morrison deposit is a calc-alkaline copper-gold porphyry hosted by a multi-phase Eocene intrusive body intruding Middle to Upper Jurassic Ashman Formation siltstones and greywackes. Copper-gold mineralization consists primarily of chalcopyrite and minor bornite concentrated in a central zone of potassic alteration. A pyrite halo is developed in the chlorite-carbonate altered wall rock surrounding the copper zone.

Sulphide mineralization at Morrison shows strong spatial relationships with the underlying biotite-feldspar porphyry (BFP) plug and associated alteration zones. The central copper-rich core is hosted mainly within a potassically altered BFP plug with intercalations of older siltstone. This plug was initially intruded into the siltstone unit as a near-vertical sub-circular intrusion approximately 700 m in diameter. It was subsequently disrupted by the East and West faults and now forms an elongated body extending some 1500 metres in the northwest direction.

Chalcopyrite is the primary copper-bearing mineral and is distributed as fine grained disseminations in the BFP and siltstone, as fracture coatings or in stockworks of quartz. Minor bornite occurs within the higher grade copper zones as disseminations and associated with the quartz-sulphide stockwork style of mineralization.

Alteration is concentrically zoned with a central biotite (potassic) alteration core surrounded by a chlorite-carbonate zone. No well-developed phyllic zone has been identified. Hearne Hill deposit lies two kilometres southeast of Morrison. The Hearne Hill Property has been extensively explored, and a comparatively small but high grade copper-gold resource has been defined in two breccia pipes within a larger porphyry system.

15.4 Wolf (Minfile 093M 008, rev. McMillan, 1991)

The Wolf prospect is located on the west side of Morrison Lake, The Wolf area has been explored since 1965 when it was staked as the Bee claims.

A granodiorite stock containing phases of quartz monzonite and hornblende biotite feldspar porphyry of the Eocene Babine Intrusions cuts grey, locally graphitic siltstones of the Middle to Upper Jurassic Ashman Formation (Bowser Lake Group). A northnorthwest trending block fault separates Ashman Formation rocks from volcaniclastic sandstones and tuffs of the Jurassic Smithers Formation (Hazelton Group) on the east side of the property. The Newman fault, associated with mineralization in the area, occurs just to the northeast of the claims parallel to the baseline.

At least nine copper occurrences, hosted in quartz monzonite, have been documented. Chalcopyrite occurs as disseminations and as grains and films on fracture surfaces and is occasionally accompanied by molybdenite. Minor malachite and iron-oxides have been noted.

A drill hole in biotite feldspar porphyry intersected 1.2 metres grading 4.2 per cent copper (Assessment Report 8779).

15.5 Fireweed (Minfile 093M 151, rev. Payie, 2009)

The Fireweed occurrence is located on the south side of Babine Lake, approximately 54 kilometres northeast of Smithers. In the occurrence area, Upper Cretaceous marine to non-marine clastic sediments, of Skeena group are found adjacent to volcanic rocks of the Rocky Ridge Formation. Interbedded mudstones, siltstones and sandstones of a thick deltaic sequence, appear to underlie much of the area and were originally thought to belong to the Kisum Formation of the Lower Cretaceous Skeena Group. They are now assigned to the Red Rose Formation. The sediments commonly strike 070 to 080 degrees and dip sub-vertically. Locally the strike varies to 020-030 degrees at the discovery outcrop, the MN showing. Several diamond-drill holes have intersected sills of strongly altered feldspar porphyritic latite.

Skeena Group sediments are dominantly encountered in diamond drilling. The sediments are dark and medium to light grey and vary from mudstone and siltstone to fine and coarse-grained sandstone. Bedding can be massive, of variable thickness, changing gradually or abruptly to finely laminated. Bedding features such as rip-up clasts, load casts and cross-bedding are common. The beds are cut by numerous faults, many of them strongly graphitic. Drilling indicates Skeena Group sediments are in fault contact with Hazelton Group volcanic rocks. Strongly sericitized and carbonatized latite dikes cut the sediments.

Mineralization generally occurs in one of three forms: 1) breccia zones are fractured or brecciated sediments infilled with fine to coarse-grained massive pyrite-pyrrhotite and lesser amounts of sphalerite, chalcopyrite and galena 2) disseminated sulphides occur as fine to very fine grains which are lithologically controlled within coarser grained sandstones, pyrite, marcasite, sphalerite, galena and minor tetrahedrite are usually found interstitial to the sand grains and 3) massive sulphides, which are finegrained, commonly banded, containing rounded quartz-eyes and fine sedimentary fragments, occur as distinct bands within fine-grained sediments. The massive sulphides generally contain alternating bands of pyrite/ pyrrhotite and sphalerite/galena. They are associated with the breccia zones and are commonly sandwiched between altered quartz latite dikes.

Alteration in the sediments occurs in the groundmass and appears associated with the porous, coarse sandstones. Common secondary minerals are quartz, ankerite, sericite, chlorite and kaolinite.

Three main zones have been identified by geophysics (magnetics, induced polarization) and are named the West, East and South zones. Three other zones identified are the 1600, 3200 and Jan zones.

15.6 Equity Silver (Minfile 093L 001, rev. Robinson, 2009)

Silver, copper and gold were produced from the Equity Silver deposit, located 150km to the southeast of the Property.

The mineral deposits are located within an erosional window of uplifted Cretaceous age sedimentary, pyroclastic and volcanic rocks near the midpoint of the Buck Creek Basin. Strata within the inlier strike 015 degrees with 45 degree west dips and are in part correlative with the Lower-Upper Skeena(?) Group. Three major stratigraphic units have been recognized. A lower clastic division is composed of basal conglomerate, chert pebble conglomerate and argillite. A middle pyroclastic division consists of a heterogeneous sequence of tuff, breccia and reworked pyroclastic debris. This division hosts the main mineral deposits. An upper sedimentary-volcanic division consists of tuff, sandstone and conglomerate. The inlier is flanked by flat-lying to shallow dipping Eocene andesitic to basaltic flows and flow breccias of the Francois Lake Group (Goosly Lake and Buck Creek formations).

Intruding the inlier is a small granitic intrusive (57.2 Ma) on the west side, and Eocene Goosly Intrusions gabbro-monzonite (48 Ma) on the east side.

The chief sulphides at the Equity Silver mine are pyrite, chalcopyrite, pyrrhotite and tetrahedrite with minor amounts of galena, sphalerite, argentite, minor pyrargyrite and other silver sulphosalts. These are accompanied by advanced argillic alteration clay minerals, chlorite, specularite and locally sericite, pyrophyllite, and alusite, tourmaline and minor amounts of scorzalite, corundum and dumortierite. The three known zones of significant mineralization are referred to as the Main zone, the Southern Tail zone and the more recently discovered Waterline zone. The ore mineralization is generally

restricted to tabular fracture zones roughly paralleling stratigraphy and occurs predominantly as veins and disseminations with massive, coarse-grained sulphide replacement bodies present as local patches in the Main zone. Main zone ores are finegrained and generally occur as disseminations with a lesser abundance of veins. Southern Tail ores are coarse-grained and occur predominantly as veins with only local disseminated sulphides. The Main zone has a thickness of 60 to 120 metres while the Southern Tail zone is approximately 30 metres thick. An advanced argillic alteration suite includes andalusite, corundum, pyrite, quartz, tourmaline and scorzalite. Other zones of mineralization include a zone of copper-molybdenum mineralization in a quartz stockwork in and adjacent to the quartz monzonite stock and a large zone of tourmalinepyrite breccia located to the west and northwest of the Main zone.

Alteration assemblages in the Goosly sequence are characterized by minerals rich in alumina, boron and phosphorous, and show a systematic spatial relationship to areas of mineral deposits. Aluminous alteration is characterized by a suite of aluminous minerals including andalusite, corundum, pyrophyllite and scorzalite. Boron-bearing minerals consisting of tourmaline and dumortierite occur within the ore zones in the hanging wall section of the Goosly sequence. Phosphorous-bearing minerals including scorzalite, apatite, augelite and svanbergite occur in the hanging wall zone, immediately above and intimately associated with sulphide minerals in the Main and Waterline zones. Argillic alteration is characterized by weak to pervasive sericite-quartz replacement. It appears to envelope zones of intense fracturing, with or without chalcopyrite/tetrahedrite mineralization.

The copper-silver-gold mineralization is epigenetic in origin. Intrusive activity resulted in the introduction of hydrothermal metal-rich solutions into the pyroclastic division of the Goosly sequence. Sulphides introduced into the permeable tuffs of the Main and Waterline zones formed stringers and disseminations which grade randomly into zones of massive sulphide. In the Southern Tail zone, sulphides formed as veins, fracture-fillings and breccia zones in brittle, less permeable tuff. Emplacement of post-mineral dikes into the sulphide-rich pyroclastic rocks has resulted in remobilization and concentration of sulphides adjacent to the intrusive contacts. Remobilization, concentration and contact metamorphism of sulphides occurs in the Main and Waterline zones at the contact with the postmineral gabbro-monzonite complex.

The Southern Tail deposit has been mined out to the economic limit of an open pit. With its operation winding down, Equity Silver Mines does not expect to continue as an operating mine after current reserves are depleted. Formerly an open pit, Equity is mined from underground at a scaled-down rate of 1180 tonnes-per-day. Proven and probable ore reserves at the end of 1992 were about 286,643 tonnes grading 147.7 grams per tonne silver, 4.2 grams per tonne gold and 0.46 per cent copper, based on a 300 grams per tonne silver-equivalent grade. Equity has also identified a small open-pit resource at the bottom of the Waterline pit which, when combined with underground reserves, should provide mill feed through the first two months of 1994 (Northern Miner - May 10, 1993).

Equity Silver Mines Ltd. was British Columbia's largest producing silver mine and ceased milling in January 1994, after thirteen years of open pit and underground production. Production totaled 2,219,480 kilograms of silver, 15,802 kilograms of gold and 84,086 kilograms of copper, from over 33.8 Million tonnes mined at an average grade of 0.4 per cent copper, 64.9 grams per tonne silver and 0.46 gram per tonne gold.

Item 16: Other Relevant Data and Information

There is no other relevant data or information other than that included in this report.

Item 17: Interpretation and Conclusions

The area is predominantly till covered and previous attempts at exploration have proven difficult. Despite this, historical exploration highlights on the Nat property have identified a number of possible sulphide related conductors associated with north and northeast trending magnetic anomalies. Prospecting by Noranda Exploration personnel located several pieces of chalcopyrite bearing Biotite Feldspar Porphyry (BFP) float scattered in a zone measuring 1.5km wide by 11km long, open in the up-ice direction to the northwest. Best results reported were 6.1% Cu and 0.43g/t Au (Robertson, 1993).

A review of Regional Geochemical data shows that the Nat Property area is highly anomalous in stream and lake sediment, (80ppm Cu, 63ppb Au, 360ppb Hg and 158ppm Zn). The area is also at the up-ice end of a number of a well-formed till dispersal plume, highly anomalous in Zn, Pb, Cd, Hg, Cu, Fe; and moderately anomalous in As, Sb, Ag and Mo.

Geophysical data from MapPlace, the Quest West surveys and a confidential report from Astorius Resources Ltd. all point to possible sources on the property for the stream, lake and till anomalies present in the area.

Humus Ah transects across the Nat North target area in 2012 identified well defined multi-element Response Ratio anomalies. Coincident Au, Ag, As, Sb anomalies flanked or partially flanked base metal anomalies. The alteration elements, Mn, Ca, Zn and Sr often formed "rabbit ear" anomalies on each side of more pronounced base and precious metal anomalies. The tenure of the Response Ratios returned from the Ah transects were comparable to those found by Heberlein over the Kwanika Central zone. The anomalous Response Ratios corresponded well with the linear magnetic high anomaly revealed in the Astorius airborne survey that cores the magnetic low anomaly which was the target of the earlier exploration programs on the property.

Sampling of float rock down-ice of the Nat North target in 2012 returned values of up to 3390ppm Cu and 0.224ppm Au from potassic-altered BFP intrusive rocks. In 2013, sampling returned 0.863ppm Au, 512ppm Pb, 2432ppm As and 136.6ppm Sb from possible quartz scinter (?) veining that is very rough (frothy) and has not travelled far from source.

Additional Ah sampling in 2016 and 2017 revealed a strong Au anomaly at the east end of the extended Nat North line and a second line run 350m to the south over the area of

anomalous float samples. Individual anomalies had widths to 300m, over an area at least 1300m wide. RRs for gold reached a maximum value of 164 x background with associated As, Sb and Cu and La.

On review of the historical exploration data in conjunction with the interpretations of RGS, regional magnetic, Quest West EM and gravity data and the results of the 2012, 2013, 2016 and 2017 exploration programs, the Nat property presents as an intriguing exploration project with multiple target areas worthy of further exploration. The author believes that the Nat property is a property of merit and has the potential of hosting one or more significant mineral deposits.

Item 18: Recommendations

The current Nat property hosts a number of significant exploration targets, some of which have received only preliminary evaluation. As a result, a two phase program of exploration is proposed. Phase 1 would include staking of additional claims to cover recently relinquished mineral tenures to the south of the Nat North targets, establishing a picket grid initially over the Northern targets to expand upon the geochemical results and to complete geophysical (magnetic and Induced Potential) surveys. The grid should be established with a 4000m long baseline oriented at 000° with 4000m long lines spaced 200m apart. This line orientation will cross the trend of the original magnetic and EM anomalies and the intense magnetic anomalies on the eastern parts of the expanded property. Geophysical surveys (magnetics and Induced Potential) should be initially completed with a 200m line spacing over known geochemical anomalies and conductors and then at a 400m spacing over the balance of the property, resulting in approximately 64line km of grid being surveyed. Surveys should include Ah sampling as well as the collection of appropriate material for Ph measurements. Ph measurements should be completed on a daily basis.

Phase 2 would be dependent on the results obtained in the geochemical and geophysical surveys and would include the drilling of 2000m of NQ core in 10 holes over the property. Samples should be assayed in 2m intervals from surface with the entire hole being analysed.

Proposed budget:

Phase 1		
Project Geologist (30 days @ \$600/day)		18,000
Geologist (30 days @ \$500/day)		15,000
Prospector/sampler x 2 (30 days @ \$300/day)		18,000
Grid layout (64 line km @ \$100/km)		6,400
Assaying (700 samples @ \$55/sample)		38,500
Geophysical surveys mag/IP (64 line km @ 2500/	km)	160,000
Room and Board (270 person days @ \$150/day)		40,500
Mob/demob		5,000
Reporting		10,000
Contingency (15%)		<u>46,710</u>
	Phase 1 Total	\$358,110
Phase 2		
Project Geologist (70 days @ \$600/day)		42,000
Geologist (70 days @ \$500/day)		35,000
Core cutter (70 days @ \$200/day)		14,000
Drilling NQ (2000m @ \$220/m)		440,000
Assaying (1000 samples @ \$55/sample)		55,000
Room and Board (510 person days @\$150/day)		84,000
Mob/demob		15,000
Reporting		20,000
Contingency (15%)		<u>105,750</u>
	Phase 2 Total	810,750

Respectfully submitted this 30th day of June, 2018 (signed and sealed)

Ken Galambos P. Eng. Victoria, British Columbia

Item 19: References

Alldrick, D.J., 1995, Subaqueous Hot Spring Au-Ag, in Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20, pages 55-58.

Bacon, W. R., 1973, Geological and Geochemical Report on the Fort 1 and 2 Groups, Babine Lake Area, BC, MEMPR Assessment Report #4591.

Carter, N.C., 1967, Old Fort Mountain area in Annual Report 1966, BC Ministry of E.M.P.R., p 92-95. Carter, N C., and R.V. Kirkham, 1969, Geological Compilation Map of the Smithers, Hazelton and Terrace Areas (parts of 93L, M and 103I) by (1:250,000).

Carter, N. C., 1973; Preliminary Geology of the Northern Babine Lake Area (093L/M) (1 inch = 1 mile).

Carter, N. C., 1985, Geological Report on the Red 1 Claim, Babine Lake area, Omineca Mining Division, BC, MEMPR Assessment Report #14093

Carter, N. C., G. E. Dirom and P. L. Ogryzlo, 1995; Babine Overview, in CIM Special Volume 46, Porphyry Deposits of the Northwestern Cordillera of North America, ed T. G. Schroeter.

Dirom, G. E., M.P. Dittrick, D.R. McArthur, P. L. Ogryzlo, A.J. Pardoe, and P. G. Stothart, 1995, Bell and Granisle, in CIM Special Volume 46, Porphyry Deposits of the Northwestern Cordillera of North America, ed T. G. Schroeter.

Dubé, B., Gosselin, P., Mercier-Langevin, P., Hannington, M.D., and Galley, A.G., 2007, Gold-rich volcanogenic massive sulphide deposits, in Goodfellow, W.D.,ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 75-94.

Galambos, K., 2012, Interpretation of Heliborne Magnetic Data, Regional Geophysical and Stream Geochemical Surveys on the Nat Property, Omineca Mining Division, BC., MEMPR Assessment Report, 33500.

Galambos, K., 2013, Technical Report on the Prospecting and Ah Sampling Programs, Omineca Mining Division, BC., MEMPR Assessment Report, 33936

Galambos, K., 2014, Technical Report on the Prospecting and the Ah Sampling Programs-Nat Property, Omineca Mining Division, BC., MEMPR Assessment Report, 35107

Galambos, K., 2016, Geochemical Sampling Report - Nat Property, Omineca Mining Division, BC., MEMPR Assessment Report, 36499

Hannington, M.D., Poulsen, K.H. and Thompson, J.F.H., 1999, Volcanogenic Gold in the Massive Sulfide Environment; in Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern an Ancient Settings, C.T. Barrie and M.D.

Hannington, Editors, Society of Economic Geologists, Reviews in Economic Geology, Volume 8, pages 325-356.

Kraft, T., 1992, Diamond Drilling Report on the Fred Claim Group, N.L. 5, 6, 8, EM 2, 3, Fred, and New LWO Claim Group LWO 30, 31, Babine Nizik Lake Area, Omineca Mining Division, BC., MEMPR Assessment Report #22111.

Kraft, T., 1992, Geological and Geochemical Report on the Pond, Nuniz and Jinx 2 Claim Groups, Babine-Nizik Lake Area, Omineca Mining Division, BC., MEMPR Assessment Report #22156.

LeBel, J.L., 1984, Report of Geophysical Surveys on the Newsam 1-6 Claims, Natowite Lake Area, Omineca Mining Division, BC, MEMPR Assessment Report #13274.

Levson, V., 2002, Quaternary Geology and Till Geochemistry of the Babine Porphyry Copper Belt, British Columbia (NTS 93 L/9, 16, M/1, 2, 7, 8), BCGS Bulletin 110.

Levson, V., S.J. Cook, J. Hobday, D. Huntley, E. O'Brien, A. Stumpf and G. Weary, 1997, BCGS Open File 1997-10a: Till Geochemistry of the Old Fort Mountain Map Area, Central British Columbia (NTS 93M/1).

MacIntyre, D., C. Ash and J. Britton (compilers and digital cartography), 1994; Nass-Skeena (93/E, L, M; 94/D; 103/G, H, I, J, P; 104/A, B); BC Geological Survey Open File 1994-14.

MacIntyre, D, I. Webster and P. Desjardins, 1998, Bedrock Geology of the Old Fort Mountain Map-area, North-central B.C.; 1:50,000, BC Geological Survey Open File 1997-10.

MacIntyre, D.G. and M. E. Villeneuve, 2001, Geochronology of mid-Cretaceous to Eocene magmatism, Babine porphyry copper district, central British Columbia, Can. J. Earth Sci. 38(4): 639–655 (2001).

MacIntyre, D.G., Villeneuve, M.E. and Schiarizza, P., 2001, Timing and tectonic setting of Stikine Terrane magmatism, Babine-Takla lakes area, central British Columbia, Can. J. Earth Sci. 38(4): 579–601 (2001).

MacIntyre, D., 2001a, Geological Compilation Map Babine Porphyry Copper District Central British Columbia (NTS93L/9, 93M/1, 2E, 7E, 8), BC Geological Survey Open File 2001-03.

MacIntyre, D., 2001b, The Mid-Cretaceous Rocky Ridge Formation – A New Target for Subaqueous Hot Spring Deposits (Eskay Creek type) in Central British Columbia in BC Geological Survey Paper 2001-1: Geological Fieldwork 2000, pages 253-268.

Mark, D., 1987, Geophysical Surveys on the Danny Boy Claims, Natowite Lake, Babine Lake area, Omineca Mining Division, BC, MEMPR Assessment Report #16292.

Massey, N.W.D, Alldrick, D.J. and Lefebure, D.V., 1999, Potential for Subaqueous Hot-Spring (Eskay Creek) Deposits in British Columbia, BC Geological Survey Branch, Open File 1999-14, 2 colour maps at 1:2 000 000-scale, plus report.

Panteleyev, A., 1995, Porphyry Cu+/-Mo+/-Au, in Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20, pages 87-92.

Robertson, K. A., 1993, Combined Airborne Magnetic, Electromagnetic, and VLF-EM Report on the Nat Lake Property, Omineca Mining Division, BC., MEMPR Assessment Report #23141.

Roth, T., 2002, Physical and chemical constraints on mineralization in the Eskay Creek deposit, northwestern British Columbia: Evidence from petrography, mineral chemistry, and sulfur isotopes: Vancouver, University of British Columbia, Ph.D. thesis, 401 p.

Roth, T., Thompson, J.F.H. and Barrett, T.J., 1999, The precious metal-rich Eskay Creek deposit, northwestern British Columbia; in Volcanic-associated massive sulphide deposits: process and examples in modern and ancient settings, Society of Economic Geologists, Inc., Reviews in Economic Geology, Volume 8, pages 357-372.

Schiarizza, P., MacIntyre, D. 1998, Geology of the Babine Lake-Takla Lake Area, Central British Columbia (93K/11, 12, 13, 14; 93N/3, 4, 5, 6), British Columbia Geological Survey, Geological Fieldwork 1998.

Simpson, R. G, 2007, Mineral Resource Update, Morrison Project, Omineca Mining Division, British Columbia.

Stix, J., Kennedy, B., Hannington, M., Gibson, H., Fiske, R., Mueller, W., and Franklin, J., 2003, Caldera-forming processes and the origin of submarine volcanogenic massive sulfide deposits, Geology (Boulder) (April 2003), 31(4):375-378.

Thompson, JFH, Sillitoe, R.H., and Hannigton, M., 2007, Magmatic Contributions to Sea-Floor Deposits: Exploration Implications of a High Sulphidation VMS Environment, from BC Geological Survey Branch

http://www.empr.gov.bc.ca/mining/geolsurv/MetallicMinerals/depmodel/3-vmsepi.HTM

Woolverton, R.W., 1987, A Geochemical Report on the Copper Claims, Omineca Mining Division, BC, MEMPR Assessment Report #16785.

Item 20: Date and Signature Page

1) I, Kenneth Daryl Galambos of 1535 Westall Avenue, Victoria, British Columbia am self-employed as a consultant geological engineer, authored and am responsible for this report entitled "Geochemical Sampling Report - Nat Project", dated June 30, 2018.

2) I am a graduate of the University of Saskatchewan in Saskatoon, Saskatchewan with a Bachelor's Degree in Geological Engineering (1982). I began working in the mining field in 1974 and have more than 30 years mineral exploration and production experience, primarily in the North American Cordillera. Highlights of this experience include the discovery and delineation of the Brewery Creek gold deposit, near Dawson City, Yukon for Noranda Exploration Ltd.

3) I am a registered member of the Association of Professional Engineers of Yukon, registration number 0916 and have been a member in good standing since 1988. I am a registered Professional Engineer with APEGBC, license 35364, since 2010.

4) This report is based upon the author's personal knowledge of the region, a review of additional pertinent data and the 2016 geochemical sampling programs.

5) As stated in this report, in my professional opinion the property is of potential merit and further exploration work is justified.

6) To the best of my knowledge this report contains all scientific and technical information required to be disclosed so as not to be misleading.

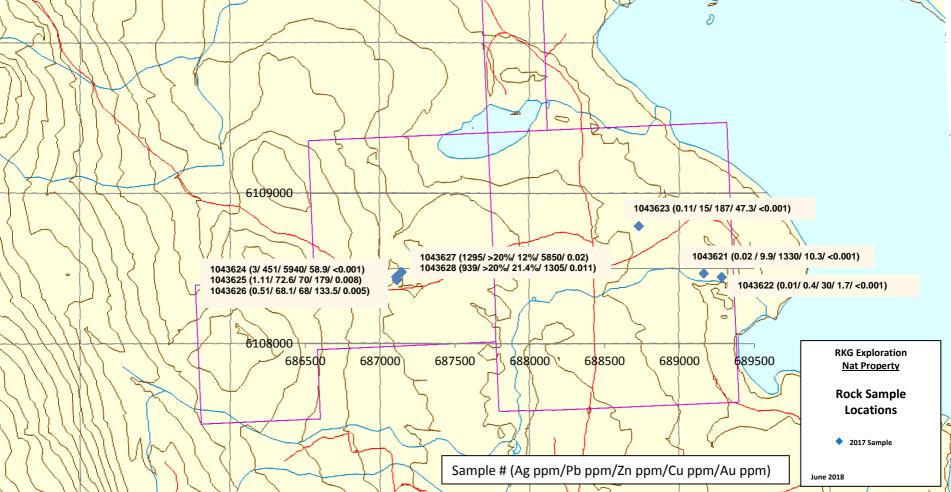
7) I am partners with Ralph Keefe on the Nat property and a number of other properties in British Columbia. My professional relationship is as a non-arm's length consultant, and I have no expectation that this relationship will change.

8) I consent to the use of this report by Ralph Keefe for such assessment and/or regulatory and financing purposes deemed necessary, but if any part shall be taken as an excerpt, it shall be done only with my approval.

Dated at Victoria, British Columbia this 30th day of June, 2018. "Signed and Sealed"

Ken Galambos, P.Eng. (APEY Reg. No. 0916, APEGBC license 35364) KDG Exploration Services 1535 Westall Ave. Victoria, British Columbia V8T 2G6

Item 21: Statement of Expenditures


Personnel August 11-October 8, 2017 Ken Galambos 5 days @ \$600/day Ralph Keefe 7 days @ \$350/day Brian Keefe 3 days @ \$200/day	\$3000.00 \$2450.00 \$600.00
Transportation and Camp costs Trucks 7 days @ \$100/day includes travel to and from Victoria Mileage 2308km @ \$0.50/km Trailer 3 days @ \$50/day Food 15 person days @ \$35/day Field supplies	\$700.00 \$1154.00 \$150.00 \$525.00 \$20.00
Analyses 58 samples @ \$55.00/sample Shipping	\$3190.00 \$30.00
Report 3 days @ \$600/day	<u>\$1800.00</u> \$13619.00

Item 22: Software used in the Program

Adobe Acrobat 9 Adobe Photoshop Elements 8.0 Adobe Reader 8.1.3 Google Earth Internet Explorer Microsoft Windows 7 Microsoft Office Professional 2010 Item 23 Appendices

Appendix A

Sample Location Map Rock

Appendix B

Assay Certificates Rock

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4 Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 18- SEP- 2017 Account: TDP

CERTIFICATE VA17184293

Project: BC Project Gen. Galambos

This report is for 30 Rock samples submitted to our lab in Vancouver, BC, Canada on 30-AUG-2017.

The following have access to data associated with this certificate:

ROD CHURCHILL ALTIUS RESOURCES WEBTRIEVE SHANE EBERT LAWRENCE WINTER

is	certificate:		
	JEFF	-	MORGAN

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG- 22	Sample login - Rcd w/o BarCode	
PUL-QC	Pulverizing QC Test	
CRU- 31	Fine crushing - 70% < 2mm	
SPL- 21	Split sample - riffle splitter	
PUL- 31	Pulverize split to 85% < 75 um	

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	
ME- MS41	Ultra Trace Aqua Regia ICP- MS	
Ag- OG46	Ore Grade Ag - Aqua Regia	ICP- AES
ME- OG46	Ore Grade Elements - AquaRegia	ICP- AES
Pb- OG46	Ore Grade Pb - Aqua Regia	ICP- AES
Zn- OG46	Ore Grade Zn - Aqua Regia	ICP- AES
Au- ICP21	Au 30g FA ICP- AES Finish	ICP- AES

To: ALTIUS RESOURCES INC. ATTN: ROD CHURCHILL PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 18- SEP- 2017 Account: TDP

Project: BC Project Gen. Galambos

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ICP2 1 Au ppm 0.001	ME- MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME- MS41 As ppm 0.1	ME- MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME- MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME- MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME- MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME- MS41 Cr ppm 1
103730		0.56	<0.001	0.03	2.35	6.6	<0.02	10	140	1.31	0.02	1.58	0.04	31.3	22.4	7
103731		0.94	< 0.001	0.40	1.04	2.5	<0.02	<10	10	0.30	2.23	0.66	0.03	14.00	12.9	11
103732		1.04	0.014	0.81	0.79	4.0	<0.02	<10	30	0.21	1.24	0.36	0.03	13.70	8.5	10
103733		1.24	0.001	0.04	0.54	1.3	< 0.02	<10	110	0.23	0.24	0.16	0.04	12.45	2.0	6
103734		1.32	0.009	0.01	1.07	3.7	<0.02	<10	20	0.26	0.02	0.42	0.04	33.8	1.6	7
1043572		0.78	<0.001	0.01	0.35	0.7	<0.02	<10	100	0.17	0.06	0.10	0.11	56.8	1.1	3
1043573		0.90	<0.001	0.13	3.14	0.6	<0.02	10	270	0.44	0.37	1.46	0.03	58.9	22.2	136
1043574		0.54	< 0.001	0.04	3.80	2.2	<0.02	10	320	0.62	0.07	1.54	0.07	56.4	20.7	127
1043575		1.74	< 0.001	0.03	0.70	7.1	< 0.02	<10	730	0.26	0.08	0.42	0.15	20.1	4.2	6
1043576		1.20	<0.001	0.19	0.34	19.8	<0.02	<10	70	0.20	0.58	0.01	0.14	96.2	0.1	2
1043577		1.30	< 0.001	0.48	0.35	35.5	<0.02	<10	90	0.16	0.81	0.01	0.23	74.1	0.1	2
1043578		0.60	<0.001	0.06	0.32	13.2	<0.02	<10	60	0.20	0.19	0.01	0.02	92.1	<0.1	2
1043579		0.64	< 0.001	0.06	0.38	9.5	<0.02	<10	70	0.24	0.15	0.01	0.21	84.4	0.1	2
1043580		1.16	0.017	0.11	0.65	13.2	<0.02	<10	50	1.05	1.02	0.02	0.93	91.7	0.1	2
1043581		1.58	0.001	0.11	0.27	11.8	<0.02	<10	110	0.09	0.03	0.03	0.08	27.8	0.7	3
043582		1.04	< 0.001	0.07	0.26	7.5	<0.02	<10	60	0.20	0.04	0.08	0.03	25.8	1.3	3
1043583		0.98	< 0.001	0.01	0.31	0.7	<0.02	<10	90	0.20	0.02	0.10	0.03	30.1	1.0	3
1043584		0.56	< 0.001	0.04	0.32	8.8	<0.02	<10	90	0.24	0.03	0.07	0.06	36.6	2.4	2
1043585		0.94	0.013	0.34	1.83	1.6	<0.02	<10	30	0.43	0.43	0.62	0.02	8.44	26.3	21
1043586		0.46	< 0.001	0.02	0.41	2.1	<0.02	<10	150	0.28	0.21	0.02	0.09	46.6	0.7	2
1043587		0.62	<0.001	0.02	0.67	0.6	<0.02	<10	110	0.36	0.23	0.08	0.05	43.3	1.1	1
1043620		0.64	<0.001	0.01	2.19	27	<0.02	10	190	0.22	0.02	1.94	0.04	24.8	11.9	11
1043621		0.62	<0.001	0.02	0.59	6.0	<0.02	<10	130	0.12	0.03	0.86	3.01	10.45	3.3	12
1043622		0.66	< 0.001	0.01	1.07	5.7	<0.02	<10	30	0.14	0.03	0.43	0.04	11.00	19.9	13
1043623		0.48	<0.001	0.11	0.70	1.9	<0.02	<10	100	0.31	0.42	0.99	0.28	19.85	3.4	12
1043624		0.40	<0.001	3.00	1.05	34.8	<0.02	<10	100	0.09	0.02	0.25	22.8	7.88	7.8	15
1043625		0.36	0.008	1.11	2.24	9.4	<0.02	10	50	0.31	0.10	0.68	0.12	21.3	9.7	13
1043626		0.54	0.005	0.51	2.56	7.6	<0.02	10	40	0.29	0.15	0.62	0.10	8.55	13.4	19
1043627		0.44	0.020	>100	0.36	19.1	<0.02	<10	30	0.06	3.20	0.10	818	2.69	8.9	1
1043628		0.72	0.011	>100	0.41	11.1	< 0.02	<10	30	0.30	0.68	1.05	>1000	6.88	20.0	<1

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4 Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 18- SEP- 2017 Account: TDP

Project: BC Project Gen. Galambos

103730 0.07 63.6 5.70 13.40 0.23 0.67 <0.01	0.09 0.14 0.13 0.12 0.12 0.12	8.15 0.55			ppm 0.1	ME- MS41 La ppm 0.2	ME- MS41 K % 0.01	ME- MS41 In ppm 0.005	ME- MS41 Hg ppm 0.01	ME- MS41 Hf ppm 0.02	ME- MS41 Ge ppm 0.05	ME- MS41 Ga ppm 0.05	ME- MS41 Fe % 0.01	ME- MS41 Cu ppm 0.2	ME- MS41 Cs ppm 0.05	Method Analyte Units LOR	Sample Description
103734 1.21 11.3 2.12 5.89 0.08 0.11 <0.01 0.054 0.04 14.9 7.1 0.58 517 0.28 1043572 0.24 2.5 0.43 1.44 0.07 0.32 <0.01	0.12	0.49	340	0.76 0.62	6.9 4.1	6.2 6.4	0.05 0.08	0.047 0.013	0.01 0.01	0.09 0.09	0.08 0.05	6.43 5.47	2.26 1.82	9.6 5.0	0.08 0.13		103731
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.12	0.28															
1043577 0.37 1.8 1.33 2.23 0.10 0.30 0.05 0.061 0.18 32.3 4.7 0.01 33 94.6 1043578 0.24 0.7 0.84 2.14 0.12 0.30 0.01 0.069 0.19 39.5 2.8 <0.01	1.17 1.67 0.10 0.08	1.00 0.41 2.51	575 493 339	2.63 2.50 0.07	15.1 11.9 1.3	31.2 30.4 9.7	0.29 0.41 0.12	0.018 0.013 0.031	<0.01 0.01 <0.01	0.38 0.42 0.18	0.17 0.18 <0.05	13.45 14.50 1.94	4.71 4.65 1.45	50.7 43.7 10.7	1.20 2.11 0.13		1043573 1043574 1043575
10435830.222.90.851.300.050.25<0.010.0210.1313.51.70.026120.4210435840.223.62.611.330.060.410.030.0280.1413.64.10.0512701.8210435850.102.43.618.940.130.13<0.01	0.07 0.07 0.06 0.07 0.10	94.6 14.20 15.25 25.4	33 28 23 8720	0.01 <0.01 <0.01 0.01	4.7 2.8 4.0 6.2	32.3 39.5 36.6 39.2	0.18 0.19 0.18 0.13	0.061 0.069 0.051 0.044	0.05 0.01 0.01 0.01	0.30 0.30 0.28 0.42	0.10 0.12 0.11 0.13	2.23 2.14 2.02 2.38	1.33 0.84 0.82 2.38	1.8 0.7 0.9 1.4	0.37 0.24 0.29 0.33		1043577 1043578 1043579 1043580
	0.09 0.09 0.09 0.11 0.09	0.42 1.82 0.42	612 1270 809	0.02 0.05 1.58	1.7 4.1 13.8	13.5 13.6 3.8	0.13 0.14 0.04	0.021 0.028 0.030	<0.01 0.03 <0.01	0.25 0.41 0.13	0.05 0.06 0.13	1.30 1.33 8.94	0.85 2.61 3.61	2.9 3.6 2.4	0.22 0.22 0.10		1043583 1043584 1043585
1043587 0.81 1.8 1.01 3.34 0.06 0.30 0.01 0.020 0.34 20.4 7.7 0.07 414 0.34 1043587 0.41 25.1 5.30 7.80 0.11 0.31 <0.01	0.07 0.24 0.11 0.12 0.14	1.82 0.36	577 637	0.09	1.9 6.2	5.4 3.2	0.07	0.088 0.035	0.02 <0.01	0.04 0.18	<0.05 0.10	1.43 6.75	1.68 9.02	10.3 1.7	0.05		1043621 1043622
1043624 0.12 58.9 1.78 3.49 <0.05 0.04 0.93 0.044 0.07 3.5 12.8 0.47 215 0.78 1043624 0.12 58.9 1.78 3.49 <0.05	0.10 0.04 0.06 0.01 0.01	0.78 17.35 34.1 0.37	215 337 344 62	0.47 0.95 1.38 0.02	12.8 21.8 28.7 1.0	3.5 10.7 4.2 1.8	0.07 0.15 0.16 0.05	0.044 0.030 0.037 8.91	0.93 0.02 0.02 28.0	0.04 0.50 0.45 <0.02	<0.05 0.17 0.13 1.01	3.49 7.33 9.79 8.65	1.78 15.35 12.25 4.77	58.9 179.0 133.5 5850	0.12 1.58 3.04 0.54		1043624 1043625 1043626 1043627

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 18- SEP- 2017 Account: TDP

Project: BC Project Gen. Galambos

Sample Description	Method Analyte Units LOR	ME- MS41 Nb ppm 0.05	ME- MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME- MS41 Pb ppm 0.2	ME- MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME- MS41 Sb ppm 0.05	ME- MS41 Sc ppm 0.1	ME- MS41 Se ppm 0.2	ME- MS41 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME- MS41 Th ppm 0.2
103730 103731 103732 103733 103733		0,26 0.07 0.13 <0.05 <0.05	10.8 6.6 5.8 2.2 9.6	1320 710 720 400 560	16.6 7.8 56.4 1.4 1.0	2.0 1.9 2.8 2.6 2.0	0.001 0.001 <0.001 <0.001 <0.001	0.06 1.05 1.06 0.06 <0.01	0.26 1.20 0.19 1.06 4.07	10.3 1.8 1.5 0.9 3.2	0.6 0.7 0.8 0.2 0.5	0.8 0.3 0.3 0.2 0.6	47.0 49.5 29.0 11.8 24.2	0.01 <0.01 <0.01 <0.01 <0.01	<0.01 1.00 1.07 0.02 <0.01	1.8 1.2 1.1 0.8 3.2
103734 1043572 1043573 1043574 1043575 1043576		0.35 0.40 0.37 <0.05 0.14	1.8 85.2 83.3 3.0 0.6	70 2120 2060 450 60	3.6 9.5 4.6 10.7 21.8	6.6 11.9 13.1 3.0 4.1	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.01 <0.01 0.01 0.19 0.13	0.96 0.11 0.37 0.48 2.00	1.1 3.7 3.5 6.4 2.4	0.3 0.5 0.3 0.5 0.7	0.6 0.7 0.5 0.4 0.8	3.8 113.0 256 192.5 4.5	<0.01 0.01 0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 0.01 <0.01	4.7 5.5 4.9 1.3 3.2
1043576 1043577 1043578 1043579 1043580 1043581		0.14 0.15 0.13 0.15 0.13 0.14	0.4 0.3 0.4 1.2 0.7	50 70 70 60 210	48.7 12.0 20.6 12.8 28.3	3.9 3.9 4.1 3.3 3.5	0.001 <0.001 <0.001 0.001 <0.001 <0.001	0.46 0.09 0.10 0.20 0.41	2.70 1.45 0.87 1.52 0.35	1.8 1.5 2.2 6.6 1.1	0.5 0.6 0.6 0.9 0.2	0.9 1.0 0.8 1.2 0.5	6.5 3.5 3.5 14.3 10.3	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 <0.01 <0.01 0.01 <0.01	2.9 3.2 3.2 2.8 3.8
1043582 1043583 1043584 1043585 1043585 1043586		0.11 0.17 0.11 0.14 0.33	0.6 1.5 1.2 10.7 1.1	220 230 260 960 60	4.9 2.0 5.8 4.9 2.9	4.0 2.9 3.8 1.4 7.1	<0.001 <0.001 <0.001 <0.001 <0.001	0.17 <0.01 0.09 1.02 <0.01	0.74 0.10 0.68 0.15 0.97	1.2 1.5 2.2 4.1 2.0	0.3 0.2 0.2 1.0 0.2	0.3 1.0 0.5 0.5 1.2	4.8 6.2 8.3 112.0 6.5	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 0.34 0.02	3.5 3.9 4.4 0.8 5.2
1043587 1043620 1043621 1043622 1043622 1043623		0.14 0.18 <0.05 <0.05 0.20	1.0 4.0 6.2 9.7 3.1	240 2150 390 690 1190	2.0 1.7 9.9 0.4 15.0	14.3 7.9 1.5 0.4 2.5	<0.001 <0.001 0.005 0.001 <0.001	<0.01 0.19 0.13 0.03 0.14	0.09 0.32 0.53 0.42 0.22	1.1 5.9 3.9 4.9 3.2	0.3 0.5 0.9 0.5 0.5	0.5 0.4 0.3 1.4 0.5	5.8 109.5 18.1 2.6 43.9	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 0.01 0.08	3.9 1.1 0.2 0.4 1.1
1043624 1043625 1043626 1043627		<0.05 0.15 0.10 <0.05 <0.05	6.9 6.3 6.2 1.4 4.2	840 3390 330 100 130	451 72.6 68.1 >10000 >10000	1.7 4.7 7.2 1.7 4.0	0.001 0.003 0.003 <0.001 0.001	0.19 9.64 6.65 >10.0 >10.0	2.70 13.60 8.91 943 445	3.4 7.5 12.6 1.0 1.7	1.0 4.1 2.7 330 67.6	<0.2 0.5 0.5 14.7 4.9	7.5 14.5 9.9 40.2 46.3	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 0.14 0.30 0.62 0.27	0.4 0.6 0.4 <0.2 <0.2
1043628		~0.05		100	210000	4.0	0.001									

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

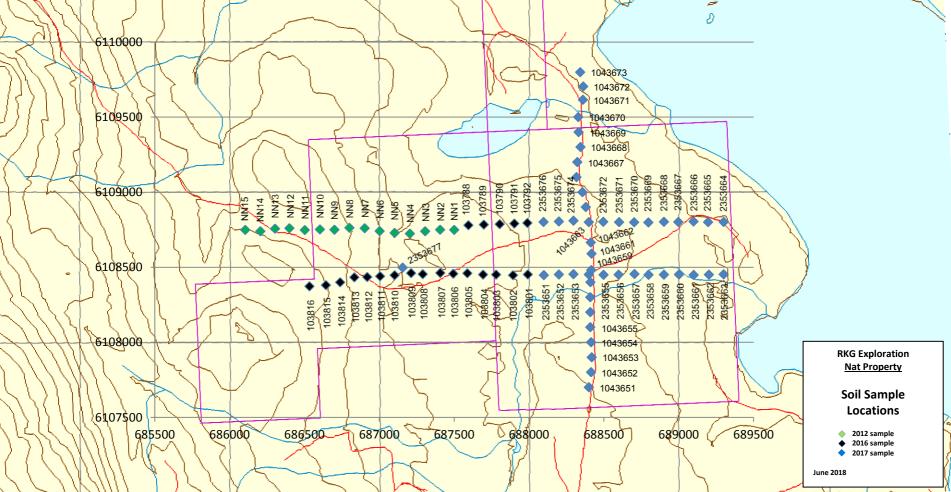
To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 18- SEP- 2017 Account: TDP

VA17184293

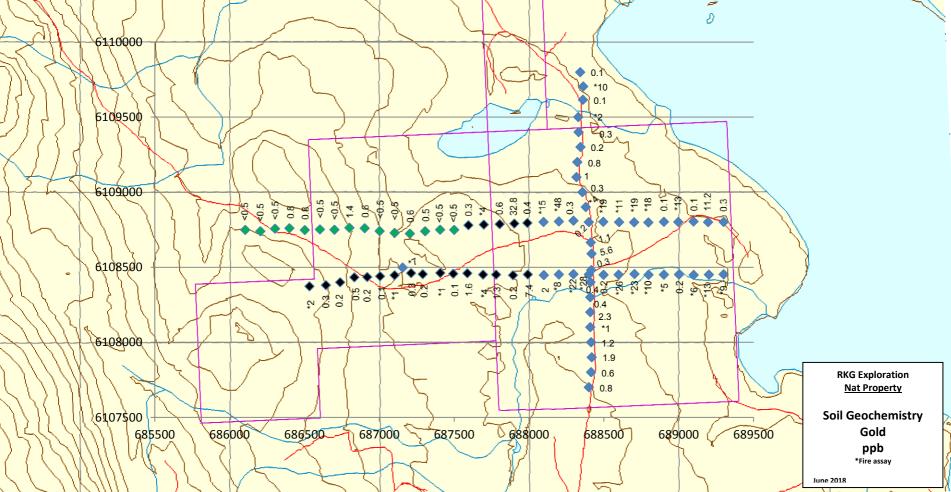
Project: BC Project Gen. Galambos

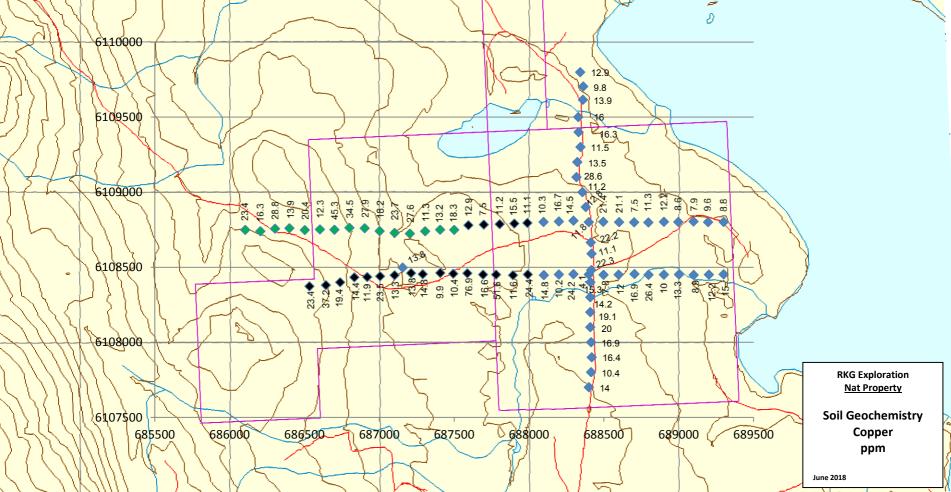
103730 103731 103732 103733 103734 1043572 1043573 1043575	0.378 0.033 0.061 <0.005 0.012	0.04 <0.02 <0.02 <0.02	0.88 0.45 0.41	201 27	0.13 0.08	13.15 3.51	144	25.4					
103732 103733 103734 1043572 1043573 1043574	0.061 <0.005 0.012	<0.02					36	1.4					
103733 103734 1043572 1043573 1043574	<0.005 0.012			28	0.13	3.01	30	1.3					
103734 1043572 1043573 1043574	0.012		0.71	14	<0.05	3.20	25	0.9					
1043573 1043574	0.040	0.02	0.42	31	0.07	10.05	32	2.8					
1043574	0.013	0.06	0.81	3	<0.05	8.86	43	10.5					
	0.387	0.05	1.57	149	0.29	9.19	78	18.2					
1043575	0.354	0.06	1.25	144	0.27	8.73	59	18.6					
	< 0.005	0.11	0.34	24	< 0.05	12.45	130	3.7					
1043576	0.005	0.27	0.47	3	<0.05	9.15	52	12.1					
1043577	<0.005	0.50	0.46	3	0.05	8.09	60	10.5					
1043578	0.005	0.13	0.42	2	<0.05	9.39	13	9.8					
1043579	0.005	0.14	0.52	2	<0.05	8.56	12	10.5					
1043580	<0.005	0.43	1.04	3	0.05	15.00	172	15.5					
1043581	0.005	0.07	13.50	9	<0.05	4.77	42	14.0					
1043582	0.011	0.23	3.26	8	<0.05	8.64	27	9.3					
1043583	0.013	0.02	0.67	10	0.06	7.70	20	8.9					
1043584	0.005	0.08	3.53	10	0.08	6.91	21	14.0					
1043585	0.107	<0.02	0.39	51	0.14	4.08	38	2.2					
1043586	0.013	0.14	1.11	4	<0.05	6.22	27	14.0					
1043587	0.028	0.14	0.55	10	<0.05	5.39	41	10.1					
1043620	0.338	0.04	0.39	200	0.11	9.89	34	9.2					
1043621	0.005	0.06	0.09	30	<0.05	7.31	1330	1.3					
1043622	0.091	<0.02	0.18	230	<0.05	12.45	30	2.1					
1043623	0.143	0.03	0.48	73	0.30	8.35	187	5.0					
1043624	<0.005	0.02	0.07	45	0.07	7.47	5940	1.3					
1043625	0.128	0.23	0.24	78	1.08	28.6	70	9.6					
1043626	0.196	0.21	0.14	111	0.16	8.14	68	11.5					
1043627	<0.005	0.12	0.05	5	< 0.05	2.74	>10000	<0.5	1295	>20.0	12.00		
1043628	<0.005	0.12	< 0.05	7	<0.05	8.74	>10000	1.0	939	>20.0	21.4		

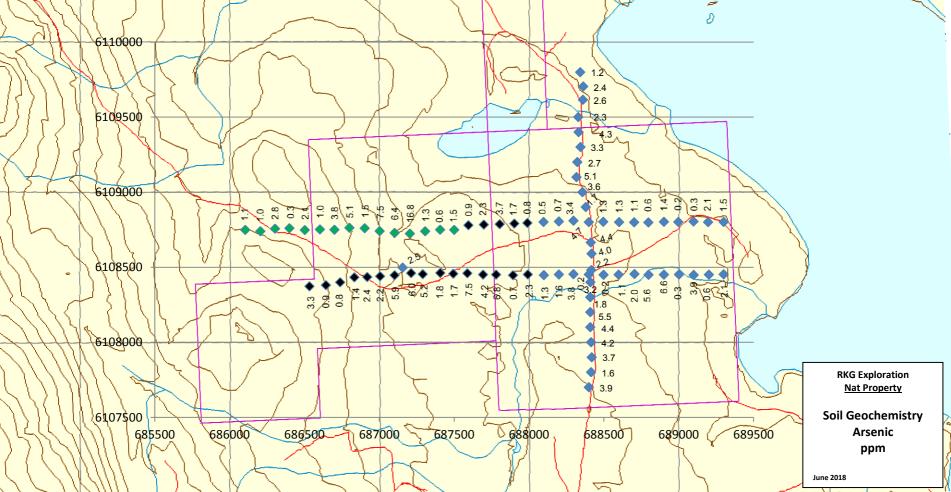

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 18- SEP- 2017 Account: TDP

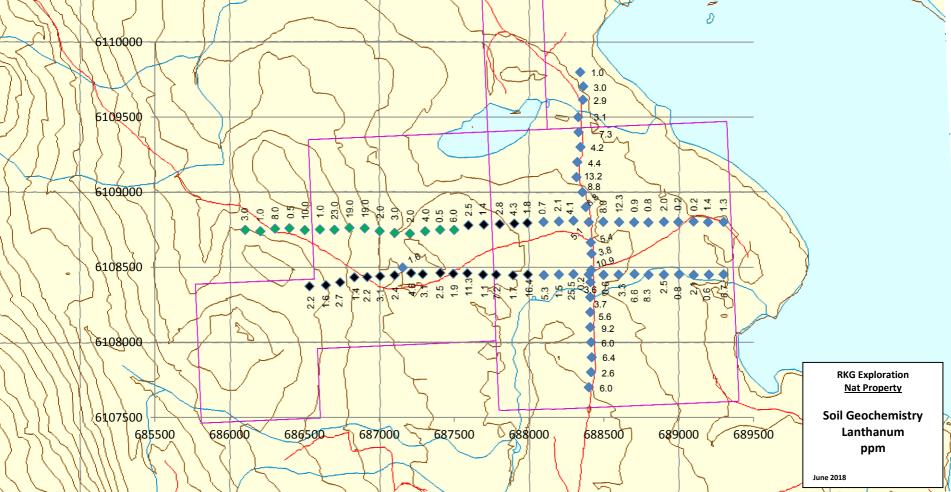
Project: BC Project Gen. Galambos

		CERTIFICATE COM	MENTS		
Applies to Method:	Gold determinations by th ME- MS41	ANALY nis method are semi- quantitative due t	FICAL COMMENTS to the small sample weight used (0.5g).	
		LABORA	TORY ADDRESSES		
Applies to Method:	Processed at ALS Vancouv Ag- OG46 ME- MS41 PUL- QC	ver located at 2103 Dollarton Hwy, Nor Au- ICP21 ME- OG46 SPL- 21	th Vancouver, BC, Canada. CRU- 31 Pb- OG46 WEI- 21		LOG- 22 PUL- 31 Zn- OG46
		à			


Appendix C


Sample Location Map Humus




Appendix D

Geochemical Results Humus

Appendix E

Assay Certificates Humus

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To:ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4 Page: 1 Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

CERTIFICATE VA17184292

Project: BC	Project Generations

This report is for 148 Soil samples submitted to our lab in Vancouver, BC, Canada on 30-AUG-2017.

The following have access to data associated with this certificate:

ROD CHURCHILL LAWRENCE WINTER	JEFF MORGAN	ALTIUS RESOURCES WEBTRIEVE

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG- 22	Sample login - Rcd w/o BarCode	
SCR- 41	Screen to - 180um and save both	
	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
Au- ICP21	Au 30g FA ICP- AES Finish	ICP- AES
ME- MS41L	Super Trace Lowest DL AR by ICP- MS	

To: ALTIUS RESOURCES INC. ATTN: ROD CHURCHILL PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 2 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

CERTIFICATE OF ANALYSIS VA17184292

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	ME- MS41L Au ppm 0.0002	ME- MS41L Ag ppm 0.001	ME- MS41L Al % 0.01	ME- MS41L As ppm 0.01	ME-MS41L B ppm 10	ME- MS41L Ba ppm 0.5	ME- MS41L Be ppm 0.01	ME- MS41L Bi ppm 0.001	ME- MS41L Ca % 0.01	ME- MS41L Cd ppm 0.001	ME- MS41L Ce ppm 0.003	ME- MS41L Co ppm 0.001	ME- MS41L Cr ppm 0.01
103701		0.32	<0.001	0.0002	0.159	0.39	2.40	10	125.0	0.14	0.060	1.87	1.860	7.93	3.66	5.03
103702		0.52	<0.001	0.0011	0.082	0.13	0.80	10	231	0.09	0.017	1.86	0.248	8.54	1.480	1.28
103703		0.36	< 0.001	0.0004	0.134	0.37	2.17	10	232	0.14	0.070	1.47	0.714	4.86	2.79	4.32
103704		0.36	< 0.001	0.0004	0.149	0.39	1.52	10	484	0.11	0.053	1.86 0.86	1.100 0.333	3.72 5.30	3.21 3.70	4.11 6.49
103705		0.34	0.001	0.0003	0.064	0.57	2.95	<10	108.0	0.14	0.053		460436-14			STER
103706		0.48	< 0.001	0.0002	0.103	0.40	2.76	<10	115.0	0.10	0.055	0.63	0,192	4.94	2.06	4.88
103707		0.54	0.003	0.0004	0.136	0.40	2.37	<10	148.5	0.11	0.058	0.81	0.303	4.88	2.21	4.76
103708		0.32	0.004	0.0002	0.137	0.26	1.13	10	113.0	0.05	0.034	1.33	1.040	2.17	1.965	3.29
103709		0.42	0.001	0.0005	0.229	0.34	1.29	<10	108.0	0.09	0.047	0.97	1.145	4.67 4.81	2.58 2.60	3.82 6.78
103710		0.54	<0.001	0.0007	0.058	0.46	2.54	<10	136.0	2010/000	0.052	33335		1.142.200	393,314	
103711		0.54	0.002	0.0005	0.077	0.46	2.88	10	193.0	0.15	0.054	1.37	0.481	8.24	3.21	6.37
103712		0.54	0.010	0.0023	0.134	0.31	1.57	<10	223	0.10	0.056	0.89	0.495	4.67	2.40	4.37
103713		0.88	<0.001	0.0010	0.206	0.49	2.59	<10	141.5	0.10	0.056	0.50	0.166	4.45	2.75	5.68
103714		0.60	<0.001	0.0024	0.141	0.11	0.49	10	260	0.05	0.019	1.49	0.493	3.52	0.988	1.81
103715		0.50	0.008	0.0062	0.151	0.13	0.78	10	207	0.04	0.026	1.30	0.530	2.40	1.650	2.17
103716		0.56	0.007	0.0067	0.084	0.03	0.32	10	80.3	0.01	0.007	2.00	1.930	0.761	1.120	1.41
103717		0.78	<0.001	0.0024	0.033	0.71	4.66	<10	87.2	0.18	0.064	0.41	0.301	8.30	4.58	9.88
103718		0.50	<0.001	0.0013	0.149	0.45	2.38	<10	349	0.14	0.101	1.10	0.413	4.94	3.51	5.09
103719		0.42	0.007	0.0072	0.334	0.12	0.55	<10	120.5	0.04	0.027	0.58	0.447	1.175	0.775	1.81
103720		0.58	<0.001	0.0030	0.079	0.04	0.28	10	476	0.02	0.017	2.52	0.327	0.622	0.418	1.10
103721		0.54	0.003	0.0010	0.295	0.32	1.65	<10	274	0.13	0.047	0.94	0.512	9.14	2.58	4.07
103722		0.30	0.004	0.0008	0.242	0,24	0.74	<10	78.3	0.07	0.039	0.48	0.530	2.01	1.170	2.56
103723		0.30	0.006	0.0004	0.112	0.37	2.14	10	312	0.12	0.050	2.49	1.600	6.50	3.64	6.64
103724		0.46	<0.001	0.0016	0.193	0.32	1.56	<10	197.0	0.10	0.057	0.96	0.362	5.23	2.13	4.27
103725		0.60	0.002	0.0005	0.120	0.43	2.00	<10	113.0	0.14	0.055	0.56	0.206	7.10	2.39	5.16
103726		0.68	< 0.001	0.0008	0.060	0.24	1.44	<10	133.0	0.10	0.073	0.76	0.656	3.87	1.625	3.92
103727		0.56	0.003	0.0045	0.087	0.40	1.66	<10	83.1	0.11	0.064	0.29	0.093	3.48	1.755	5.26
103728		0.42	0.025	0.0055	0.052	0.30	1.12	<10	101.0	0.04	0.036	0.74	0.259	1.990	1.925	3.02
103729		0.42	< 0.001	0.0014	0.112	0.38	1.27	<10	149.0	0.06	0.045	1.08	1.270	6.31	4.06	3.90
103730		Not Recvd														
103731		Not Recvd	-													
103732		Not Recvd														
103733		Not Recvd														
103734		Not Recvd														
103735		0.48	0.011	0.0003	0.368	0.12	0.46	<10	118.0	0.03	0.031	0.80	0.507	1.110	0.803	5.82
103736		0,46	0.006	0.0002	0.210	0.12	0.75	10	131.0	0.03	0.049	0.84	0.600	2.28	0.741	2.06
103737		0.38	NSS	<0.0002	0.295	0.07	0.37	<10	95.9	0.02	0.029	1.07	0.572	0.790	0.336	1.06
103738		0.36	0.004	<0.0002	0.552	0.11	0.35	<10	153.5	0.03	0.032	0.77	0.932	1.875	0.574	1.21
103739		0.66	0.004	<0.0002	0.631	0.28	0.64	10	473	0.16	0.043	1.49	0.711	7.20	1.820	1.96
103740		0.54	< 0.001	0.0002	0.646	0.69	2.02	10	760	0.38	0.056	2.44	1.185	22.8	3.24	4.85
103740		0.54	-0.001	0.0004	0.040	0.00	2.02	10		0.00	0.000					

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 2 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

CERTIFICATE OF ANALYSIS VA17184292

Sample Description	Method Analyte Units LOR	ME- MS41L Cs ppm 0.005	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS411. Hf ppm 0.002	ME-MS41L Hg ppm 0.004	ME-MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME- MS41L Li ppm 0.1	ME- MS41L Mg % 0.01	ME- MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001
103701		0.224	12.10	0.960	1.475	0.036	0.012	0.099	0.009	0.15	3.95	2.8	0.28	743	0.82	0.005
103702		0.099	11.55	0.280	0.365	0.033	0.011	0.143	<0.005	0.11	6.99	0.4	0.14	1025	1.00	0.002
103703		0.255	10.10	0.880	1.810	0.022	0.002	0.108	0.007	0.11	2.66	2.7	0.18	722	0.88	0.001
103704		0.212	10.75	0.780	1.695	0.021	0.003	0.259	0.008	0.15	2.01	2.1	0.15	8070	1.63	0.002
103705		0.218	10.75	1.100	1.930	0.027	0.009	0.103	0.009	0.09	2.75	3.0	0.19	1745	1.23	0.002
103706		0.502	6.87	0.890	2.10	0.017	0.005	0.073	0.009	0.06	2.59	2.1	0.18	546	1.14	0.003
103707		0.260	11.85	0.960	1.880	0.025	0.017	0.110	0.008	0.07	3.33	2.7	0.15	548	1.55	0.003
103708		0.144	9.78	0.410	0.792	0.011	0.005	0.196	<0.005	0.12	1.455	1.3	0.17	2730	1.79	0.001
103709		0.342	11.25	0.530	1.325	0.020	0.016	0.161	0.006	0.11	2.80	1.8	0.14	1125	2.50	0.002
103710		0.322	8.80	1.130	1.955	0.023	0.005	0.088	0.007	0.08	2.47	2.3	0.11	1035	0.95	0.003
103711		0.199	13.25	1.060	1.590	0.036	0.012	0.121	0.009	0.10	4.78	3.2	0.22	809	0.82	0.004
103712		0.253	10.20	0.760	1.495	0.024	0.008	0.167	0.005	0.08	2.37	1.7	0.14	1640	1.75	0.002
103713		0.283	12.15	1.070	2.30	0.019	0.003	0.132	0.010	0.05	2.38	2.3	0.15	1160	1.07	0.002
103714		0.137	13.65	0.139	0.305	0.007	0.005	0.353	<0.005	0.11	1.855	0.3	0.12	1285	0.74	< 0.001
103715		0.330	13.50	0.300	0.642	0.006	0.010	0.177	<0.005	0.13	1.295	0.5	0.11	1370	1.40	0.001
103716		0.070	12.90	0.061	0.107	0.007	<0.002	0.077	<0.005	0.14	0.628	0.2	0.28	474	0.97	<0.001
103717	1	0.271	11.70	1.530	2.82	0.028	0.012	0.074	0.014	0.06	3.89	4.4	0.22	431	0.92	0.003
103718		0.312	17.35	0.990	2.12	0.020	0.002	0.197	0.010	0.09	3.08	2.8	0.15	1665	2.17	0.004
103719	1	0.117	13.45	0.209	0.416	0.013	0.004	0.191	< 0.005	0.11	0.836	0.3	0.08	881	1.95	0.003
103720		0.102	28.9	0.086	0.173	0.007	0.006	0.684	<0.005	0.07	0.348	0.1	0.10	703	1.12	0.005
103721		0.208	25.5	0.590	0.907	0.025	0.016	0.326	0.005	0.07	5.87	1.7	0.12	1430	0.74	0.004
103722		0.144	9.23	0.390	0.836	0.013	0.006	0.117	<0.005	0.16	1.085	1.0	0.07	903	0.91	0.006
103723		0.219	13.25	0.840	1.550	0.025	0.011	0.121	0.007	0.13	2.99	2.9	0.26	2080	0.95	0.008
103724		0.290	13.10	0.760	1.560	0.019	0.022	0.150	0.008	0.09	3.42	2.4	0.13	1010	1.93	0.006
103725		0.312	11.80	0.830	2.04	0.021	0.007	0.087	0.007	0.05	4.03	3.1	0.14	436	1.46	0.006
103726		0.178	7.95	0.820	1.990	0.025	0.005	0.099	0.008	0.10	2.66	1.2	0.10	1090	2.34	0.007
103727		0.224	8.39	0.770	1.880	0.016	0.002	0.098	0.013	0.05	2.07	2.1	0.09	619	1.68	0.006
103728		0.133	6.84	0.470	0.914	0.013	0.002	0.134	0.012	0.11	1.195	1.0	0.10	1475	0.85	0.004
103729		0.228	10.50	0.460	1.290	0.020	0.002	0.118	0.010	0.10	3.03	1.4	0.17	2450	0.92	0.006
103730		1.00 scatters														
103731																1
103732																
103733																
103734															9.90.00%	
103735		0.315	11.50	0.238	0.445	0.012	0.009	0.273	0.013	0.07	0.605	0.2	0.08	351	0.81	0.005
103736		0.285	17.25	0.390	0.653	0.010	0.006	0.415	0.009	0.10	1.265	0.3	0.07	1610	1.00	0.007
103737		0.245	13.80	0.091	0.206	0.008	0.006	0.291	0.006	0.09	0.541	0.2	0.11	390	1.10	0.005
103738		0.257	14.60	0.135	0.318	0.009	0.005	0.317	0.007	0.09	1.195	0.2	0.06	1165	0.89	0.004
103739		0.455	17.75	0.380	0.834	0.014	0.003	0.516	0.008	0.07	3.78	0.4	0.08	5230	1.17	0.005
103740		1.010	29.3	0,990	1.960	0.050	0.011	0.477	0.015	0.13	13.90	2.4	0.13	2280	0.76	0.005

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4 Page: 2 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

CERTIFICATE OF ANALYSIS VA17184292

Sample Description	Method Analyte Units LOR	ME- MS41L Nb ppm 0.002	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME-MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME-MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005
103701 103702 103703 103704		0.317 0.053 0.605 0.666	6.13 3.06 3.39 4.48	0.140 0.121 0.099 0.150	3.20 1.020 3.78 4.21	<0.001 <0.001 <0.001 <0.001	<0.002 <0.002 <0.002 <0.002	2.91 3.30 4.68 4.94	<0.001 <0.001 <0.001 <0.001	0.12 0.19 0.10 0.10	0.162 0.064 0.139 0.136	0.986 0.406 0.594 0.445	0.3 0.4 0.3 0.3	0.19 0.05 0.30 0.24	90.6 134.5 94.2 83.0	<0.005 <0.005 <0.005 <0.005
103705		0.541	6.71	0.109	3.89	<0.001	<0.002	2.99	<0.001	0.07	0.176	1.220	0.3	0.24	44.6	<0.005
103706 103707 103708 103709 103710		0.456 0.635 0.209 0.326 0.433	3.89 4.24 4.00 4.82 5.35	0.061 0.071 0.129 0.120 0.098	3.46 3.72 2.10 2.66 4.69	<0.001 <0.001 <0.001 0.001 <0.001	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	6.45 4.09 2.83 4.55 3.00	<0.001 <0.001 <0.001 <0.001 <0.001	0.05 0.07 0.14 0.13 0.05	0.130 0.144 0.114 0.119 0.207	0.712 1.165 0.612 1.075 0.807	0.2 0.3 0.4 0.3 0.2	0.20 0.21 0.12 0.24 0.22	45.5 71.3 86.1 63.8 29.2	<0.005 <0.005 <0.005 <0.005 <0.005
103711 103712 103713 103714 103715		0.309 0.413 0.454 0.063 0.117	6.57 4.23 4.75 2.77 4.24	0.108 0.094 0.077 0.079 0.114	3.74 4.85 4.55 1.935 2.81	<0.001 0.001 0.001 <0.001 0.001 0.001	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	2.18 4.53 3.91 1.835 4.19	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.09 0.09 0.07 0.12 0.13	0.187 0.148 0.188 0.083 0.099	1.310 0.773 0.711 0.272 0.468	0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.17 0.20 0.25 0.06 0.12	60.8 61.2 35.9 96.4 84.1	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005
103716 103717 103718 103719 103720		0.022 0.753 0.416 0.126 0.026	2.63 9.17 4.37 1.88 1.22	0.101 0.057 0.098 0.111 0.080	0.540 4.54 6.53 2.66 2.10	<0.001 <0.001 <0.001 <0.001 <0.001	<0.002 <0.002 <0.002 <0.002 <0.002	2.26 3.58 6.13 2.55 1.435	<0.001 <0.001 <0.001 <0.001 <0.001	0.21 0.04 0.09 0.12 0.14	0.022 0.255 0.193 0.080 0.088	0.149 2.18 0.667 0.376 0.168	0.3 0.2 0.3 0.3 0.2	0.03 0.30 0.23 0.15 0.05	121.5 31.9 77.0 39.3 159.0	<0.005 <0.005 <0.005 <0.005 <0.005
103721 103722 103723 103724 103725		0.154 0.159 0.295 0.461 0.557	5.70 2.73 6.00 3.81 4.46	0.088 0.145 0.126 0.095 0.056	3.99 2.56 3.46 4.10 3.81	<0.001 <0.001 <0.001 0.002 <0.001	<0.002 <0.002 <0.002 <0.002 0.012	1.940 2.77 4.04 4.07 5.07	<0.001 <0.001 <0.001 0.001 <0.001	0.13 0.10 0.13 0.10 0.07	0.168 0.092 0.147 0.154 0.147	1.030 0.336 0.909 0.980 1.190	<0.1 0.1 0.2 <0.1	0.18 0.14 0.18 0.18 0.23	74.1 23.8 135.5 70.1 44.8	<0.005 <0.005 <0.005 <0.005 <0.005
103726 103727 103728 103729 103730		0.557 0.375 0.204 0.257	2.66 3.84 3.06 5.33	0.088 0.092 0.124 0.103	3.51 3.88 2.42 2.87	0.001 <0.001 <0.001 <0.001	<0.002 <0.002 <0.002 <0.002	3.60 2.64 2.43 5.32	<0.001 <0.001 <0.001 <0.001	0.08 0.08 0.13 0.13	0.126 0.147 0.102 0.104	0.519 0.300 0.258 0.380	0.2 0.2 0.1 0.1	0.25 0.27 0.11 0.15	74.7 15.80 32.9 64.4	<0.005 <0.005 <0.005 <0.005
103731 103732 103733 103734 103735		0.104	1.92	0.083	3.63	<0.001	<0.002	1.355	<0.001	0.13	0.107	0.370	0.2	0.13	41.7	<0.005
103736 103737 103738 103739 103740		0.179 0.045 0.039 0.105 0.299	1.56 1.62 1.41 3.45 8.68	0.098 0.082 0.083 0.104 0.175	4.16 2.94 3.30 4.23 5.54	<0.001 <0.001 0.001 <0.001 <0.001	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	2.47 1.775 1.790 2.65 7.25	0.001 <0.001 <0.001 <0.001 <0.001	0.14 0.14 0.12 0.13 0.14	0.154 0.080 0.124 0.121 0.187	0.441 0.170 0.242 0.473 2.01	0.3 0.2 0.1 0.3 0.4	0.16 0.07 0.12 0.08 0.15	24.9 47.2 30.9 71.5 109.5	<0.005 <0.005 <0.005 <0.005 <0.005

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4 Page: 2 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

CERTIFICATE OF ANALYSIS VA17184292

Sample Description	Method Analyte Units LOR	ME- MS41L Te ppm 0.01	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L Tl ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01	
103701 103702 103703 103704 103705		0.02 0.01 0.01 <0.01 0.01	0.112 0.024 0.022 0.022 0.158	0.016 0.002 0.016 0.015 0.024	0.018 0.021 0.019 0.075 0.024	0.173 0.160 0.126 0.073 0.133	17.0 3.7 18.5 14.6 22.8	0.100 0.012 0.057 0.058 0.064	2.75 6.70 1.195 0.834 1.495	156.0 46.6 106.5 322 179.5	0.45 0.26 0.11 0.08 0.32	
103706 103707 103708 103709 103710		0.01 0.01 0.02 0.01 0.01	0.033 0.205 0.079 0.110 0.038	0.021 0.021 0.009 0.013 0.020	0.024 0.018 0.017 0.022 0.031	0.131 0.173 0.052 0.124 0.113	21.8 20.0 8.6 12.1 24.8	0.063 0.071 0.029 0.046 0.152	1.080 1.315 0.699 1.655 1.020	94.3 50.4 109.0 96.7 55.6	0.12 0.65 0.21 0.43 0.11	
103711 103712 103713 103714 103715		<0.01 <0.01 0.01 <0.01 <0.01	0.090 0.068 0.020 0.017 0.068	0.020 0.018 0.021 0.003 0.007	0.030 0.023 0.036 0.029 0.024	0.174 0.090 0.130 0.060 0.288	20.7 16.5 23.9 2.5 7.2	0.056 0.062 0.071 0.019 0.032	4.61 0.926 0.922 1.270 0.426	76.4 65.1 52.7 70.8 93.4	0.47 0.27 0.08 0.14 0.26	
103716 103717 103718 103719 103720		<0.01 0.01 0.03 <0.01 0.01	0.009 0.374 0.029 0.046 0.017	0.001 0.040 0.018 0.006 0.002	0.009 0.023 0.034 0.027 0.020	0.014 0.192 0.120 0.033 0.020	0.9 34.9 21.6 4.4 1.7	0.010 0.084 0.077 0.028 0.011	0.430 2.11 1.240 0.366 0.252	146.0 56.7 71.1 47.2 166.0	0.07 0.52 0.10 0.18 0.14	
103721 103722 103723 103724 103725		0.02 <0.01 0.01 <0.01 0.01	0.102 0.021 0.116 0.188 0.115	0.009 0.008 0.016 0.019 0.025	0.031 0.013 0.020 0.020 0.023	0.263 0.055 0.179 0.157 0.212	10.8 8.5 17.4 17.4 20.6	0.038 0.034 0.109 0.065 0.085	5.85 0.508 2.33 1.510 2.16	59.6 83.4 202 54.5 44.7	0.48 0.13 0.53 0.52 0.23	
103726 103727 103728 103729 103730		<0.01 0.02 <0.01 <0.01	0.045 0.006 0.019 0.029	0.020 0.014 0.011 0.011	0.024 0.022 0.017 0.029	0.121 0.097 0.059 0.118	19.0 17.5 11.1 12.0	0.086 0.074 0.046 0.058	0.921 0.755 0.503 1.900	72.7 44.3 71.4 194.0	0.28 0.06 0.06 0.09	
103731 103732 103733 103734 103735		<0.01	0.041	0.015	0.016	0.039	8.6	0.020	0.285	57.3	0.27	
103736 103737 103738 103739 103740		<0.01 <0.01 0.01 0.02 0.01	0.069 0.018 0.032 0.029 0.107	0.010 0.002 0.004 0.006 0.008	0.060 0.027 0.052 0.099 0.085	0.077 0.046 0.051 0.236 0.386	10.0 1.9 3.2 5.9 14.2	0.040 0.014 0.034 0.030 0.054	0.445 0.520 0.397 2.54 13.75	74.9 46.6 69.3 127.5 115.0	0.21 0.13 0.12 0.10 0.47	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 3 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	ME-MS41L Au ppm 0.0002	ME- MS41L Ag ppm 0.001	ME- MS41L Al % 0.01	ME- MS41L As ppm 0.01	ME-MS41L B ppm 10	ME- MS41L Ba ppm 0.5	ME- MS41L Be ppm 0.01	ME- MS41L Bi ppm 0.001	ME- MS41L Ca % 0.01	ME- MS41L Cd ppm 0.001	ME- MS41L Ce ppm 0.003	ME- MS41L Co ppm 0.001	ME- MS41L Cr ppm 0.01
103741		0.38	<0.001	0.0004	0.234	0.22	2.10	<10	93.7	0.04	0.053	0.47	0.334	3.03	1.075	3.24
103742		0.50	0.008	0.0007	1.505	0.10	0.68	<10	69.0	0.03	0.059	0.57	0.483	1.415	0.524	1.20
103743	3	0.34	0.010	0.0002	0.410	0.14	0.54	<10	145.0	0.07	0.041	0.73	0.789	3.13	0.354	1.03
103744		0.24	0.011	0.0003	0.100	0.09	0.31	<10	39.7	0.01	0.025	0.40	0.401	0.739	0.340	1.29
103745		0.34	<0.001	<0.0002	0.345	0.10	0.35	<10	188.0	0.02	0.053	0.75	0.561	1.100	0.532	1.39
103746		0.54	<0.001	0.0007	0.188	0.24	0.62	<10	153.0	0.05	0.057	0.42	0.630	4.08	0.784	6.18
103747		0.30	<0.001	0.0006	0.099	0.05	0.29	10	201	0.02	0.025	1.40	0.480	0.651	0.339	0.72
103748	3	0.42	0.001	0.0005	0.101	0.04	0.31	20	234	0.02	0.022	2.48	3.56	0.509	0.516	0.69
103749		0.44	< 0.001	<0.0002	0.178	0.11	0.24	<10	73.6	0.01	0.039	0.69	0.974	0.908	0.373	0.93
103750		0.44	<0.001	<0.0002	0.208	0.18	0.86	<10	102.5	0.03	0.039	0.58	0.661	1.840	0.710	2.82
1043651		0.44	<0.001	0.0008	0.085	0.84	3.85	<10	130.0	0.21	0.060	0.60	0.267	12.95	4.63	11.75
1043652		0.54	<0.001	0.0006	0.139	0.31	1.60	<10	131.5	0.08	0.036	0.68	0.383	5.19	1.455	4.64
1043653		0.34	<0.001	0.0019	0.189	0.86	3.68	<10	139.5	0.32	0.058	0.62	0.275	13.35	4.76	11.25
1043654		0.38	<0.001	0.0012	0.138	0.60	4.24	10	143.5	0.19	0.055	1.59	0.991	13.05	6.05	10.30
1043655		0.50	0.001	0.0009	0.240	0.83	4.37	<10	158.0	0.28	0.065	0.94	0.604	19.25	6.20	11.35
1043656		0.46	<0.001	0.0023	0.262	0.56	5.46	<10	232	0.15	0.068	1.11	1.420	12.10	5.26	7.82
1043657	1	0.42	<0.001	0.0004	0.086	0.29	1.80	10	176.5	0.10	0.032	2.20	0.375	7.63	2.32	5.25
1043658		0.40	<0.001	0.0004	0.163	0.59	3.24	10	136.0	0.14	0.042	1.90	1.355	7.63	5.07	7.61
1043659		0.48	<0.001	0.0003	0.171	0.87	2.22	<10	129.0	0.29	0.063	1.73	0.313	19.50	4.11	7.56
1043660		Not Recvd														
1043661		0.56	0.004	0.0056	0.303	0.71	4.04	<10	130.0	0.15	0.068	0.52	0.354	7.91	3.90	13.80
1043662		0.44	<0.001	0.0011	0.243	0.61	4.40	20	161.5	0.24	0.044	2.99	2.74	10.10	5.90	9.24
1043663		0.40	<0.001	0.0002	0.151	0.72	4.69	<10	81.1	0.17	0.047	0.73	0.663	11.55	6.28	9.72
1043664		0.36	0.004	0.0005	0.193	0.57	1.65	<10	184.0	0.18	0.036	1.15	1.250	18.90	5.45	6.95
1043665		0.48	<0.001	0.0003	0.207	0.80	3.62	<10	151.5	0.19	0.055	0.73	0.901	19.50	5.17	8.88
1043666		0.48	< 0.001	0.0010	0.402	1.05	5.13	<10	243	0.39	0.080	1.19	1.245	24.8	5.19	11.70
1043667		0.36	< 0.001	0.0008	0.087	0.39	2.67	20	156.0	0.14	0.032	2.49	1.715	8.71	5.15	6.80
1043668		0.42	<0.001	0.0002	0.385	0.56	3.29	10	105.5	0.13	0.047	0.80	0.640	8.70	3.63	8.07
1043669		0.48	< 0.001	0.0003	0.465	0.67	4.30	<10	161.0	0.21	0.046	1.09	1.225	14.00	4.62	8.48
1043670		0.46	0.002	0.0002	0.216	0.32	2.28	10	207	0.09	0.030	1.74	0.247	6.10	2.71	4.84
1043671		0.38	<0.001	<0.0002	0.150	0.40	2.64	<10	119.0	0.08	0.047	0.89	0.399	5.85	3.30	6.75
1043672		0.28	0.010	<0.0002	0.124	0.34	2.41	<10	224	0.07	0.051	0.84	0.571	5.61	2.74	7.13
1043673		0.34	<0.001	<0.0002	0.101	0.17	1.23	20	395	0.05	0.023	3.28	1.425	2.10	1.365	3.31
1043674		0.44	<0.001	<0.0002	0.036	0.04	0.19	30	184.0	0.01	0.007	3,81	0.276	0.517	0.206	1.02
1043675		0.56	0.008	<0.0002	0.198	0.36	0.65	10	160.0	0.05	0.041	1.34	1.330	2.17	1.765	3.40
1043676		0.42	0.011	<0.0002	0.133	0.29	0.46	10	351	0.05	0.049	2.37	4.90	4.27	3.23	5.47
1043677		0.28	< 0.001	0.0002	0.080	0.22	0.58	20	361	0.07	0.049	2.92	3.23	4.41	2.20	3.42
1043678		0.18	< 0.001	0.0002	0.082	0.16	0.40	10	177.5	0.02	0.030	1.39	1.500	1.375	1.550	2.74
1043679		0.30	0.001	0.0003	0.196	0.37	0.80	10	114.5	0.08	0.023	0.86	1.125	4.83	1.820	4.53
1043680		0.18	0.013	0.0002	0.330	0.15	0.25	10	379	0.07	0.024	1.48	1.155	6.51	2.83	2.59

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 3 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

CERTIFICATE OF ANALYSIS VA17184292

Sample Description	Method Analyte Units LOR	ME- MS41L Cs ppm 0.005	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS41L Hf ppm 0.002	ME- MS41L Hg ppm 0.004	ME- MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME- MS41L Li ppm 0.1	ME-MS41L Mg % 0.01	ME-MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001
103741 103742		0.227 0.175	12.25 17.20	0.640 0.152	1.210 0.292	0.016 0.012	0.002 0.006	0.232 0.274	0.007 <0.005	0.09 0.09	1.575 0.716	0.5 0.2	0.06 0.06	748 498	0.85 0.90	0.007 0.006
103743		0.195	11.65	0.118	0.474	0.005	0.008	0.287	0.005	0.12	1.550	0.1	0.05	806	1.96	0.009
103744		0.242	14.85	0.090	0.201	0.007	0.004	0.306	<0.005	0.11	0.387	0.1	0.04	299	1.04	0.005
103745		0.212	18.20	0.143	0.335	0.010	0.008	0.465	0.005	0.13	0.577	0.2	0.05	948	1.25	0.005
103746		0.200	16.25	0.530	0.968	0.013	0.004	0.250	0.005	0.09	2.43	0.2	0.05	396	1.38	0.011
103747		0.135	15.10	0.066	0.145	0.007	0.004	0.357	<0.005	0.12	0.427	0.1	0.11	310	0.79	0.005
103748		0.165	19.85	0.060	0.140	0.006	0.003	0.246	<0.005	0.33	0.277	0.2	0.19	791	0.74	0.005
103749		0.120	18.35	0.102	0.235	0.009	0.005	0.353	<0.005	0.11	0.458	0.1	0.05	479	1.04	0.006
103750		0.135	15.55	0.400	0.845	0.010	0.011	0.314	<0.005	0.08	1.060	0.5	0.06	162.0	1.12	0.008
1043651		0.589	14.00	1.310	3.16	0.030	0.004	0.121	0.019	0.09	5.97	3.9	0.20	835	1.02	0.009
1043652		0.487	10.35	0.570	1.375	0.024	0.018	0.203	0.006	0.06	2.59	0.8	0.09	199.5	0.65	0.005
1043653		0.433	16.35	1.440	3.79	0.041	0.008	0.102	0.018	0.09	6.41	4.7	0.22	562	1.06	0.009
1043654		0.292	16.90	1.410	2.09	0.033	0.029	0.064	0.012	0.14	6.01	3.7	0.29	821	1.13	0.011
1043655		0.413	20.0	1.560	2.54	0.049	0.008	0.116	0.020	0.10	9.17	3.5	0.25	646	0.92	0.011
1043656		0.298	19.05	1.330	2.08	0.028	0.005	0.153	0.021	0.11	5.56	3.1	0.21	1845	0.92	0.008
1043657		0.308	14.20	0.680	1.075	0.032	0.029	0.166	0.010	0.11	3.72	1.5	0.19	744	0.66	0.007
1043658		0.225	15.25	1.100	1.875	0.028	0.007	0.129	0.012	0.14	3.56	3.2	0.35	1220	0.65	0.007
1043659		0.414	22.3	1.180	2.32	0.072	0.030	0.207	0.022	0.05	10.90	3.0	0.25	275	0.71	0.012
1043660								and the second se								
1043661		0.355	11.05	1.470	2.83	0.022	0.003	0.095	0.011	0.08	3.81	3.4	0.18	917	0.78	0.008
1043662		0.381	22.2	1.140	2.16	0.045	0.022	0.121	<0.005	0.19	5.36	3.8	0.30	802	1.25	0.008
1043663		0.327	11.80	1.450	2.61	0.029	0.002	0.074	0.007	0.11	5.05	3.9	0.25	2320	0.78	0.009
1043664		0.430	12.75	0.810	1.575	0.054 0.041	0.008	0,190 0,110	0.010 0.010	0.09 0.09	8.83 8.78	1.6 3.8	0.16	1645 1355	0.79 0.76	0.009
1043665		0.318	11.15	1.350	2.46			0.000			and the second second second					
1043666		0.410	28.6	1.670	3.21	0.071	0.011	0.208	0.021	0.09	13.20	4.1	0.23	949	1.06	0.009
1043667		0.192	13.50	0.940	1.395	0.030	0.011	0.063	<0.005	0.17	4.43	2.2	0.32	553	0.84	0.009
1043668		0.278	11.45	1.090	2.05	0.037	0.006	0.174	<0.005	0.10	4.16	2.2 3.5	0.17	932 1050	1.02 0.91	0.009
1043669		0.289	16.30 15.95	1.400 0.770	2.46 1.250	0.042	0.011 0.017	0.128 0.199	<0.005 0.005	0.10 0.11	7.30 3.09	1.7	0.26	1250	0.91	0.008
1043670		0.288						in the second second				16.04	CHALLAN	19983107 A.		1/2010/00/00
1043671		0.206	13.90	0.850	1.645	0.024	0.005	0.154	<0.005	0.08	2.91	1.5	0.14	773	0.79	0.009
1043672		0.278	9.81	0.950	1.800	0.022	0.010	0.176	<0.005 <0.005	0.07	2.96 1.035	1.3 0.9	0.11 0.12	746 2230	0.95	0.007
1043673		0.156	12.85	0.320 0.054	0.575	0.015	0.007	0.284	<0.005	0.11	0.351	0.9	0.12	358	0.59	0.007
1043674 1043675		0.143 0.268	7.19 8.59	0.560	0.114 1.805	0.019	0.005	0.243	<0.005	0.12	1.180	1.0	0.10	2830	0.67	0.007
1043676		0.229	11.15	0.430	1.185	0.018	0.005	0.315	<0.005	0.18	1.960	0.6	0.16	4370	1.36	0.007
1043677		0.292	10.90	0.350	0.945	0.017	0.011	0.362	<0.005	0.19	1.920	0.6	0.12	7850	1.37	0.008
1043678		0.197	7.24	0.146	0.369	0.022	0.009	0.281	<0.005	0.16	0.882	0.4	0.11	3110	1.89	0.005
1043679		0.207	9.32	0.400	0.798	0.019	0.005	0.281	<0.005	0.12	2.51	0.9	0.11	1790	0.69	0.006
1043680		0.352	8.33	0.131	0.404	0.021	0.005	0.410	<0.005	0.14	3.29	0.3	0.12	4330	0.94	0.005

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 3 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

CERTIFICATE OF ANALYSIS VA17184292

Sample Description	Method	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME-MS41L	ME-MS41L	ME- MS41L	ME- MS41L
	Analyte	Nb	Ni	P	Pb	Pd	Pt	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0.002	0.04	0.001	0.005	0.001	0.002	0.005	0.001	0.01	0.005	0.005	0.1	0.01	0.01	0.005
103741		0.225	2.40	0.080	4.81	<0.001	<0.002	1.745	<0.001	0.09	0.187	0.450	0.2	0,20	15.95	<0.005
103742		0.049	1.39	0.105	3.61	<0.001	<0.002	1.765	<0.001	0.13	0.156	0.281	<0.1	0.11	21.5	<0.005
103743		0.262	1.33	0.115	4.38	<0.001	<0.002	4.53	<0.001	0.13	0.113	0.238	0.2	0.17	30.1	0.009
103744		0.041	1.23	0.107	1.950	<0.001	<0.002	3.85	0.001	0.12	0.125	0.229	0.2	0.10	15.45	<0.005
103745		0.071	1.43	0.128	6.63	0.001	<0.002	2.73	<0.001	0.15	0.232	0.268	0.2	0.12	31.1	<0.005
103746		0.192	2.42	0.068	5.96	0.001	<0.002	2.02	<0.001	0.08	0.240	0.494	0.3	0.24	21.4	<0.005
103747		0.027	0.99	0.089	2.65	<0.001	<0.002	1.485	<0.001	0.16	0.084	0.170	0.2	0.04	57.8	<0.005
103748		0.023	2.08	0.105	2.38	0.001	<0.002	4.60	<0.001	0.19	0.068	0.133	<0.1	0.13	114.0	<0.005
103749		0.039	1.07	0.111	3.25	0.001	<0.002	1.465	<0.001	0.13	0.149	0.212	0.3	0.08	16.75	<0.005
103750		0.198	2.19	0.080	3.44	0.002	<0.002	1.255	<0.001	0.11	0.151	0.523	0.3	0.16	23.6	<0.005
1043651 1043652		0.392	8.80	0.071	4.96	<0.001 0.001	<0.002	8.09	0.001	0.07	0.206	2.11	0.1	0.38	28.3 38.4	<0.005 <0.005
1043652 1043653 1043654 1043655		0.398 0.273 0.348	8.88 9.13 10.00	0.081 0.109 0.099	4.63 5.05 5.24	0.001 0.001 0.001	<0.002 <0.002 <0.002	6.04 4.93 6.58	<0.001 <0.001 <0.001	0.08 0.09 0.09	0.229 0.272 0.279	2.67 2.40 2.28	0.6 0.3 0.3	0.37 0.39 0.37	35.2 72.4 49.6	<0.005 <0.005 <0.005
1043656		0.298	7.18	0.100	5.10	0.001	<0.002	4.95	<0.001	0.09	0.256	1.680	0.3	0.21	46.7	<0.005
1043657		0.132	5.25	0.104	2.86	0.001	<0.002	4.79	<0.001	0.17	0.148	1.380	0.6	0.20	98.5	<0.005
1043658		0.302	7.32	0.116	3.14	0.001	<0.002	3.46	<0.001	0.13	0.166	0.863	0.1	0.17	72.9	<0.005
1043659 1043660		0.268	8.33	0.116	3.28	<0.001	<0.002	3.67	0.001	0.18	0.378	2.45	0.4	0.27	72.0	<0.005
1043661		0.330	8.23	0.078	5.06	0.001	<0.002	6.04	<0.001	0.05	0.230	0.937	0.3	1.10	25.9	0.005
1043662		0.408	9.82	0.103	3.35	<0.001	<0.002	5.82	0.001	0.17	0.224	2.04	0.4	0.20	111.0	<0.005
1043663		0.338	8.37	0.101	4.39	<0.001	<0.002	5.48	<0.001	0.10	0.231	1.615	0.2	0.26	24.8	<0.005
1043664		0.178	7.53	0.119	3.87	<0.001	<0.002	4.56	<0.001	0.17	0.184	1.200	<0.1	0.31	54.5	<0.005
1043665		0.356	8.31	0.104	3.81	<0.001	<0.002	4.99	<0.001	0.09	0.241	1.750	0.1	0.27	42.1	<0.005
1043666		0.531	11.70	0.125	5.30	<0.001	<0.002	4.53	<0.001	0.12	0.302	2.44	0.2	0.46	67.8	<0.005
1043667		0.237	6.53	0.134	2.43	<0.001	<0.002	3.67	<0.001	0.15	0.148	0.953	0.2	0.18	119.5	<0.005
1043668		0.337	6.46	0.106	3.99	0.001	<0.002	3.35	<0.001	0.10	0.175	1.520	0.1	0.70	39.6	<0.005
1043669		0.399	7.97	0.097	4.07	0.001	<0.002	4.20	<0.001	0.11	0.228	1.985	0.2	0.23	57.5	<0.005
1043670		0.171	5.41	0.116	3.07	0.002	<0.002	5.30	<0.001	0.20	0.122	1.360	<0.1	0.19	70.3	<0.005
1043671		0.260	5.71	0.108	4,37	<0.001	<0.002	2.72	<0.001	0.17	0.141	1.160	<0.1	0.32	38.0	<0.005
1043672		0.447	4.98	0.101	5.42	<0.001	<0.002	3.31	<0.001	0.13	0.174	0.871	0.1	0.23	47.8	<0.005
1043673		0.122	3.12	0.132	2.88	<0.001	<0.002	2.19	<0.001	0.18	0.086	0.288	0.3	0.20	96.0	<0.005
1043674		0.015	1.59	0.080	1.105	<0.001	<0.002	2.11	<0.001	0.22	0.036	0.147	0.2	0.06	150.5	<0.005
1043675		0.346	3.01	0.105	3.47	<0.001	<0.002	4.04	<0.001	0.14	0.101	0.598	0.3	0.31	66.6	<0.005
1043676		0.224	5.29	0.131	5.84	<0.001	<0.002	3.27	<0.001	0.15	0.114	0.432	0.4	0.21	123.0	<0.005
1043677		0.148	6.16	0.152	5.86	<0.001	<0.002	5.58	0.001	0.18	0.104	0.194	0.1	0.24	127.5	<0.005
1043678		0.061	4.44	0.125	4.82	<0.001	<0.002	2.29	<0.001	0.19	0.122	0.273	0.4	0.14	69.8	<0.005
1043678		0.128	6.15	0.099	2.82	<0.001	<0.002	3.16	<0.001	0.14	0.061	0.456	0.2	0.09	35.9	<0.005
1043679 1043680		0.039	6.19	0.140	3.61	<0.001	<0.002	4.18	<0.001	0.17	0.087	0.588	0.4	0.14	117.0	<0.005

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4 Page: 3 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

CERTIFICATE OF ANALYSIS VA17184292

Sample Description	Method Analyte Units LOR	ME- MS41L Te ppm 0.01	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L Tl ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0,1	ME- MS41L W ppm 0.001	ME-MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01	
103741 103742 103743 103744		0.03 <0.01 <0.01 0.01	0.032 0.037 0.126 0.023	0.016 0.004 0.003 0.002	0.044 0.024 0.041 0.018	0.083 0.061 0.109 0.030	16.5 2.9 1.8 1.7	0.073 0.028 0.022 0.020	0.514 0.402 0.519 0.162	55,6 35,6 45,2 44,6	0.17 0.18 0.22 0.14	
103745		0.01	0.029	0.004	0.045	0.041	2.8 15.9	0.038	0.274	79.9 40.9	0.16 0.14	
103747 103748 103749		<0.01 0.01 <0.01	0.021 0.019 0.023	0.002 0.001 0.003	0.027 0.021 0.041	0.026 0.020 0.035	1.2 1.0 1.9	0.013 0.014 0.030	0.375 0.235 0.209	66.9 134.0 76.2	0.11 0.10 0.12	
103750 1043651 1043652		0.01 0.02 0.01	0.098 0.090 0.217	0.012 0.019 0.011	0.023 0.049 0.031	0.066 0.312 0.156	10.4 29.4 13.4	0.030 0.086 0.076	0.428 4.42 1.790	45.2 52.6 46.0	0.60 0.17 0.53	
1043653 1043654 1043655		0.02 0.01 0.02	0.152 0.277 0.095	0.016 0.024 0.018	0.044 0.034 0.046	0.419 0.257 0.412	29.8 28.7 28.8	0.108 0.095 0.242	4.75 5.79 9.22	53.2 161.5 55.6	0.41 0.85 0.36	
1043656 1043657 1043658 1043659 1043660		0.02 <0.01 <0.01 <0.01	0,112 0.334 0.042 0,157	0.020 0.010 0.017 0.012	0.046 0.026 0.026 0.044	0.263 0.168 0.164 0.600	26.3 12.3 22.8 19.4	0.082 0.045 0.054 0.059	4.16 3.28 2.72 14.95	91.4 64.1 168.0 32.6	0.23 1.09 0.21 0.99	
1043661 1043662 1043663 1043664		0.03 0.01 0.01 0.02 0.01	0.014 0.154 0.071 0.069 0.153	0.025 0.023 0.027 0.010 0.027	0.040 0.045 0.039 0.046 0.041	0.165 0.452 0.203 0.257 0.275	34.7 25.1 31.9 13.2 28.2	0.076 0.062 0.068 0.054 0.076	2.34 6.45 3.86 8.85 7.23	62.6 221 98.3 81.3 74.9	0.14 0.97 0.13 0.32 0.21	
1043665 1043666 1043667 1043668 1043669 1043670		0.01 0.01 0.02 0.03 0.01	0.183 0.184 0.076 0.102 0.107 0.214	0.015 0.019 0.024 0.026 0.016	0.069 0.020 0.036 0.042 0.035	0.616 0.157 0.179 0.281 0.141	31.1 20.5 24.6 28.9 14.5	0.097 0.064 0.083 0.103 0.054	12.20 3.52 3.20 6.59 2.73	74.8 258 65.8 88.5 75.4	0.48 0.53 0.33 0.34 0.82	
1043671 1043672 1043673 1043674		<0.01 <0.01 <0.02 0.01	0.062 0.043 0.016 0.010	0.019 0.025 0.007 0.001	0.035 0.038 0.032 0.014	0.124 0.067 0.034 0.011	19.3 23.7 7.1 1.0	0.071 0.067 0.023 0.007	2.25 1.295 0.864 0.535	49.1 62.2 200 145.0	0.45 0.33 0.18 0.16	
1043675 1043676 1043677 1043678		0.01 0.01 0.01 0.02	0.019 0.028 0.012 0.042	0.024 0.013 0.008 0.006	0.037 0.029 0.048 0.041	0.068 0.082 0.052 0.028	12.1 10.5 6.8 3.4	0.036 0.038 0.045 0.026	0.696 0.900 1.050 0.521	158.5 283 465 131.5	0.22 0.19 0.08 0.20	
1043679 1043680		<0.01 0.02	0.023 0.027	0.009 0.003	0.059 0.076	0.075 0.055	9.0 2.3	0.021 0.011	2.21 3.66	77.4 230	0.22 0.18	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 4 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

CERTIFICATE OF ANALYSIS VA17184292

Sample Description	Method	WEI- 21	Au- ICP21	ME- MS41L	ME-MS41L	ME- MS41L	ME- MS41L	ME-MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L
	Analyte	Recvd Wt.	Au	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr
	Units	kg	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOR	0.02	0.001	0.0002	0.001	0.01	0.01	10	0.5	0.01	0.001	0.01	0.001	0.003	0.001	0.01
1043681		0.38	<0.001	0.0003	0.653	1.48	1.47	<10	290	0.48	0.073	0.93	2.55	27.2	9.84	14.80
1043682		0.22	<0.001	<0.0002	0.202	0.16	0.18	10	46.4	0.01	0.023	0.67	1.085	0.623	0.529	1.55
1043683		0.30	0.002	0.0003	0.181	0.27	1.00	10	198.5	0.06	0.027	1.69	0.824	2.23	1.565	4.34
1043684		0.46	<0.001	<0.0002	0.345	0.17	0.28	10	189.0	0.06	0.019	1.00	1.345	4.81	0.680	1.72
1043685		0.20	<0.001	0.0007	0.136	0.31	0.49	10	103.5	0.10	0.021	1.44	0.594	5.09	1.850	5.03
1043686 1043687 1043688 1043688 1043689 1043690		0.42 0.14 0.26 0.30 0.26	<0.001 0.007 0.005 0.004 0.007	0.0002 0.0003 <0.0002 <0.0002 <0.0002	0.276 0.223 0.135 0.130 0.360	0.31 0.30 0.40 0.22 0.16	1.10 1.05 1.39 0.67 0.36	<10 <10 <10 <10 10	95.1 66.0 128.0 74.1 120.5	0.07 0.07 0.11 0.07 0.03	0.039 0.028 0.036 0.019 0.024	0.46 0.50 0.73 0.56 0.93	0.534 0.521 0.737 0.820 0.551	4.05 2.57 5.21 2.39 1.890	1.370 1.490 2.80 1.355 1.235	5.98 5.13 9.42 3.52 3.17
1043691		0.20	<0.001	<0.0002	0.112	0.19	0.45	<10	112.5	0.05	0.028	0.74	0.468	1.860	1.045	3.47
1043692		0.18	<0.001	0.0002	0.185	0.15	0.22	<10	97.1	0.01	0.019	0.59	0.637	0.627	0.768	2.34
1043693		0.34	<0.001	<0.0002	0.053	0.36	0.65	20	359	0.07	0.037	1.58	2.05	2.90	2.96	8.37
1043694		0.20	<0.001	<0.0002	0.072	0.23	0.41	10	59.2	0.02	0.026	0.79	0.707	1.620	1.105	7.42
1043695		0.16	<0.001	<0.0002	0.091	0.22	0.52	<10	103.5	0.03	0.024	0.79	0.692	2.52	1.685	6.82
1043696		0.22	<0.001	<0.0002	0.152	0.16	0.31	10	401	0.03	0.029	2.65	1.410	1.375	1.270	3.33
1043697		0.18	<0.001	<0.0002	0.089	0.09	0.23	10	386	0.02	0.020	2.84	1.445	1.320	1.455	1.90
1043698		0.20	0.004	<0.0002	0.480	0.15	0.28	10	58.3	0.02	0.024	0.52	0.826	1.295	0.623	3.07
1043699		0.30	<0.001	0.0003	0.121	0.24	1.10	20	446	0.07	0.019	2.96	0.601	3.36	2.44	5.28
1043700		0.28	<0.001	<0.0002	0.201	0.12	0.27	10	100.5	0.02	0.012	1.67	1.790	0.961	0.773	1.72
1043701		0.30	<0.001	0.0003	0.049	0.09	0.37	10	406	0.03	0.011	3.21	0.734	1.220	0.971	1.36
1043702		0.36	<0.001	0.0003	0.082	0.20	0.35	20	348	0.04	0.016	3.13	0.816	1.120	1.315	1.40
1043703		0.52	<0.001	<0.0002	0.069	1.07	2.33	10	523	0.32	0.052	1.73	1.905	11.15	8.90	10.25
1043704		0.32	<0.001	0.0010	0.104	0.31	0.59	20	936	0.11	0.022	4.57	0.595	9.60	1.540	3.41
1043705		0.28	0.010	<0.0002	0.261	0.28	0.51	20	517	0.14	0.022	2.87	0.971	9.71	2.04	2.68
1043706		0.22	<0.001	<0.0002	0.206	0.18	0.34	10	90.0	0.03	0.017	0.92	0.996	1.370	0.927	2.28
1043707		0.22	<0.001	<0.0002	0.117	0.20	0.63	10	257	0.07	0.016	1.88	0.674	5.32	1.580	2.95
1043708		0.32	<0.001	<0.0002	0.183	0.29	0.46	<10	150.5	0.07	0.027	0.96	0.577	3.45	1.195	3.63
1043709		0.26	<0.001	<0.0002	0.062	0.25	0.32	20	455	0.12	0.021	2.77	1.655	8.21	2.26	2.89
1043710		0.22	0.001	0.0003	0.071	0.17	0.30	20	319	0.05	0.014	2.20	1.230	1.515	1.335	1.71
1043711		0.24	<0.001	<0.0002	0.338	0.24	0.30	10	106.0	0.06	0.020	0.57	0.696	2.36	0.726	1.89
1043712		0.32	0.003	0.0002	0.187	0.18	0.23	10	85.0	0.02	0.013	0.99	0.734	1.170	0.776	0.92
2353651		0.26	0.002	0.0020	0.365	0.53	1.27	<10	542	0.14	0.036	1.65	1.605	13.05	3.80	3.76
2353652		0.34	0.008	<0.0002	0.275	0.35	1.64	<10	141.5	0.04	0.039	0.90	0.610	2.91	1.755	3.72
2353653		0.50	0.022	<0.0002	0.393	1.63	3.83	<10	474	0.80	0.065	1.08	1.005	43.4	8.72	12.45
2353654 2353655 2353656 2353657 2353657 2353658		0.22 0.24 0.40 0.24 0.42	0.028 <0.001 0.026 0.023 0.010	<0.0002 0.0002 0.0005 0.0002 0.0013	0.017 0.027 0.140 0.157 0.147	0.03 0.06 0.35 0.77 1.37	0.24 0.21 1.05 1.98 5.58	10 <10 <10 <10 <10	103.0 121.5 405 449 255	0.01 0.03 0.12 0.18 0.25	0.005 0.013 0.037 0.051 0.058	1.61 1.32 1.26 1.58 1.76	0.268 0.458 0.656 1.035 0.726	0.384 1.300 7.55 16.50 16.15	0.145 0.337 2.34 3.81 9.15	0.46 1.07 3.20 5.79 14.00

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 4 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

CERTIFICATE OF ANALYSIS VA17184292

Sample Description	Method Analyte Units LOR	ME- MS41L Cs ppm 0.005	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS41L Hf ppm 0.002	ME- MS41L Hg ppm 0.004	ME- MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME- MS41L Li ppm 0.1	ME- MS41L Mg % 0.01	ME- MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001
1043681		0.687	19.95	1.560	4.33	0.043	0.004	0.238	0.028	0.14	10.35	4.0	0.23	4030	1.22	0.008
1043682		0.092	4.62	0.069	0.171	0.013	<0.002	0.241	<0.005	0.11	0.386	0.1	0.06	1585	0.54	0.005
1043683	3	0.190	7.30	0.480	0.809	0.014	0.003	0.220	<0.005	0.11	1.110	0.9	0.10	3390	1.03	0.006
1043684		0.224	7.74	0.170	0.378	0.019	0.005	0.325	<0.005	0.13	4.24	0.2	0.10	550	0.63	0.008
1043685		0.360	8.61	0.310	0.767	0.029	0.018	0.192	<0.005	0.08	3.16	0.8	0.18	588	0.76	0.006
1043686		0.211	6.93	0.590	1.355	0.020	0.005	0.164	<0.005	0.11	2.07	0.7	0.07	1050	0.65	0.007
1043687		0.183	7.23	0.490	0.886	0.024	0.006	0.229	<0.005	0.10	1.280	1.0	0.08	779	0.65	0.006
1043688		0.330	8.39	0.790	1.605	0.023	0.011	0.150	<0.005	0.10	2.49	1.7	0.12	2260	1.41	0.007
1043689		0.132	6.46	0.360	0.734	0.019	0.006	0.152	<0.005	0.09	1.230	0.8	0.09	1305	1.02	0.004
1043690		0.117	6.40	0.198	0.457	0.016	0.007	0.270	<0.005	0.09	0.947	0.3	0.07	1780	1.72	0.005
1043691		0.138	7.03	0.280	0.515	0.014	0.006	0.225	<0.005	0.09	1.090	0.4	0.12	898	3.20	0.006
1043692	1	0.062	5.57	0.091	0.206	0.011	0.005	0.224	<0.005	0.09	0.373	0.1	0.06	1680	1.40	0.006
1043693		0.256	10.50	0.500	1.160	0.019	0.003	0.265	< 0.005	0.20	1.325	1.4	0.25	7290	2.25	0.007
1043694		0.261	6.28	0.300	0.693	0.016	0.003	0.290	<0.005	0.10	0.873	0.4	0.08	1300	2.36	0.007
1043695		0.145	7.51	0.440	0.844	0.019	0.002	0.216	<0.005	0.10	1.385	0.6	0.11	2970	1.48	0.009
1043696		0.359	8.52	0.173	0.428	0.013	0.004	0.234	<0.005	0.26	0.949	0.2	0.14	3330	1.99	0.006
1043697		0.092	7.07	0.133	0.360	0.016	0.006	0.174	<0.005	0.25	1.175	0.3	0.16	2680	1.40	0.005
1043698	1	0.124	5.45	0.120	0.429	0.012	0.004	0.197	<0.005	0.12	0.767	0.2	0.07	1690	1.21	0.004
1043699		0.163	10.25	0.520	0.730	0.020	0.012	0.299	0.007	0.21	1.355	1.2	0.14	1080	0.42	0.003
1043700		0.173	8.28	0.114	0.198	0.011	0.007	0.202	<0.005	0.25	0.582	0.2	0.19	1145	0.81	0.002
1043701		0.162	11.20	0.175	0.355	<0.005	0.006	0.427	<0.005	0.17	0.686	0.5	0.11	3100	0.38	0.004
1043702		0.173	10.60	0.131	0.346	<0.005	0.007	0.277	<0.005	0.15	0.597	0.5	0.14	4110	0.36	0.005
1043703		0.442	10.50	1.870	3.20	0.019	0.013	0.088	0.022	0.12	4.26	3.1	0.25	3020	0.95	0.005
1043704		0.198	12.75	0.330	0.704	0.022	0.005	0.341	0.005	0.30	4.21	1.2	0.24	2970	0.37	0.007
1043705		0.292	11.55	0.300	0.737	0.012	0.010	0.174	0.005	0.17	3.08	0.8	0.19	2930	0.42	0.006
1043706		0.127	6.32	0.160	0.362	0.007	0.005	0.156	<0.005	0.17	0.745	0.3	0.09	1305	0.42	0.006
1043707		0.208	6.94	0.280	0.544	0.013	0.007	0.130	< 0.005	0.12	2.23	0.7	0.14	2180	0.31	0.005
1043708		0.162	8.37	0.310	0.696	0.012	0.009	0.156	0.005	0.12	1.715	0.7	0.11	1140	0.51	0.005
1043709		0.392	9.65	0.290	0.740	0.011	0.008	0.147	0.005	0.21	2.52	0.8	0.19	2500	0.68	0.003
1043710		0.143	6.65	0.149	0.363	0.005	0.006	0.147	<0.005	0.18	0.753	0.5	0.25	2640	0.54	0.005
1043711		0.122	6.03	0.129	0.358	0.007	0.002	0.206	<0.005	0.13	1.185	0.2	0.07	874	0.40	0.007
1043712		0.130	5.00	0.100	0.236	<0.005	0.004	0.233	<0.005	0.15	0.657	0.2	0.10	1215	0.46	0.007
2353651		0.539	14.80	0.530	1.230	0.023	0.007	0.312	0.011	0.09	5.27	1.2	0.10	4750	0.83	0.006
2353652		0.280	10.15	0.570	1.290	0.008	0.009	0.180	0.005	0.09	1.475	1.1	0.11	1135	0.57	0.008
2353653		0.514	24.2	1.710	3.91	0.093	0.003	0.115	0.027	0.07	25.5	3.9	0.23	3120	0.72	0.009
2353654		0.081	4.14	0.034	0.066	<0.005	0.004	0.197	<0.005	0.13	0.223	0.1	0.11	96.5	0.27	0.008
2353655		0.059	7.81	0.100	0.202	0.006	0.008	0.213	<0.005	0.05	0.627	0.1	0.06	142.5	0.80	0.006
2353656		0.264	12.00	0.480	1.195	0.016	0.007	0.208	0.009	0.07	3.28	1.1	0.09	1855	0.68	0.007
2353657		0.491	16.90	0.830	2.11	0.030	0.014	0.292	0.011	0.11	6.56	2.2	0.11	1595	0.68	0.008
2353658		0.600	26.4	2.32	3.26	0.046	0.042	0.172	0.024	0.06	8.28	4.4	0.33	2760	0.55	0.012

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 4 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

CERTIFICATE OF ANALYSIS VA17184292

Sample Description	Method Analyte Units LOR	ME- MS41L Nb ppm 0.002	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME-MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005
1043681		0.400	18.75	0.164	6.15	<0.001	<0.002	9.35	0.001	0.12	0.210	1.825	0.4	0.41	68.7	<0.005
1043682		0.033	2.71	0.120	2.19	0.001	<0.002	1.400	< 0.001	0.15	0.069	0.127	0.3	0.07	16.80	<0.005
1043683		0.200	5.77	0.111	3.30	0.002	<0.002	2.57	<0.001	0.13	0.079	0.328	0.2	0.19	55.6	<0.005
1043684		0.063	3.20	0.097	2.22	< 0.001	<0.002	2.14	< 0.001	0.15	0.112	0.987	0.4	0.24	77.5	< 0.005
1043685		0.111	6.09	0.095	1.530	<0.001	<0.002	2.86	< 0.001	0.21	0.102	1.015	0.2	0.11	107.0	<0.005
1043686		0.267	4.66	0.069	4.08	<0.001	<0.002	3.59	<0.001	0.09	0.128	0.722	0.2	0.23	22.4	<0.005
1043687		0.205	4.52	0.091	3.15	<0.001	<0.002	4.43	<0.001	0.12	0.108	0.633	0.3	0.13	17.60	<0.005
1043688		0.311	7.59	0.092	4.32	<0.001	< 0.002	5.16	0.001	0.11	0.121	1.205	0.1	0.20	35.3	<0.005
1043689		0.157	3.58	0.087	2.42	< 0.001	< 0.002	2.30	< 0.001	0.11	0.093	0.628	0.1	0.11	23.3	<0.005
1043690		0.110	3.21	0.083	3.23	<0.001	<0.002	1.940	<0.001	0.12	0.098	0.389	0.2	0.16	40.6	<0.005
1043691		0.164	3.88	0.098	3.53	<0.001	<0.002	1.730	<0.001	0.15	0.072	0.408	0.2	0.14	55.3	<0.005
1043692		0.029	3.00	0.105	2.42	<0.001	< 0.002	1.035	<0.001	0.14	0.054	0.149	0.3	0.11	38.7	<0.005
1043693	1	0.224	8.07	0.128	4.39	< 0.001	< 0.002	5.41	< 0.001	0.16	0.093	0.384	0.6	0.17	90.5	<0.005
1043694		0.121	4.63	0.097	3.24	< 0.001	<0.002	2.05	<0.001	0.15	0.062	0.281	0.3	0.16	48.3	<0.005
1043695		0.131	4.36	0.101	3.52	<0.001	<0.002	2.91	< 0.001	0.14	0.100	0.403	0.4	0.13	38.9	<0.005
1043696		0.066	4.47	0.157	3.49	<0.001	< 0.002	6.18	< 0.001	0.16	0.072	0.206	0.2	0.13	147.0	<0.005
1043697		0.088	4.97	0.153	2.91	<0.001	< 0.002	2.31	< 0.001	0.18	0.044	0.139	0.2	0.07	181.0	<0.005
1043698	8	0.073	2.76	0.132	2.37	<0.001	<0.002	2.21	< 0.001	0.10	0.065	0.318	0.3	0.16	17.95	<0.005
1043699		0.133	6.82	0.106	2.43	<0.001	< 0.002	3,99	< 0.001	0.13	0.087	0.823	0.3	0.12	183.0	<0.005
1043700		0.041	3.18	0.121	1.555	<0.001	<0.002	3.66	<0.001	0.14	0.035	0.300	0.4	0.07	76.7	<0.005
1043701		0.070	2.12	0.154	2.39	0.002	<0.002	2.67	< 0.001	0.14	0.040	0.434	0.3	0.06	153.5	<0.005
1043702		0.040	2.79	0.140	2.94	< 0.001	<0.002	2.51	< 0.001	0.16	0.052	0.347	0.3	0.08	135.5	<0.005
1043703		0.921	9.35	0.257	8.10	<0.001	< 0.002	4.45	< 0.001	0.10	0.133	1.510	0.3	0.37	106.5	<0.005
1043704		0.091	11.10	0.143	2.54	<0.001	< 0.002	3.15	< 0.001	0.13	0.071	0.382	0.4	0.10	268	<0.005
1043705		0.091	5.84	0.158	6.32	<0.001	<0.002	4.62	<0.001	0.15	0.188	0.648	0,3	0.16	186.0	<0.005
1043706		0.066	2.79	0.115	2.76	<0.001	<0.002	1.405	< 0.001	0.11	0.058	0.448	0.2	0.11	32.0	<0.005
1043707		0.099	5.25	0.123	1.775	0.001	<0.002	2.50	< 0.001	0.12	0.051	0.679	0.2	0.07	82.3	<0.005
1043708		0.118	7.84	0.139	2.89	< 0.001	< 0.002	1.910	< 0.001	0.13	0.080	0.739	0.2	0.17	45.1	<0.005
1043709		0.115	6.35	0.184	3.09	0.001	<0.002	4.21	< 0.001	0.14	0.071	0.572	0.4	0.11	164.5	<0.005
1043710		0.067	3.86	0.143	2.31	0.001	<0.002	2.49	< 0.001	0.15	0.052	0.305	0.3	0.06	95.3	<0.005
1043711		0.066	2.58	0.118	3.92	<0.001	<0.002	1.575	< 0.001	0.10	0.069	0.374	0.3	0.11	16.95	<0.005
1043712		0.037	2.91	0.115	2.38	<0.001	<0.002	2.43	<0.001	0.11	0.044	0.210	0.3	0.06	33.2	<0.005
2353651		0.138	5.60	0.108	5.24	<0.001	<0.002	3.38	<0.001	0.11	0.169	1.235	0.3	0.15	84.5	<0.005
2353652		0.225	3.55	0.091	3.80	<0.001	<0.002	3.17	<0.001	0.08	0.142	0.866	0.3	0.15	41.9	<0.005
2353653		0.405	11.10	0.110	6.91	< 0.001	<0.002	7.14	<0.001	0.05	0.282	1.850	0.3	0.32	93.2	<0.005
2353654		0.012	0.53	0.060	0.665	<0.001	<0.002	2.87	0.001	0.17	0.039	0.256	0.2	0.03	124.0	<0.005
2353655		0.025	1.05	0.073	1.915	<0.001	<0.002	1.450	<0.001	0.13	0.048	0.283	0.3	0.08	62.6	<0.005
2353656		0.151	3.41	0.116	4.16	< 0.001	<0.002	3.28	<0.001	0.11	0.115	1.175	0.2	0.11	56.7	<0.005
2353657		0.326	6.57	0.094	4.59	0.002	<0.002	5.79	< 0.001	0.09	0.178	2.14	0.3	0.26	78.1	<0.005
2353658		0.338	13.35	0.116	5.46	< 0.001	< 0.002	6.31	0.001	0.16	0.285	4,38	0.5	0.22	69.1	< 0.005

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4 Page: 4 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

CERTIFICATE OF ANALYSIS VA17184292

Sample Description	Method Analyte Units LOR	ME- MS41L Te ppm 0.01	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01	
1043681 1043682		0.01 0.04	0.042 0.018	0.011 0.002	0.186 0.043	0.318 0.017	27.5 1.8	0.041 0.012	10.80 0.158	149.0 61.0	0.22 0.09	
1043683		<0.01	0.014	0.012	0.034	0.049	10.8	0.023	0.605	118.5	0.10	
1043684		0.02	0.041	0.003	0.043	0.147	3.0	0.020	5.75	39.3	0.26	
1043685		<0.01	0.071	0.004	0.109	0.097	6.9	0.020	7.43	66.0	0.69	
1043686		0.01	0.043	0.020	0.052	0.098	17.8	0.028	1.000	51.7	0.21	
1043687		0.03	0.037	0.016	0.041	0.067	12.7	0.034	0.716	54.1	0.34	
1043688		<0.01	0.073	0.024	0.058	0.117	21.1	0.041	1.485 0.710	81.5 183.5	0.34	
1043689		0.01	0.057	0.012	0.034	0.056	9.8	0.027	0.527	71.4	0.35	
1043690		<0.01	0.042	0.009	0.034	0.038	5.6	0.023	14000 400		2004/2004	
1043691		0.03	0.051	0.011	0.023	0.050	7.0	0.030	0.465	62.8	0.31	
1043692		0.01	0.012	0.003	0.026	0.020	2.5	0.020	0.166	66.2 465	0.09 0.09	
1043693		<0.01	0.019	0.017	0.032	0.070	13.4	0.036	0.611 0.305	465 88.5	0.09	
1043694		0.01	0.016	0.012	0.027	0.043	8.5	0.032 0.027	0.583	73.7	0.16	
1043695		0.01	0.016	0.015	0.036	0.060	13.1	2010-2110-0210	The second second	A 475472 (11)	Constant and a second	
1043696		0.01	0.018	0.006	0.036	0.031	4.8	0.021	0.503	232	0.13 0.14	
1043697		0.01	0.017	0.006	0.018	0.019	3.6	0.024	0.908	247 108.0	0.14	
1043698		<0.01	0.023	0.007	0.041	0.033	3.9	0.022	0.265	167.0	0.14	
1043699		0.01	0.049	0.013	0.023	0.070	13.4	0.023	0.521	175.0	0.22	
1043700		0.01	0.021	0.004	0.017	0.019	2.8	0.032	Second St. 1	LINERAND ALL		
1043701		0.01	0.016	0.005	0.029	0.022	3.9	0.017	0.599	289 347	0.20 0.17	
1043702		<0.01	0.019	0.004	0.028	0.020	3.0	0.015	0.478	270	0.45	
1043703		0.02	0.063	0.045	0.052	0.167	35.3	0.071	3.37 5.10	430	0.45	
1043704		0.01	0.010	0.004	0.021	0.056	6.2 5.3	0.018	3.25	268	0.32	
1043705		0.01	0.033	0.006	0.040		0.004.42	Distance of the second		0.000		
1043706		<0.01	0.030	0.006	0.046	0.037	4.2	0.013	0.436	60.6	0.17	
1043707		0.01	0.052	0.007	0.036	0.064	6.3	0.018	2.13	167.0 61.1	0.25 0.27	
1043708		<0.01	0.053	0.007	0.028	0.079	5.7	0.022	0.970 1.770	367	0.18	
1043709		<0.01	0.034	0.007	0.030	0.068	5.3 3.5	0.059	0.477	248	0.19	
1043710		<0.01	0.030	0.005	0.033				C. C. Martin	5388	12 (19 (19 (19 (19 (19 (19 (19 (19 (19 (19	
1043711		0.01	0.030	0.005	0.043	0.056	3.0	0.017	0.611 0.383	82.4 91.3	0.13 0.13	
1043712		<0.01	0.030	0.003	0.023	0.025	2.3	0.010	0.383	91.3	0.29	
2353651		0.01	0.072	0.007	0.071	0.130	8.8 13.2	0.090	0.801	69.1	0.32	
2353652		< 0.01	0.099	0.015	0.035	0.060	26.9	0.045	28.3	72.0	0.10	
2353653		0.01	0.047	0.014	STOR A				1.2010.000	955380	01/20/08	
2353654		0.01	0.015	0.001	0.010	0.034	0.6	0.015	0.380	47.7	0.15	
2353655		<0.01	0.041	0.002	0.012	0.043	1.8	0.011	0.590	36.4	0.19	
2353656		0.01	0.074	0.010	0.049	0.144	9.1	0.063	3.20	94.1	0.28 0.63	
2353657		0.01	0.162	0.013	0.045	0.193	14.9	0.052	7.88	88.4 76.6	1.11	
2353658		0.01	0.217	0.014	0.119	0.474	31.5	0.051	16.00	/0.0	1.11	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 5 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

Sample Description	Method	WEI- 21	Au- ICP21	ME- MS41L	ME-MS41L	ME- MS41L	ME- MS41L	ME-MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME-MS41L	ME- MS41L	ME- MS41L	ME- MS41L
	Analyte	Recvd Wt.	Au	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr
	Units	kg	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOR	0.02	0.001	0.0002	0.001	0.01	0.01	10	0.5	0.01	0.001	0.01	0.001	0.003	0.001	0.01
2353659		0.42	0.005	<0.0002	0.164	0.70	6.57	<10	153.0	0.14	0.050	0.59	0.389	5.48	4.28	9.42
2353660		0.30	<0.001	0.0002	0.068	0.06	0.28	10	138.0	0.02	0.011	2.37	0.768	1.005	0.426	0.68
2353661		0.28	0.006	<0.0002	0.155	0.56	3.86	<10	159.0	0.10	0.052	0.42	0.346	4.06	3.02	7.26
2353662		0.38	0.013	0.0002	0.074	0.19	0.64	<10	523	0.02	0.019	1.84	0.638	1.195	1.260	1.65
2353663		0.32	0.009	0.0004	0.379	0.82	2.09	<10	142.0	0.19	0.041	1.57	0.584	12.50	2.01	5.64
2353664 2353665 2353666 2353667 2353667 2353668		0.40 0.32 0.44 0.38 0.32	<0.001 <0.001 <0.001 0.013 <0.001	0.0003 0.0112 <0.0002 <0.0002 <0.0002	0.275 0.127 0.068 0.070 0.241	0.40 0.36 0.03 0.03 0.25	1.50 2.34 0.29 0.23 1,40	<10 <10 10 <10 <10	144.0 181.0 117.0 143.0 164.5	0.06 0.06 0.01 0.01 0.01	0.030 0.035 0.012 0.011 0.030	0.59 1.02 3.30 0.95 1.21	0.493 0.209 0.518 0.357 0.482	2.73 3.02 0.297 0.411 3.79	1.630 1.740 0.410 0.154 1.690	3.40 4.36 0.60 0.56 3.27
2353669 2353670 2353671 2353672 2353673		0.50 0.28 0.38 0.36 Not Recvd	0.018 0.019 0.011 0.019	0.0004 <0.0002 0.0003 0.0004	0.226 0.334 0.401 0.128	0.15 0.17 0.73 0.38	0.61 1.10 1.31 1.31	10 <10 <10 10	419 128.5 316 212	0.03 0.02 0.19 0.18	0.026 0.024 0.039 0.020	1.96 0.64 1.83 2.89	0.922 0.421 1.825 2.31	1.690 1.445 25.2 13.20	1.085 0.764 3.03 5.20	1.54 2.34 4.45 2.44
2353674		0.68	<0.001	0.0003	0.209	0.71	3.37	10	120.5	0.16	0.046	0.90	0.523	7.73	4.29	8.90
2353675		0.34	0.048	0.0002	0.180	0.21	0.73	10	227	0.06	0.016	2.66	1.315	2.86	1.180	2.36
2353676		0.34	0.015	0.0002	0.183	0.21	0.51	10	485	0.03	0.026	1.95	1.020	1.300	1.390	1.65
2353677		0.28	0.007	0.0004	0.355	0.42	2.50	10	286	0.07	0.045	2.10	10.75	3.03	4.01	5.62
1043917		0.48	<0.001	0.0003	0.160	0.29	1.37	10	191.0	0.07	0.045	0.96	0.925	2.91	1.550	3.29
1043918		0.70	0.002	<0.0002	0.314	0.57	1.97	<10	518	0.17	0.098	1.14	1.440	11.25	3.62	6.39
1043919		0.38	<0.001	0.0047	0.234	0.30	1.20	10	383	0.05	0.048	2.60	1.225	1.360	2.49	2.23
1043920		0.38	0.001	0.0005	0.123	0.21	0.90	<10	95.4	0.03	0.048	0.40	0.784	1.760	1.380	2.45
1043921		0.24	0.014	0.0006	0.148	0.15	0.66	10	532	0.06	0.041	2.40	0.825	1.120	2.38	1.24
1043922		0.26	0.018	0.0004	0.066	0.26	0.80	10	671	0.09	0.048	1.87	0.545	3.19	3.44	2.33
1043923		0.28	<0.001	0.0002	0.200	0.22	0.67	10	176.0	0.04	0.047	1.32	0.444	2.03	1.670	2.51
1043924		0.34	0.001	0.0002	0.166	0.15	0.49	10	687	0.07	0.024	3.49	1.185	1.260	1.715	0.90
1043925		0.26	0.026	0.0004	0.261	0.22	0.47	10	560	0.03	0.040	1.92	1.300	1.210	1.715	1.42

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 5 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

Sample Description	Method Analyte Units LOR	ME-MS41L Cs ppm 0.005	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS41L Hf ppm 0.002	ME- MS41L Hg ppm 0.004	ME-MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME-MS41L Li ppm 0.1	ME-MS41L Mg % 0.01	ME-MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001
2353659 2353660 2353661 2353662 2353663		0.281 0.115 0.327 0.153 0.224	9.99 13.30 8.88 12.15 14.95	1.530 0.081 1.140 0.209 0.850	2.55 0.138 2.22 0.575 2.02	0.013 <0.005 0.010 <0.005 0.030	0.003 0.004 0.002 0.007 0.015	0.113 0.205 0.135 0.569 0.132	0.013 <0.005 0.012 <0.005 0.014	0.09 0.04 0.10 0.06 0.04	2.53 0.770 2.05 0.568 6.71	2.8 0.2 2.1 0.5 1.8	0.16 0.12 0.10 0.12 0.14	947 908 956 5890 525	0.68 0.37 0.75 0.35 0.78	0.009 0.006 0.008 0.006 0.007
2353664 2353665 2353666 2353666 2353667 2353668		0.213 0.215 0.080 0.088 0.262	8.77 9.57 7.91 8.59 12.20	0.450 0.690 0.032 0.043 0.440	1.070 1.345 0.085 0.100 0.939	0.009 0.008 <0.005 <0.005 0.007	0.005 0.016 0.003 0.003 0.007	0.264 0.266 0.222 0.225 0.169	0.008 0.008 <0.005 <0.005 0.008	0.06 0.08 0.05 0.07 0.10	1.295 1.375 0.160 0.223 . 2.00	0.8 1.1 0.1 0.1 0.6	0.08 0.09 0.12 0.08 0.12	1790 1880 311 255 1005	0.50 0.51 1.10 0.57 0.71	0.008 0.008 0.009 0.006 0.009
2353669 2353670 2353671 2353672 2353673		0.238 0.136 0.267 0.149	11.25 7.52 21.1 21.4	0.175 0.340 0.650 0.420	0.464 0.585 1.655 0.750	0.005 <0.005 0.043 0.051	0.010 0.007 0.013 0.027	0.293 0.195 0.253 0.148	<0.005 <0.005 0.013 0.006	0.06 0.08 0.11 0.07	0.824 0.907 12.25 7.98	0.4 0.3 1.4 0.7	0.09 0.06 0.17 0.18	1045 770 3050 3070	0.61 0.64 0.69 1.31	0.006 0.008 0.009 0.011
2353674 2353675 2353676 2353677 1043917		0.345 0.219 0.136 0.314 0.206	14.45 16.70 10.25 13.80 12.10	1.140 0.250 0.163 0.830 0.600	2.38 0.561 0.492 1.465 1.090	0.034 0.017 0.010 0.017 0.020	0.014 0.010 0.004 0.010 0.010	0.078 0.203 0.400 0.203 0.203	0.016 0.005 <0.005 0.011 0.006	0.07 0.07 0.20 0.17 0.08	4.13 2.08 0.741 1.550 1.680	3.7 0.7 0.4 1.9 0.9	0.22 0.24 0.08 0.17 0.10	435 872 5300 3090 1600	1.19 0.58 0.82 0.58 0.58 0.85	0.008 0.006 0.006 0.007 0.007
1043918 1043919 1043920 1043921 1043922		0.897 0.267 0.210 0.921 0.641	17.85 25.0 18.20 27.1 27.5	1.000 0.610 0.340 0.128 0.270	2.61 0.833 0.780 0.446 0.783	0.039 0.017 0.015 0.009 0.009	0.014 0.005 0.006 0.005 <0.002	0.262 0.600 0.388 0.605 0.609	0.009 0.007 0.006 0.005 0.005	0.06 0.15 0.08 0.19 0.20	9.40 0.789 0.991 0.705 2.58	1.9 0.4 0.7 0.8 0.6	0.12 0.10 0.05 0.13 0.13	1930 2990 758 7200 8600	2.46 1.03 1.13 1.49 1.75	0.007 0.005 0.005 0.005 0.005
1043923 1043924 1043925		0.335 0.362 0.161	19.95 15.35 25.2	0.380 0.085 0.176	0.901 0.328 0.655	0.011 0.008 0.006	0.003 0.004 0.004	0.527 0.469 0.585	<0.005 <0.005 <0.005	0.15 0.16 0.11	1.160 2.13 0.695	0.6 0.2 0.3	0.09 0.12 0.10	4670 6730 11700	1.08 2.01 1.14	0.008 0.006 0.006

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 5 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

Sample Description	Method Analyte Units LOR	ME- MS41L Nb ppm 0.002	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME-MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME-MS41L Rb ppm 0.005	ME-MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005
2353659 2353660 2353661		0.439 0.018 0.336	7.13 1.96 5.10	0.107 0.093 0.116	4.95 2.05 5.78	<0.001 <0.001 <0.001	<0.002 <0.002 <0.002	4.69 1.065 4.64	<0.001 <0.001 <0.001	0.06 0.23 0.05	0.232 0.047 0.182	1.335 0.208 0.761	0.2 0.2 0.2	0.26 0.04 0.26	28.8 84.3 23.4	<0.005 <0.005 <0.005
2353662 2353663		0.098 0.398	3.18 6.73	0.095	2.79 3.42	<0.001 <0.001	<0.002 <0.002	1.660 1.395	<0.001 <0.001	0.11 0.14	0.085 0.148	0.411 2.07	0.2 0.4	0.09 0.20	88.1 56.0	<0.005 <0.005
2353664 2353665 2353666 2353667 2353667 2353668		0.191 0.315 0.016 0.018 0.166	3.04 3.40 1.05 0.68 3.50	0.093 0.070 0.073 0.087 0.106	3.88 4.26 1.630 1.965 3.59	<0.001 <0.001 <0.001 <0.001 <0.001	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	3.45 2.85 1.435 1.975 2.18	<0.001 <0.001 0.002 <0.001 <0.001	0.09 0.06 0.15 0.16 0.12	0.102 0.167 0.085 0.050 0.114	0.637 1.010 0.109 0.154 0.850	0.3 0.2 0.4 0.2 0.2	0.17 0.15 0.06 0.05 0.14	25.4 38.9 120.5 26.8 42.7	<0.005 <0.005 <0.005 <0.005 <0.005
2353669 2353670 2353671 2353672 2353672 2353673		0.082 0.108 0.263 0.094	1.66 2.07 6.73 6.20	0.090 0.104 0.127 0.146	3.48 3.49 4.25 1.580	0.001 <0.001 <0.001 <0.001	<0.002 <0.002 <0.002 <0.002	1.540 1.255 2.43 1.470	<0.001 <0.001 <0.001 0.001	0.16 0.10 0.14 0.28	0.112 0.121 0.205 0.559	0.515 0.457 1.580 1.420	0.3 0.2 0.3 0.6	0.10 0.12 0.16 1.87	78.6 34.1 81.6 119.5	<0.005 <0.005 <0.005 <0.005
2353674 2353675 2353676 2353677		0.467 0.088 0.052 0.282	7.22 3.76 4.46 6.29	0.066 0.120 0.175 0.137	3.35 1.590 2.67 24.6	<0.001 0.001 0.001 <0.001 <0.001	<0.002 <0.002 <0.002 <0.002 <0.002	5.84 2.29 3.38 4.22 2.42	<0.001 <0.001 <0.001 <0.001 <0.001	0.08 0.19 0.15 0.14 0.10	0.166 0.060 0.063 0.285 0.140	1.865 0.579 0.590 0.801 0.791	0.3 0.3 0.4 0.5 0.3	0.21 0.10 0.08 0.19 0.13	50.3 103.0 81.6 81.9 46.7	<0.005 <0.005 <0.005 <0.005 <0.005
1043917 1043918 1043919 1043920 1043921 1043922		0.244 0.591 0.152 0.165 0.044 0.105	2.70 8.52 3.63 2.41 4.33 5.15	0.092 0.066 0.165 0.115 0.164 0.177	3.60 5.83 6.46 4.37 5.52 5.40	<0.001 <0.001 <0.001 <0.001 <0.001 0.001	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	8.50 3.70 1.720 8.68 6.02	<0.001 <0.001 <0.001 <0.001 <0.001	0.07 0.17 0.11 0.20 0.15	0.143 0.131 0.209 0.153 0.133	1.580 0.544 0.609 0.319 0.265	0.4 0.4 0.3 0.4 0.4	0.27 0.12 0.20 0.09 0.16	68.5 109.0 21.2 133.5 84.1	<0.005 <0.005 <0.005 <0.005 <0.005
1043923 1043924 1043925		0.147 0.026 0.072	2.55 3.85 4.05	0.121 0.145 0.156	5.72 3.11 5.14	0.001 <0.001 <0.001	<0.002 <0.002 <0.002	4.60 3.46 1.190	<0.001 <0.001 <0.001	0.12 0.21 0.18	0.157 0.067 0.136	0.463 0.215 0.302	0.4 0.3 0.4	0.14 0.06 0.09	49.5 133.0 63.6	<0.005 <0.005 <0.005
								7								

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4

Page: 5 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

Sample Description	Method Analyte Units LOR	ME- MS41L Te ppm 0.01	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01	
2353659 2353660 2353661 2353662 2353663		0.01 0.01 0.01 <0.01 0.01	0.043 0.016 0.018 0.032 0.153	0.029 0.001 0.021 0.007 0.010	0.036 0.043 0.037 0.056 0.047	0.118 0.020 0.097 0.031 0.296	30.6 1.2 24.0 5.1 13.7	0.190 0.007 0.064 0.018 0.052	1.725 1.110 1.135 0.369 6.85	77.2 79.6 61.2 226 58.3	0.12 0.13 0.07 0.18 0.69	
2353664 2353665 2353666 2353667 2353667 2353668		<0.01 <0.01 <0.01 0.01 0.01	0.038 0.162 0.012 0.017 0.059	0.013 0.020 0.001 0.001 0.013	0.051 0.059 0.041 0.033 0.055	0.060 0.064 0.026 0.018 0.093	8.9 15.5 0.6 0.7 10.6	0.036 0.042 0.009 0.014 0.035	0.670 0.886 0.267 0.161 1.550	52.8 64.9 11.5 65.4 42.7	0.23 0.57 0.13 0.09 0.30	
2353669 2353670 2353671 2353672 2353673		0.01 0.01 <0.01 0.02	0.042 0.048 0.076 0.086	0.005 0.009 0.008 0.004	0.063 0.032 0.088 0.088	0.050 0.038 0.494 0.486	3.5 7.9 10.7 8.4	0.017 0.033 0.031 0.036	0.776 0.435 13.50 14.40	72.8 43.8 82.0 61.3	0.24 0.23 0.40 0.85	
2353674 2353675 2353676 2353677 1043917		0.01 <0.01 <0.01 0.01 0.02	0.091 0.026 0.030 0.035 0.083	0.025 0.004 0.004 0.016 0.013	0.034 0.013 0.039 0.019 0.028	0.215 0.105 0.029 0.067 0.100	26.2 4.7 3.2 16.3 11.6	0.061 0.020 0.020 0.049 0.079	3.51 2.48 0.559 1.060 0.821	47.5 132.0 148.5 483 70.1	0.57 0.33 0.17 0.27 0.37	
1043918 1043919 1043920 1043921 1043922		0.02 0.02 <0.01 0.01 0.01	0.251 0.035 0.056 0.038 0.009	0.024 0.005 0.010 0.003 0.004	0.080 0.038 0.028 0.202 0.262	0.275 0.052 0.046 0.026 0.042	21.1 8.2 6.8 2.2 4.9	0.090 0.033 0.047 0.028 0.047	4.29 0.455 0.406 0.427 0.780	82.2 229 83.3 138.5 130.5	0.53 0.24 0.23 0.17 0.04	
1043923 1043924 1043925		0.01 0.01 0.01	0.026 0.024 0.023	0.009 0.002 0.004	0.128 0.057 0.056	0.064 0.019 0.029	8.8 1.3 3.6	0.033 0.024 0.023	0.445 0.598 0.402	97.9 202 192.5	0.11 0.11 0.10	
								3				

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: ALTIUS RESOURCES INC. PO BOX 8263 STN. A ST JOHNS NL A1B 3N4 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7- OCT- 2017 Account: TDP

Project: BC Project Generations

	CERTIFICATE COMMENTS
	ANALYTICAL COMMENTS
Applies to Method:	NSS is non- sufficient sample. ALL METHODS
Applies to Method:	Gold determinations by this method are semi- quantitative due to the small sample weight used (0.5g). ME- MS41L
	LABORATORY ADDRESSES
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.Au- ICP21LOG- 22ME- MS41LSCR- 41WEI- 21VEI- 21SCR- 41SCR- 41