

Prepared by Plans and Special Projects Division Evaluation and Strategic Planning Area

Revised on August 2008

TABLE OF CONTENT

PART A	. INTRODUCTION	4
A1.	Designated Uses, Total Waters and Applicable Water Quality	
	Standards	4
PART B	BACKGROUND	8
B1.	Total Waters	8
B2.	Water Pollution Control Program	10
B3.	Cost/Benefit Assessment	13
B4.	Special State Concerns And Recommendations	15
PART C	WATER MONITORING AND ASSESSMENT	. 16
C1.	Monitoring Program	16
C2	Monitoring Strategy for Unmonitored Waters	19
C3	Assessment Methodology Used for 305(b)/303(d) Integrated	
a	Report for 2008 Cycle	20
C3.1	Segmentation Criteria and Assessment Units	20
1.	Segmentation Criteria	20
2.	Assessment Unit Definition	25
C4.	Assessment Categories	25
C5.	Water Quality Assessment by Designated Uses	26
C6.	Assessment Kesults	28
Kive Eater	ers and Streams	29
Estu		63
Lago	oons	/3
	28	/ /
Coas	stal Shoreline	84
	Jisting Critoria	108
C/.1	Deligting Criteria	108
C/.2	Defisiting Criteria Driority Daplying and TMDL Davelopment Status	108
C7.3	PHONIC AND	110
FA	ASSESSMENT 114	
PART F	PUBLIC PARTICIPATION	117
APENI	$\mathbf{V} = \mathbf{V} - $	112
	$\Delta PENDIX II 1/2$	110
	APENDIX II 143	
	AT ENDIA III 152 ADENIDIV IV 450	
	APENDIA IV 153	

TABLE OF TABLES

Table 1: Specific Water Quality Standards for Selected Parameters (as establishe	d in
Table 2: Water Quality Standards for Specific Classifications	6
Table 3: Total Waters for Puerto Rico	۵
Table 7: Basing for the New Segmentation System	
Table 5: Geographic Regions	22 21
Table 5: Geographic Regions	27
Table 0. Size of waters Impaired by Causes	20
Table 7: Size of Waters Impaired by Sources (Assessed and Monitored Pivers and	23 d
Stroome)	- - - -
Table 9: Rivers and Streams Assessment (Menitered and Unmenitered)	20
Table 9. Rivers and Streams Assessment (Wolfitored and Onmonitored)	50
Table 10. Size of Waters Impaired by Sources (Estuaries) acres	00 62
Table 11: Size of Waters Impared by Sources (Estuaries) acres	03
Table 12: Estuaries Assessment (Except San Juan Estuary System)	04
Table 14: Size of waters Impaired by Causes (Lagoana) acros	12
Table 14. Size of Waters Impaired by Causes (Lagoons)	73
Table 15: Size of Waters impaired by Sources (Lagoons)	73
Table 17: Size of waters Impaired by Causes (Lakes) agree	74
Table 17. Size of Waters Impaired by Causes (Lakes) acres	/ /
Table 10: Lakes Assessment	/ /
Table 19. Lakes Assessment	/ 0
Table 20. Trophic Status of Significant Lakes/Reservoirs	01
Table 21. OPSI/GEP15 Chiena For the Determination Of the Trophic Status	01
Table 22: Puerlo Rico Lakes Trophic Status	Ծլ
Table 23. Trends in Significant Dublis Lakes Category	02
Table 24: Trends in Significant Public Lakes Calegory	83
Table 25: Coastal Shoreline - Water Quality Assessment Summary Puerto Rico 20	JU8 -
305(B)/303(D) Report.	84
Table 26: Coastal Shoreline Water Quality Assessment Summary For Monitored V	vaters
Puerto Rico 2008 - 305(B)/303(D)	85
Table 27: Coastal Shoreline Assessment Summary For Monitored Waters With	
Sources And Gauses Puerto Rico 2008 - 305(B)/303(D) Report (North C	Joast)
	86
Table 28: Coastal Shoreline Water Quality Assessment Summary For Unmonitore	:0 07
Waters Puerto Rico 2008 – 305(B)/303(D) Report (North Coast)	8/
Table 29: Coastal Shoreline Assessment Summary For Unmonitored Waters with	1
Sources Puerto Rico 2008 - 305(B)/303(D) Report (North Coast)	88
Table 30: Coastal Shoreline Water Quality Assessment Summary For Monitored V	vaters
Puerto Rico 2008 - 305(B)/303(D) Report	89
Table 31: Coastal Shoreline Assessment Summary For Monitored Waters With Sc	Jurces
And Gauses Puerto Rico 2008 305(B)/303(D) Report (East Region)	91
Table 32: Coastal Shoreline water Quality Assessment Summary For Unmonitore	d of
waters Puerto Rico 2008 - 305(B)/303(D) Report (East Coast)	94

Table 33: Coastal Shoreline Assessment Summary For Unmonitored Waters With Sources Puerto Rico 2008 - 305(B)/303(D) Report
Table 34: Coastal Shoreline Water Quality Assessment Summary For Monitored Waters
Puerto Rico 2008 - 305(B)/303(D) Report
Table 35: Coastal Shoreline Assessment Summary For Monitored Waters With SourcesAnd Causes Puerto Rico 2008 - 305(B)/303(D) Report (South Coast)
Table 36: Coastal Shoreline Water Quality Assessment Summary For UnmonitoredWaters Puerto Rico 2008 - 305(B)/303(D) Report (South Coast)
Table 37: Coastal Shoreline Assessment For Unmonitored Waters With Sources Puerto Rico 2008 - 305(B)/303(D) Report
Table 38: Coastal Shoreline Water Quality Assessment Summary For Monitored WatersPuerto Rico 2008 - 305(B)/303(D) Report (West Coast)
Table 39: Coastal Shoreline Water Quality Assessment For Monitored Waters With Sources And Causes Puerto Rico 2008 - 305(B)/303(D) Report (West Coast)
Table 40: Coastal Shoreline Water Quality Assessment Summary For Unmonitored Waters Puerto Rico 2008 - 305(B)/303(D) Report (West Coast)
Table 41: Coastal Shoreline Assessment For Unmonitored Waters With Sources Puerto Rico 2008 - 305(B)/303(D) Report
Table 42: Coastal Shoreline Assessment For Monitored Waters Of Culebra Island Puerto Rico 2008 - 305(B)/303(D) Report
Table 43: Coastal Shoreline Assessment For Unmonitored Waters Of Culebra, Vieques And Mona Islands Puerto Rico 2008 - 305(B)/303(D) Report (Offshore
Islands)
Rico 2008 - 305(B)/303(D) Report
Table 45: Segment/Pollutant Combinations Removed (Delisting) from Puerto Rico Year 2006 Section 303(d) List
Table 46: TMDL Development Status 111
Table 47: 2008 Cycle 303(d) List – List of Rivers and Streams
Table 48: 2008 Cycle 303(d) List – List of Estuaries
Table 49: 2008 Cycle 303(d) List – List of San Juan Bay Estuary System
Table 50: 2008 Cycle 303(d) List – List of Lagoons
Table 51: 2008 Cycle 303(d) List – List of Lakes
Table 52: 2008 Cycle 303(d) List – List of Coastal Shoreline

TABLE OF FIGURES

Figure 1: Watersheds in Puerto Rico	8
Figure 2: Reservoirs in Puerto Rico	9
Figure 3: Water Quality Area Organization Chart	10
Figure 4: Evaluation and Strategical Planning Area Organization Chart	12
Figure 5: USGS Synoptic Survey Río Grande de Manatí Watershed	144
Figure 6: USGS synoptic Survey Río Grande de Añasco Watershed	145
Figure 7: USGS Synoptic Survey Río Culebrinas Watershed	146
Figure 8: Synoptic Survey at Streams in South and West Coasts of Puerto Rid	co – Map 1
of 5	147
Figure 9: Synoptic Survey at Streams in South and West Coasts of Puerto Rid	co – Map 2
of 5	148
Figure 10: Synoptic Survey at Streams in South and West Coasts of Puerto F	lico – Map
3 of 5	149
Figure 11: Synoptic Survey at Streams in South and West Coasts of Puerto F	lico – Map
4 of 5	150
Figure 12: Synoptic Survey at Streams in South and West Coasts of Puerto F	lico – Map
5 of 5	151

EXECUTIVE SUMMARY

The Puerto Rico Environmental Quality Board (PREQB) is the local agency responsible for seeking the attainment of the designated uses established in the Water Quality Standards Regulation for the various water resources and is also responsible for the oversight, maintenance and protection of the quality of these water resources. The designated uses established in the Water Quality Standards Regulation (WQSR) are:

- Primary Contact Recreation
- Secondary Contact Recreation
- ✤ Aquatic Life
- Raw Source for Drinking Water

To comply with the requirements established in Section 305(b) of the Clean Water Act (CWA), PREQB performs the required assessment in terms of the current water quality in the different water resources throughout Puerto Rico. This assessment allows us to determine whether or not these resources comply with the applicable water quality standards and achieve the designated uses. This report constitutes the Puerto Rico 305(b)/303(d) Integrated Report for fiscal year 2008.

The segmentation criteria and assessment units definition used in the 305(b)/303(d) Integrated Report for 2006 and the present report for 2008 were changed significantly from those used in the used in the Integrated Report for 2004.

This report presents the new segmentation system that began during 2005 for the inner waterbodies (river basins). The segmentation of the coastal waters was not modified reason why the assessment units of the previous cycles of the integrated reports remain the same.

The new inland waters segmentation system reduces the total number of AU reported in the 2004 IR from 471 to 201 for the 2006 IR. The reduction in the total number of AU and the actual composition of the AU (sub-watersheds) resulted in a significant increase in the size of each individual AU. For 2008 IR cycle there are 204 AU, this is due because two (2) AU of San Juan Bay Estuary and one (1) AU of Quebrada Melania were inadvertently omitted from 2006 IR cycle.

The San Juan Bay Estuary System is the only estuary identified as a separate basin due to its complex composition and interrelation of streams, lagoons, channels and closed bay.

The reduction in the number of basins corresponds to (1) the inclusion of 5 basins in the overall drainage area of the San Juan Bay Estuary System, and (2) the incorporation of the small riverine portions of Caño Rodriguez and Caño Tiburones into the estuarine portions of the respective water bodies. The 5 basins included in the overall drainage

area of the San Juan Bay Estuary System are Caño Martin Peña, Quebrada Juan Mendez, Quebrada San Anton and Río Piedras, Quebrada Blasina.

Rivers & Streams

The water quality assessment for the 2008 cycle indicates that 2,777.7 of all river and stream miles are impaired and TMDLs would be required to be developed and implemented. These miles include streams in the South and Western Region of Puerto Rico that were grouped under Category 3 during the FY06 IR cycle. These streams were sampled with supplementary FY-06 Section 106 funds.

Lakes (reservoirs)

During this cycle, a total of 6,913 acres of lakes are considered to be impaired for aquatic life due to the violations of the dissolved oxygen standard as shown by readings taken at the bottom depths of the lakes during the previous IR cycle. A total of 1,825 acres are impaired for primary recreation and 1,713 are impaired for drinking water.

Sedimentation, high nutrient levels, pathogens and pesticides have been identified as the major causes of impairment contributing to the current status of the lakes in Puerto Rico.

Coastal Waters

Of the total 549.9 coastal shoreline miles, 105.0 (19.1%) miles supported all designated uses (Category 1). In 207.8 (37.8%) miles of the total there is insufficient data to make attainment determinations for all designated uses (Category 2). In 216.7 (39.4%) miles of the total coastal shoreline there is insufficient data to determine the attainment of any of the designated uses (Category 3) and in 20.4 (3.7%) miles of the total coastal shoreline are considered to be impaired (Category 5).

Estuaries

The assessment of estuaries included in this report corresponds to lower reaches of the rivers near the coastal shoreline as the term estuaries is defined in the Puerto Rico Water Quality Standards Regulation. The exception to this is the San Juan Bay Estuary System, which includes a complex combination of a significantly closed bay (San Juan), three lagoons (San Jose, Torrecilla and Piñones), two rivers (Rio Piedras and Rio Puerto Nuevo) as well as various streams and canals, including the Caño Martin Peña and several other minor canals).

Islandwide, there are a total of 5,884.1 acres and 230.2 stream miles that form part of estuaries. Of these, 2,453.8 acres and 122.4 stream miles correspond to the San Juan Bay Estuary System.

At the Islandwide level, 3,158.67 acres and 134.5 stream miles of estuaries were found to be impaired for at least one designated use. In the specific case of the San Juan Bay Estuary System, all 2,453.8 acres and 122.4 stream miles show impairment for at least one designated use. It should be noted that the phrase "at least one designated use" does not mean that the total acres or stream miles were impaired for the same designated use. The impairment in some cases was for one particular designated use and in other cases impairment was for a different designated use. However, irrespective of the specific designated use affected, impairment was determined.

For those water bodies, which our assessment reflected that the water quality criteria are not being achieved, the PREQB will continue to develop and implement strategies directed towards the restoration of the designated water quality. Among the actions already implemented by the PREQB to address the restoration of the designated water quality in streams, lakes and coastal waters are the following:

- Implementation of the Watersheds Restoration Action Plan
- Development of Total Maximum Daily Loads in the Impaired Basins

In addition, in an effort to address those segments, for which we have insufficient information or analytical data to make at least a reasonable water quality assessment pertaining to the specific designated uses, we have implemented regional synoptic sampling surveys. This report provides water quality data for many of the streams and rivers in the south and west hydrographical region for which no water quality data had been available before to perform a reasonable water quality assessment.

To achieve the restoration and preservation of the designated water quality in our streams, lakes and coastal shorelines will require the coordinated effort of various government agencies, private enterprise and concerned citizen groups as well as outreach and educational programs, both in communities and through the public media. We recognize this to be a difficult, lengthy and slow process, especially when there are competing issues with respect to the same available resource. However, we are committed to the restoration of our water resources.

PART A. INTRODUCTION

A1. <u>Designated Uses, Total Waters and Applicable Water Quality</u> <u>Standards</u>

The Puerto Rico Water Quality Standards Regulation (PRWQSR, as amended in 2003) established, as goals, the need to preserve, maintain and enhance the quality of the waters of Puerto Rico to assure that they are compatible with the social and economic needs of Puerto Rico and comply with the requirements of the Federal Clean Water Act. Although this regulation has undergone various amendments, the most recent of which was promulgated in March 2003, the goals and purposes of the regulation have not changed. The purposes set forth in the current PRWQSR are:

- 1. Designate the use for which the quality of the waters of Puerto Rico shall be maintained and protected;
- 2. Prescribe the water quality standards required to sustain the designated uses;
- 3. Identify other rules and regulations applicable to sources of pollution that may affect the quality of waters subject to the PRWQSR; and,
- 4. Prescribe additional measures necessary for implementing, achieving and maintaining the prescribed water quality.

The PRWQSR establishes the designated uses to be maintained and protected for all waters in Puerto Rico. These uses include:

- 1. Protection and propagation of fish, shellfish and wildlife;
- 2. Direct and indirect contact recreation; and
- 3. Raw source of drinking water.

The PRWQSR also includes the corresponding standards to protect each of the designated uses. For the 2004 Integrated Report, PREQB has evaluated the waters of Puerto Rico to determine if they comply with the different applicable water quality standards and whether or not the designated uses were attained. The designated uses and water body classification established in the PRWQSR are as follows:

CLASS SA - Coastal and estuarine waters of high quality and/or exceptional ecological or recreational values whose existing characteristics should not be altered, except by natural causes, in order to preserve the existing natural phenomena.

- CLASS SB Coastal and estuarine waters designated for primary and secondary contact recreation, and propagation and preservation of desirable species.
- CLASS SC Class SC includes the segments of the coastal waters identified below. The classification of these waters shall be applied from the zone subject to the ebb and flow of tides (mean sea level) to 10.3 nautical miles seaward.
 - Mayaguez Bay from Punta Guanajibo to Punta Algarrobo.
 - Yabucoa Port
 - Guayanilla and Tallaboa Bays from Cayo Parguera to Puerto Verraco.
 - Ponce Port from Punta Carenero to Punta Cuchara.
 - San Juan Port from the mouth of Río Bayamón to Punta El Morro.
- CLASS SD Surface waters designated as to raw source of public water supply, propagation and preservation of desirable species, and for primary and secondary contact recreation.
- CLASS SE Surface waters and wetlands of exceptional ecological value, whose existing characteristics should not be altered in order to preserve the existing natural phenomena.
- CLASS SG1 Ground waters designated as sources of drinking water supply and for agricultural uses, including irrigation. Also, included under this class are those ground waters that flow into waters, which support ecological communities of exceptional ecological value in accordance with Sections 2.1.1 and 2.2.2 of the PRWQSR.
- CLASS SG2 Ground waters which, due to the high total dissolved solids concentration (concentrations greater than 10,000 mg/l), are not fit as sources of drinking water supply even after treatment. There are no water quality standards for this use.

The following tables summarize the existing applicable water quality standards used to perform the assessment for the 2006 305(b)/303(d) Report. Here are shown the maximum allowable concentrations for specific substances in coastal and estuarine waters, surface waters, and ground waters:

PARAMETER	COASTAL WATERS (ug/l)	RIVERS AND STREAM (ug/l)	GROUNWATERS (ug/l)
Arsenic (As) ^{*,+}	1.4 (AL)	0.18(HH)	50.0(DW)
Cadmium (Cd) ^{+,%}	9.3 (AL)	Note 1 (AL)	5.0 (DW)
Chromium III (Cr) ⁺	-	Note 2 (AL)	-
Chromium VI	-	11 (AL)	-
Copper (Cu) ⁺	3.1(AL)	Note 3 (AL)	1300 (DW)
Cyanide (CN ⁻) ⁺	1.0 (AL)	5.2(AL)	200 (DW)
Fluoride (F ⁻) [#]	-	700.0 (DW)	-
Lead (Pb) ^{+,%}	8.1 (AL)	Note 4 (AL)	15.0 (DW)
Mercury (Hg) ⁺	0.051(HH, AL)	0.050 (HH, AL)	2.0 (DW)
Nickel (Ni) ⁺	8.2 (AL)	Note 5 (AL)	-
Nitrate + Nitrite (as N)	-	10,000.0 (DW)	-
Nitrogen (NO ₃ , NO ₂ , NH ₃)	5,000.0	-	-
Selenium (Se) ⁺	71.0 (AL)	5.0 (AL)*	50.0 (DW)
Silver (Ag) ⁺	2.0 (AL)	Note 6 (AL)	-
Sulfide (Undissociated H ₂ S)	2.0 (AL)	2.0 (AL)	-
Zinc (Zn) ⁺	81.0 (AL)	Note 7 (AL)	-

Table 1: Specific Water Quality Standards for Selected Parameters (as established in the PRWQSR)

AL - Standard based on protection of the water body for the propagation and preservation of desirable species dependant on water quality.

DW - Standard based on protection of the water body for use as a raw source of drinking water supply.

HH - Standard based on protection of the water body or existing aquatic life for reasons of human health.

Note 1 - Concentration in ug/I must not exceed the numerical value given by e^(0.7852 [Ln Hardness] -2.715)

Note 2 - Concentration in ug/l must not exceed the numerical value given by e^{(0.8545} [Ln Hardness] +0.6848). Note 3 - Concentration in ug/l must not exceed the numerical value given by e^{(0.8545} [Ln Hardness] -1.702).

Note 4 - Concentration in ug/I must not exceed the numerical value given by e^{(1.2730 [Ln Hardness] - 4.705]}

Note 5 - Concentration in ug/I must not exceed the numerical value given by e^(0.8460 [Ln Hardness] + 0.058).

Note 6 - Concentration in ug/l must not exceed the numerical value given by $e^{(1.72 [Ln Hardness] - 6.52]}$.

Note 7 - Concentration in ug/l must not exceed the numerical value given by $e^{(0.8473 [Ln Hardness] + 0.884)}$.

* Identifies a substance that may be a carcinogen.

+ Identifies a priority pollutant.

Identifies a substance whose numeric standard for coastal waters will be evaluated to determine the feasibility of eliminating it.

% In cases where the surface water body is used as a source of drinking water supply, the water quality standard for the indicated substance shall not exceed the drinking water standard upstream from the water intake.

Table 2: Water Quality Standards for Specific Classifications

PARAMETER	SA	SB	SC	SD	SE
Chlorides	Note 1	-	-	250 mg/L	Note 1
Color	Note 1	Shall not be altered except by natural causes	Shall not be altered except by natural causes	15 Pt-Co.	Note 1
Dissolved Oxygen	Note 1	Not less than 5 mg/L	Not less than 4mg/L	Not less than 5 mg/L	Note 1

PARAMETER	SA	SB	SC	SD	SE
Enterococcus	Note 1	35 col/100 ml	35 col/100 ml (Note 2)	-	Note 1
Fecal Coliforms	Note 1	200 col/100 ml	200 col/100 ml (Note 2)	200 col/100 ml	Note 1
Other Pathogenic Organisms	Note 1	-	-	Free of Pathogens	Note 1
рН		7.3-8.5	7.3-8.5	6.0-9.0	Note 1
Sulfates	Note 1	2,800 mg/L	2,800 mg/L	250 mg/L	Note 1
Surfactants as MBAS		500 ug/L	500 ug/L	100 ug/L	Shall not be present
Taste and odor producing substances		Shall not be present	Shall not be present	Shall not be present	Note 1
Total Dissolved Solids	Note 1	-	-	500 mg/L	Note 1
Total Ammonia*	-	-	-	1mg/L at specific segments established in the WQSR	-
Total Coliforms		-	-	10,000 col/100 ml	Note 1
Total Phosphorous	Note 1	-	-	1 mg/L*	Note 1
Turbidity	Note 1	10 NTU	10 NTU	50 NTU	Note 1

* Applicable in SD waters upstream from reservoirs, in segment with water in takes or estuarine waters. @ Total Ammonia standard shall not exceed 1 mg/l upstream from the points given by coordinates for the following segments: Note 1 - No parameter, whether or not considered in this classification, shall be altered in concentration, except by natural causes.

Substances reactive with methylene blue shall not be present.

Note 2 – Water Quality Standard Regulations, Federal Register, Vol. 69, No. 16, Monday, January 26, 2004, Rules and Regulations, Page 3514.

PART B. BACKGROUND

B1. <u>Total Waters</u>

Waters is the most important resource in the universe and the most essential liquid for all forms of life, nevertheless the most threatened, too.

This invaluable resource is threatened by different sources of pollution; which affect the quantity and quality of the water, and therefore the basic and multiple needs associate with it.

Consequently people, communities, agencies, NGO's have to work together in order to maintain the integrity and quality of the resource.

In Puerto Rico the Environmental Quality Board (EQB) is one of the agencies involved in preserve, maintain and enhance the island waters quality; among others responsibilities. EQB groups all the basins in four hydrographic regions, in which the different watersheds are included: to the north (9 watersheds), east (28 watersheds), south (33 watersheds), and west (26 watersheds).

Figure 1: Watersheds in Puerto Rico

The reservoirs in Puerto Rico, constructed in the main rivers basins in order to store water for domestic and industrial consumption, irrigation, production of electrical power and control of floods, also provide an additional benefit, recreation. The recreational activity that is realized in these includes direct contact (swimming) as indirect contact (recreational fishing and strolls in boat).

Figure 2: Reservoirs in Puerto Rico

Note: Reference: Plan de Aguas de Puerto Rico

The coastal shoreline, presents a great variety of geologic aspects such as: cliffs, dunes, beaches, wooded hills, sinkhole, forests, lagoons, mangrove, salt mines, earth flooding, bays, small barren islands and keys, which altogether give the characteristics and specific form to the archipelago. The coastal zone is one of the areas of greater tourist-recreational value and the areas bordering to the coasts constitute very active zones of economic and social development, where it undergoes a fast growth of population and an active commercial and industrial growth.

Table 3:	Total	Waters	for	Puerto	Rico
----------	-------	--------	-----	--------	------

TOPIC	VALUE
Total Miles of Rivers and Streams	5,045.4*
Number of Reservoirs	19
Acres of Reservoirs	7,323
Acres of Estuaries	3430.3**
Miles of Costal Waters	549.9

* Not included: 7.4 miles for the Río Arroyo Cajul

**Not included: 2,453.8 acres for the San Juan Bay Estuary.

B2. <u>Water Pollution Control Prog</u>ram

Since 2006, PREQB begins a reorganization of the agency's programs in order to improve its operational organization, therefore, more effective implementation of the various permits issuance and compliance programs. EQB expects that this change will allow meeting in the following goals:

- Explate the issuance of permit
- Improve the surveillance to assure compliance with permits, regulations and laws; and;
- Modernization of the operations concerning the management of the different permits review and issuance procedures.

According to the new organization, personnel were transferred to different Divisions or Areas.

The *Water Quality Area (WQA)* is one of the main areas that compose the operational organizational structure of EQB affected by the reorganization. After the reorganization process the WQA was simplified with the following structure:

Figure 3: Water Quality Area Organization Chart

As part of their functions is, protect, improve and maintain the quality of the water bodies, in order to attain the propagation and preservation of desirable species.

EQB maintains close coordination with federal and state agencies in order to fulfill these functions in an effective way. Also, develops regulations and it carries out action to assure the fulfillment with the effective regulation. Between these there are the developments of activities where the methods of final disposition of wastewaters and wastes generated by industrial and agricultural activities are controlled.

Following an overview of the Water Quality Area Divisions: (Figure 3).

The Underground Water Protection Division was created to regulated/control the facilities with underground storage tanks (UST) and/or with underground injection systems (UIS) and responds to the problematic of escapes that could be affecting the underground water resource. In order to control these types of systems permits and authorizations are issued, sampling monitoring reports are evaluated and remedial plans are required to those where the bad operation of the systems has caused spills to

the water or to the subsoil. The Environmental Protection Agency (EPA) thru a memorandum of understanding with EQB delegated the pursuit of both types of systems (UST and UIS) to EQB.

The *Point Permit Division* regulates wastewater treatment systems that do not have direct discharges to surface and coastal waters. The discharge of pollutants to surface and coastal waters are regulated by the National Discharge Elimination System (NPDES) under Section 402 of the Federal Clean Water Act (the Act). This is a program administered by the EPA. Section 401 of the Act, as amended requires EPA that prior to issuing a discharge permit under NPDES a Water Quality Certificate must be obtained from state agency with jurisdiction over water pollution control. In Puerto Rico such responsibility is also, on EQB specifically to the *Point Source Permits Division*.

The *Point Source Inspection and Compliance Division* performs inspections to industries, laboratories, water treatment plants, wastewater treatment plants, facilities with underground storage tanks, and other point sources to determine compliance with the applicable states and federal rules and regulations.

However, the *Non Point Source Permit Division* implements and manages the Erosion Control and Sedimentation Prevention Regulation. Performs enforcement actions to the facilities regulated under the General Permit. This permit is a new one that became effective on 2007. The aforementioned division is responsible to perform inspections to all the projects that will be presented in order to take corrective action or legal action promptly. This permit change the business process related to issuance of permits an increase protection of our environment.

The *Infrastructure Projects Division* has the responsibility of manage the federal funds assign by EPA through the State Revolving Fund program. Also assess the planning, design and construction phases of each project in order to verify compliance with Title IV of the Act.

The *Livestock Permit and Compliance Division* performs inspections, evaluates and approves the Animal Waste Management Plans that submit livestock enterprises such as: dairy facilities, poultry facilities, horse farms, among others. From its beginnings the Division does not have a regulation where the procedures, requirements and prohibitions with respect to the design, implementation, operation and maintenance of the Animal Waste Management Plan for each facility where animal in confinement stay. The animal waste generated by the livestock enterprises are classified as non-hazardous solids waste, according to the "Reglamento para el manejo de Desperdicios Sólidos No Peligrosos" of EQB. During this cycle EQB is working in order to adopt the "Reglamento para el Control de los Desperdicios Fecales de Animales en Confinamiento".

The *Evaluation and Strategic Planning Area (ESPA)* was created as a result of the reorganization process (Figure 4). The ESPA has as the main management determines

environmental objectives analyze possible alternatives and propose the public policy that should be adopted to comply with those objectives, and a predetermined term so they are possible to be transformed based on the strategical plans that lead to a better environment.

Figure 4: Evaluation and Strategic Planning Area Organization Chart

Plans and Special Project Division manages and evaluates the monitored water quality data to determine if the desirable water quality in the different hydric resources from the country is achieved. Also, verifies the effectiveness of the management and control programs implemented. Develops the strategies for the improvements of the water quality, as required by the Federal Clean Water Act and the Water Quality Standard Regulation. Those strategies include the Total Maximum Daily Loads (TMDL) for the waterbodies impaired in Puerto Rico. A TMDL specifies the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards, and allocates pollutant loadings among point and nonpoint pollutant sources. By law, EPA must approve or disapprove lists and TMDLs established by states, territories, and authorized tribes. If a state, territory, or authorized tribe submission is inadequate, EPA must establish the list or the TMDL.

The *Sampling Division* as part of their responsibilities has to perform the sampling of the surface, coastal, underground waters, lakes and sampling projects in some watersheds in Puerto Rico.

The main function of the *Validation and Mathematical Modeling Division* consists of promoting the collection, validation, transference and environmental information analysis using the technology that guarantees optimum quality for the benefit and protection of the human health and the environment. In addition, to evaluate the impact of atmospherics pollutants on our atmosphere and the health of our people, task that is vital to alert on the pollution levels that they can represent a threat to the public health. The Air Quality Index is informing in accordance to the 40 Code of Federal Regulations Part 58.50 Appendix G and Rule 107 of the Regulation for the Atmospheric Control of EQB. The Validation and Mathematical modeling Division has the responsibility of get the necessary information, perform the corresponding calculation of the Index, and notify to the general public thru the different communications medias.

The *Evaluation and Planning Division* by means of the compilation, organization and information processing is in charge to recommend public policy to facilitate the decision-making that provides total or partial solution to problems defined by specific environmental needs. Also, is responsibly to verify that the environmental components that are studied are the related ones to the analyzed problem, and that the bonds of the

function analyzed with other functions are known by the person in charge in the decision making.

B3. <u>Cost/Benefit Assessment</u>

Accurate costs associated with water quality improvements in Puerto Rico are not readily available. This type of assessment would require diverse data on government and private expenditures concerning multiple aspects of direct environmental improvement efforts, including installation of treatment methods, changes and improvements in treatment levels, technologies and methods, installation and improvements of sewerage and storm water sewer systems, development and implementation costs of best management practices, as well as urban, rural and industrial development improvements. Other necessary information would include increased use and/or demand of the improved environmental resource as well as the monitoring and assessment efforts and activities performed to measure the improvements or lack of improvements achieved in a given basin or regional area.

Although this information is not readily available, we do provide some of the costs involved in efforts pertaining to water quality improvement and protection. These costs are only those incurred directly by PREQB utilizing state and federal funds to operate and manage water quality planning and control programs. Other costs such as sanitary infrastructure improvements, governmental and private sector expenditures on waste and storm water management and control programs, recreational benefits (including tourism promotional activities and costs), governmental and private expenditures to promote natural resources protection, preservation and enjoyment are not being considered.

The table below provides the major costs incurred with federal and state funds to operate environmental protection and planning activities in the Water Quality Area and Evaluation and Strategic Planning Area of PREQB.

	Perfor	mance Par (PP	rtnership G G)	rant	Beach Monit	oring and (BEA	l Notification Pro ACH)	ogram		LU	JST		Water Qua	ality Ma (60	nagement Pro 4B)	gram	State Revolv (SRI	ing Fund
	20	06	200	7	2006		2007		200)6	200)7	2006		2007		200	7
	Federal	State	Federal	State	Federal	State	Federal	State	Federal	State	Federal	State	Federal	State	Federal	State	Federal	State
Salaries	2,619,267	807,299	1,900,851	581,359	96,236	-	143,881	-	226,884	25,209	221,030	24,559	50,750	-	39,031	-	375,708	75,142
Fringe Benefits	751,061	231,489	601,474	183,956	27,710	-	43,580	-	69,085	7,676	72,581	8,065	13,614	-	12,090	-	127,336	25,467
Travel	71,915	22,165	60,000	18,350	26,000	-	20,400		4,120	458	4,540	504	3,000	-	3,000	-	25,157	5,030
Contractual	125,816	38,778	111,808	34,196	-	-	-			-	-	-	-	-	-	-	33,333	6,667
Construction	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	_	-
Equipment	9,695	2,988	17,344	5,305	4,040	-	-	-		-	-	-	-	-	-	-	115,650	23,130
Sampling Supplies	21,533	6,637	8,000	2,447	-	-	2,000	-		-	-	-	-	-	-	1	-	-
Field Supplies	-	-	8,000	2,447	6,000	-	5,000			-	-	-	-	-	-	-	6,000	1,200
Laboratory Supplies	-	-	8,000	2,447	20,000	-	20,000	-	-	-	-	-	-	-	-	-	-	-
Office Supplies	-	-	20,000	6,117	4,875	-	4,755	-	771	86	3,300	367	1,692	-	2,293	-	20,000	4,000
Other	30,454	9,386	45,914	14,042	113,665	-	41,875	-		-	-	-	56,786	-	46,147	-	20,000	4,000
Sub-Total	\$3,629,741	\$1,118,743	\$2,781,391	\$850,666	\$298,526	\$-	\$281,491	\$-	<mark>\$300,860</mark>	\$33,429	\$301,451	\$33,495	\$125,842	\$-	\$102,561	\$-	\$723,184	\$144,636

	Sub-Total by Year					
	200	6	20	07		
	Federal	State	Federal	State		
PPG	3,629,741	1,118,743	2,781,391	850,666		
BEACH	298,526	-	281,491	-		
LUST	300,860	33,429	301,451	33,495		
604B	125,842	-	102,561	-		
SRF	_	-	723,184	144,636		
	\$4,354,969	\$2,815,172	\$4,190,078	\$3,424,797		

TOTAL					
2006/	2007				
Federal State					
281,491	-				
8,545,047	6,239,969				
\$8,826,538	\$6,239,969				
\$15,066,507					

B4. <u>Special State Concerns And Recommendations</u>

[RESERVED]

PART C. WATER MONITORING AND ASSESSMENT

C1. <u>Monitoring Program</u>

The PREQB monitoring activities for this reporting cycle included routine ambient water quality sampling at the various networks and special water quality studies performed in the water bodies of concern. Where available, effluent quality data from the discharge monitoring reports submitted by NPDES permitted point sources were used as contributing sources that may impact the use support potential of the water bodies.

The PREQB generates data from six (6) routine monitoring networks that provide <u>physical</u>, <u>chemical</u> and <u>biological</u> water quality data from the different water bodies. These are:

Surface Water Monitoring Network: Operated by the USGS under a cooperative agreement with Puerto Rico, this network includes water quality-sampling stations in the 24 major river basins in the north, south, east, and west hydrographic regions of Puerto Rico. The USGS collects samples on a quarterly basis and analyzes for the following parameters:

Flow	Fecal Coliforms		
Specific Conductance	Fecal Streptococcus		
Temperature	Organic Nitrogen		
Alkalinity	Ammonia Nitrogen		
Dissolved Oxygen	Nitrate + Nitrite		
Turbidity	Suspended Solids		
рН	Chemical Oxygen Demand		
Hardness	Phosphorus		

Analyses for the detection of phenols, cyanide and methylene blue active substances (MBA), as well as the other following parameters, are performed twice a year:

Arsenic	Mercury	Iron
Cadmium	Selenium	Zinc
Lead	Silver	Copper

Calcium	Potassium			
Carbonate	nate Silica			
Chlorides	Sodium			
Fluorides Sulfate				
Magnesium				

Additional samples are collected for dissolved solids analyses, which include:

Samples are collected and analyzed for the following pesticides at selected stations once a year:

Aldrin	Endrin	Methyltrithion
Chlordane	Ethion	Mirex
DDD	Heptachlor	Naphtalene Polychlor
DDE	Lindane	Parathion
DDT	Malathion	Perthane
Diazinon	Methoxyclor	Total Trithion
Endosulfan	Methylparathion	Toxaphene

Clean Lakes Monitoring Network: Operated by PREQB, this network monitors water quality in the 18 major lakes (reservoirs) that are mostly used as raw sources of drinking water and recreational activities, including fishing. Samples taken at these lakes are analyzed for the following parameters:

Ammonia Nitrogen	Dissolved Oxygen (profile)
Chlorophyll "a"	Mercury
Fecal Coliforms	Fecal Streptococcus
Hardness	Total Phosphorous
Nitrate + Nitrite	Turbidity
рН	Pesticides (organochlorides)
Temperature (profile)	Organic Nitrogen

Non Point Sources Network: Operated by PREQB, this network limited to Río Grande de Loíza, Río La Plata and Río Grande de Arecibo basins. A total of five (5) stations were established in Río Grande de Loíza, six (6) in Río La Plata and nine (9) in Río Grande de Arecibo. The parameters sampled include:

Temperature	Nitrate + Nitrite as N		
рН	Ammonia as N		
Dissolved Oxygen	TSS		
TDS	Chlorophyll "a"		
Total Phosphorous	Fecal Coliforms		
Orthophosphates	ates Pesticides (organochlorides)		
Settleable Solids			

- Groundwater Monitoring Network: This network is limited to some 70 drinking water wells located in different municipalities throughout Puerto Rico and are sampled several times a year, sampling once for each of the following: pathogens, nitrates, metals, VOC's, SVOC's and pesticides.
- Coastal Monitoring Network: Operated by PREQB, this network includes monitoring stations all around the coastal perimeter of Puerto Rico. The Coastal Monitoring Network Stations are sampled for the following parameters:

Bacteria	Ammonia as N	a as N Cadmium Merc		
рН	Oil and grease Chromium Nick		Nickel	
Temperature	Nitrate + Nitrite as N	Copper	Selenium	
Turbidity Dissolved Oxygen Lead Zinc				
Salinity				

Beach Monitoring and Notification Program Network: Operated by PREQB, this network includes 34 stations distributed over 23 beaches in Puerto Rico. The Beach Monitoring and Notification Program network stations are sampled biweekly for bacteria.

In addition, PREQB may perform special sampling activities whenever necessary to investigate fish kills, hydrocarbons leaks and spills, and illegal discharges to storm sewers and water bodies in order to obtain water quality data to assess the impact and attempt to establish responsible parties.

All sampling and analytical activities are subjected to a Water Quality Assurance Program Plan, coordinated through the Quality Assurance Control Officer of the Water Quality Area and the Division of Environmental Science and Assessment of EPA Region II.

Each monitoring initiative is supported by the corresponding Quality Assurance Project Plan (QAPP), which must comply with the Water Program's Quality Assurance Management Plan (QAMP).

All samples are collected, preserved, transported and analyzed in accordance with the protocols established in the corresponding Quality Assurance Project Plan. The purpose and goals of PREQB's fixed monitoring station programs are:

- 1. Provide current data on the quality of the various water bodies throughout Puerto Rico.
- 2. Provide information on specific pollutants of concern and uses that may be impaired in the different water bodies monitored
- 3. Provide information on possible sources responsible for water quality impairment.
- 4. Provide information to determine the compliance with the water quality standards applicable to the different designated uses as established in the PRWQSR.
- 5. Determine if the pollution control measures being implemented throughout Puerto Rico are effective in protecting the quality of the different water bodes.

The field and analytical data generated are evaluated for compliance with quality control and quality assurance protocols, prior to entry into the EPA Store and Retrieval (STORET) database. These data are also maintained in databases at PREQB. The data generated from the stations sampled by the PREQB are available in the STORET system.

Data generated from the rivers and stream stations sampled and analyzed by the USGS are not available through STORET; however, the data is available through Internet (<u>www.usgs.gov</u>) or hardcopy files from the Caribbean Field Office.

C2 <u>Monitoring Strategy for Unmonitored Waters</u>

During FY-06 and FY-07 PREQB, in coordination and cooperation with the US Geological Survey, performed the following synoptic surveys (*Please refer to Appendix II*):

- Río Grande de Manatí Watershed Synoptic Survey Feb-Mar 2006 included 19 stations distributed in 9 assessment units.
- ✓ Río Grande de Añasco Watershed Synoptic Survey March and August 2007 a total of 12 stations were distributed in 6 assessment units.
- ✓ Río Culebrinas Watershed Synoptic Survey of March and August 2007 included 17 stations distributed in 9 assessment units.

✓ Synoptic Survey at Streams in South and West Coast of Puerto Rico – a regional synoptic water quality sampling study of the stream basins located in the south and west Hydrological Region that eighty-nine (89) stations distributed through fifty (50) river and stream basins from the Municipality of Patillas westward down to the Municipality of Isabela, which marks the end of the West Hydrological Region.

Those studies were performed using supplementary FY-06 and FY-07 Section 106 funds and funds under the Performance Partnership Grant.

The results obtained from this synoptic study showed that many of the river and stream miles sampled were impaired due to violations of at least one water quality standard, most frequently fecal and/or total coliforms. The impaired river and stream miles identified as result of these synoptic surveys were included in the FY-08 303(d) List of impaired waters.

C3 Assessment Methodology Used for 305(b)/303(d) Integrated Report for 2008 Cycle

The assessment methodology used in the present cycle of the Integrated Report 305(b)/303(d) is the same used during the 2006 Cycle Integrated Report. In the following section you will find the explanation of the segmentation criteria, where it was necessary some corrections were made in order to bring up to date the information.

C3.1 <u>Segmentation Criteria and Assessment Units</u>

The segmentation criteria and assessment units definition used in the 305(b)/303(d) Integrated Report for 2006 and the present report for 2008 were changed significantly from those used in the used in the Integrated Report for 2004. Following the new criteria implemented *(applicable for 2006 and 2008)*.

1. Segmentation Criteria

This report presents the new segmentation system that began during 2005 for the inner waterbodies (river basins). The segmentation of the coastal waters was not modified reason why the assessment units of the previous cycles of the integrated reports remain equal.

The new inland waters segmentation system reduces the total number of AU reported in the 2004 IR from 471 to 201 for the 2006 IR. The reduction in the total number of AU and the actual composition of the AU (sub-watersheds) resulted in a significant increase in the size of each individual AU. For 2008 IR cycle there are 204 AU, this is due because two (2) AU of San Juan Bay Estuary and one (1) AU of Quebrada Melania were inadvertently omitted from 2006 IR cycle.

Under the new system, each AU generally consists of one of the following:

- a section of the main basin, with the corresponding minor first order tributaries.
- sub-basin represented by major first order tributary (a river or stream that flows directly into main basin), second order tributary (a river or stream that flows into a first order tributary, and in some cases, third order tributary (a river or stream that flows into a second order tributary).
- in cases where either the main basin or any major tributary includes a lake (reservoir), the lake constitutes another AU. The AU defined by the lake includes the lake (from the dam up to the highest reach that defines the lake) and all the immediate minor tributaries that discharge directly to the lake. This new AU for lakes results in a decrease in stream miles and an increase in lake surface area.

As a result of the new segmentation system, the total numbers of basins have been reduced. The 2004 IR included 102 basins. The total number of basins included in the 2006 IR has been reduced to 96, including the San Juan Bay Estuary System. This is the only estuary identified as a separate basin due to its complex composition and interrelation of streams, lagoons, channels and closed bay. Furthermore, the composition of the San Juan Bay Estuary System presented here is the same as that defined in the CCMP Final Document developed for this estuary.

The reduction in the number of basins corresponds to (1) the inclusion of 5 basins in the overall drainage area of the San Juan Bay Estuary System, and (2) the incorporation of the small riverine portions of Caño Rodriguez and Caño Tiburones into the estuarine portions of the respective water bodies. The 5 basins included in the overall drainage area of the San Juan Bay Estuary System are Caño Martin Peña, Quebrada Juan Mendez, Quebrada San Anton and Río Piedras, Quebrada Blasina.

Sixty-two (62) of the basins (San Juan Bay Estuary System not included) have estuaries in the lower reaches. Two of these estuaries, those corresponding to Rio Grande de Loiza and Rio Espiritu Santo have two segments each. The remaining sixty (60) basins have only one (1) estuarine segment.

In the table below are itemized the 96 basins resulting from the new segmentation system.

Table 4: Basins for the New Segmentation System

BASIN NAME	BASIN ID	BASIN SEQUENCE	BASIN SIZE (Miles)	REGION	SUB- BASINS
Total					
QUEBRADA DE LOS CEDROS	PRNQ1A	01	12.0	N	1
QUEBRADA DEL TORO	PRNQ2A	02	1.0	N	1
RIO GUAJATACA	PRNR3A	03	38.0	N	4
QUEBRADA BELLACA	PRNQ4A	04	1.7	N	1
RIO CAMUY	PRNR5A	05	48.6	N	1
QUEBRADA SECA	PRNQ6A	06	2.0	N	1
RIO GRANDE DE ARECIBO	PRNR7A	07	424.6	N	11
RIO GRANDE DE MANATI	PRNR8A	08	234.6	Ν	11
RIO CIBUCO	PRNR9A	09	144.6	Ν	6
RIO LA PLATA	PRER10A	10	470.1	E	18
RIO HONDO	PRER11A	11	22.0	E	1
RIO BAYAMON	PRER12A	12	185.0	E	5
SAN JUAN BAY ESTUARY SYSTEM	PREE13A	13	***	E	3
RIO GRANDE DE LOIZA	PRER14A	14	554.3	E	15
RIO HERRERA	PRER15A	15	17.0	E	1
RIO ESPIRITU SANTO	PRER16A	16	58.4	E	1
RIO MAMEYES	PRER17A	17	38.9	E	1
QUEBRADA MATA DE PLATANO	PREQ18A	18	4.0	E	1
RIO SABANA	PRER19A	19	33.1	E	1
RIO JUAN MARTIN	PRER20A	20	7.8	E	1
QUEBRADA FAJARDO	PREQ21A	21	10.0	E	1
RIO FAJARDO	PRER22A	22	59.0	E	1
RIO DEMAJAGUA	PRER23A	23	2.8	E	1
QUEBRADA CEIBA	PREQ24A	24	5.0	E	1
QUEBRADA AGUAS CLARAS	PREQ25A	25	4.8	E	1
RIO DAGUAO	PRER26A	26	13.8	E	1
QUEBRADA PALMA	PREQ27A	27	11.8	E	1
QUEBRADA BOTIJAS	PREQ28A	28	7.4	E	1
RIO SANTIAGO	PRER29A	29	15.3	E	1
RIO BLANCO	PRER30A	30	58.4	E	2
RIO ANTON RUIZ	PRER31A	31	20.4	E	1
QUEBRADA FRONTERA	PREQ32A	32	8.5	E	1
RIO HUMACAO	PRER33A	33	55.8	E	1
RIO CANDELERO	PRER34A	34	10.4	E	1
RIO GUAYANES	PRER35A	35	94.6	E	1
QUEBRADA EMAJAGUA	PREQ36A	36	2.5	E	1
RIO MAUNABO	PRER37A	37	36.0	E	1
QUEBRADA MANGLILLO	PRSQ38A	38	1.0	S	1
QUEBRADA FLORIDA	PRSQ39A	39	3.0	S	1
RIO JACABOA	PRSR40A	40	13.0	S	1
QUEBRADA PALENQUE	PRSQ41A	41	1.0	S	1

BASIN NAME	BASIN ID	BASIN SEQUENCE	BASIN SIZE (Miles)	REGION	SUB- BASINS
Total					
RIO CHICO	PRSB42A	42	14.6	S	1
RIO GRANDE DE PATILLAS	PRSR43A	43	48.6	S	4
QUEBRADA YAUREL	PRSQ44A	44	6.0	S	1
RIO NIGUAS – ARROYO	PRSR45A	45	21.0	S	1
QUEBRADA SALADA	PRSQ46A	46	1.7	S	1
QUEBRADA CORAZON	PRSQ47A	47	9.7	S	1
QUEBRADA BRANDERI	PRSQ48A	48	4.5	S	1
RIO GUAMANI	PRSR49A	49	22.0	S	1
QUEBRADA MELANIA	PRSQ50A	50	7.0	S	2
RIO SECO	PRSR51A	51	24.7	S	1
QUEBRADA AMOROS	PRSQ52A	52	0.7	S	1
QUEBRADA AGUAS VERDES	PRSQ53A	53	15.0	S	1
RIO NIGUAS – SALINAS	PRSR54A	54	102.5	S	1
RIO JUEYES	PRSR55A	55	11.0	S	1
RIO CAYURES	PRSR56A	56	5.0	S	1
RIO COAMO	PRSR57A	57	115.7	S	3
RIO DESCALABRADO	PRSR58A	58	18.8	S	1
RIO CAÑAS	PRSR59A	59	8.0	S	1
RIO JACAGUAS	PRSR60A	60	89.5	S	4
RIO INABON	PRSR61A	61	66.7	S	1
RIO BUCANA – CERRILLOS	PRSR62A	62	60.4	S	3
RIO PORTUGUES	PRSR63A	63	54	S	1
RIO MATILDE - PASTILLO	PRSR64A	64	51.2	S	1
RIO TALLABOA	PRSR65A	65	59.6	S	1
RIO MACANA	PRSR66A	66	21.7	S	1
RIO GUAYANILLA	PRSR67A	67	60.0	S	1
RIO YAUCO	PRSR68A	68	93.7	S	3
RIO LOCO	PRSR69A	69	113.4	S	3
RIO ARROYO CAJUL	PRSR70A	70	7.4	S	1
QUEBRADA BOQUERON	PRWQ71A	71	11.7	W	1
QUEBRADA ZUMBON	PRWQ72A	72	1.7	W	1
QUEBRADA GONZALEZ	PRWQ73A	73	1.8	W	1
QUEBRADA LOS PAJARITOS	PRWQ74A	74	2.7	W	1
CANO CONDE AVILA	PRWK75A	75	4.0	W	1
QUEBRADA IRIZARRY	PRWQ76A	76	2.0	W	1
RIO GUANAJIBO	PRWR77A	77	324.6	W	9
CANO MERLE	PRWK78A	78	11.1	W	1
RIO LLAGUES	PRWR79A	79	42.2	W	1
	PRWQ80A	80	10.0	W	1
	PRWK81A	81	3.0	W	1
	PRWK82A	82	12.3	W	1
RIO GRANDE DE ANASCO	PRWR83A	83	488.6	W	10
QUEBRADA JUSTO	PRWQ84A	84	1.0	W	1
QUEBRADA ICACOS	PRWQ85A	85	1.4	W	1
QUEBRADA CAGUABO	PRWQ86A	86	1.0	W	1

BASIN NAME	BASIN ID	BASIN SEQUENCE	BASIN SIZE (Miles)	REGION	SUB- BASINS
Total					
CAÑO GARCIA	PRWK87A	87	2.0	W	1
QUEBRADA GRANDE DE CALVACHE	PRWQ88A	88	14.8	W	1
QUEBRADA LOS RAMOS	PRWQ89A	89	6.9	W	1
QUEBRADA PUNTA ENSENADA	PRWQ90A	90	5.0	W	1
QUEBRADA PILETAS	PRWQ91A	91	2.0	W	1
RIO GRANDE	PRWR92A	92	21.8	W	1
CAÑO DE SANTI PONCE	PRWK93A	93	4.8	W	1
RIO GUAYABO	PRWR94A	94	43.1	W	1
RIO CULEBRINAS	PRWR95A	95	308.8	W	11
CAÑO CORAZONES	PRWK96A	96	1.3	W	1

** The San Juan Bay Estuary System increased in size because it receives the total miles of five streams basins that contribute to the total drainage area of the estuary system. These water bodies were previously considered as separate basins.

Twenty-two (22) of the 96 basins are monitored routinely. These 22 basins form part of the permanent stream water quality network. For purposes of water quality assessment and planning, PREQB continues to group all the basins into four (4) geographic regions.

Table 5: Geographic Regions

REGION	BASINS	BASINS IN PERMANENT STREAM WATER QUALITY NETWORK	BASINS SAMPLED IN SYNOPTIC STUDY (FY – 2007)
North	9	4	1
South	33	5	31
East	28*	11	0
West	26	4	18

*Included The San Juan Bay Estuary System

For assessment units with monitoring stations, the water quality assessment made with the data generated at each station is considered to be indicative of the water quality upstream along the whole AU until it reaches another AU. For unmonitored AU, supplementary information, such as: NPDES compliance evaluation inspections, operation and maintenance inspections, pump station by-passes and sanitary sewer system overflow incidents for a period of two years, implementation of BMPs by non-point sources, fish-kills or spill events and best professional judgment of the experienced technical personnel, were considered in making possible impairment determinations.

The segmentation of the coastal shoreline remains the same as in the 2004 IR. However during FY-06 we expect to update this segmentation as well. (*The segmentation of the coastal shoreline was completed during*

the 2007. Nevertheless, this segmentation requires that the present monitoring network of the coastal zone be reviewed extensively. This revision could hit the extension of some new segments of the coastal shoreline, reason why it would be necessary to realize changes in the segmentation. Therefore, the new segmentation of the coastal shoreline will not be implanted until the monitoring network of this zone is properly certain. These efforts will be completed during the 2008.)

2. Assessment Unit Definition

At the moment, the PREQB uses the system of river basins for planning intentions and implantation of restoration efforts. In order to be able to realize these efforts of more effective form, we have replaced the old system based on the segmentation of small portions of rivers and individual creeks by a new system based on the segmentation of river basins. Now, each main river basin it is divided in assessment units that consist of whole sub-basins. The smaller river basins remain like a single assessment unit or, at the most, it could be segmented in two assessment units.

C4. <u>Assessment Categories</u>

The current assessment of the water quality in Puerto Rico was performed taking into consideration the five (5) attainment categories used for the 2004 305(b)/303(d) Integrated Report, except that in this cycle the multiple category option described in the Guidance was also used. These attainment categories are:

- Category 1: Waters that are attaining the applicable water quality standards for all designated uses.
- Category 2: Waters that are attaining some of the designated uses, but no data is available to make attainment determinations for the remaining designated uses.
- Category 3: Waters for which the information available is insufficient to determine if any designated uses are being attained.
- Category 4: Waters in which particular designated uses are impaired or threatened and it is expected that they will meet the water quality standards with the implementation of the adequate and corresponding control measures without the development of TMDLs.
 - ✓ 4a a state developed TMDL has been approved by EPA or a TMDL has been established by EPA for any segment/pollutant combination.

- ✓ 4b other required control measures are expected to result in the attainment of an applicable water quality standard in a reasonable period of time.
- ✓ 4c the non-attainment of any applicable water quality standard for the segment is the result of pollution and is not caused by a pollutant.
- Category 5: Waters where at least one water quality standard was not attained (impaired or non-support assessment units). The unattainment of water quality standards requires the development and implementation of a TMDL. Waters identified as impaired are included in the 303(d) List.

C5. <u>Water Quality Assessment by Designated Uses</u>

The surface waters (rivers, lakes/lagoons, estuaries and coasts) for which data are available were assessed for the following designated uses in accordance with the requirements of the Clean Water Act and the PRWQSR: <u>swimming (primary contact recreation)</u>, secondary contact recreation, aquatic life and raw source of drinking water <u>supply</u>:

1. Swimming (Primary Contact Recreation):

For primary contact recreation the use support evaluation was based on the geometric mean of a series of representative samples (at least five) of fecal coliforms. When the geometric mean was less or equal to 200 col/100mL and the 20% of the individual samples did not exceed the value of 400 col/100mL the AU was classified support for swimming. If the segment failed to meet any of the above mentioned criteria, the AU was considered as non-support.

2. Secondary Contact Recreation:

Coastal segments designated for this use under the PRWQSR are currently under Federal promulgation as Primary Contact Recreation. All such segments were evaluated on the basis of Primary Contact Recreation, this being the most restrive use.

3. Raw Source of Drinking Water (rivers and lakes):

The assessment of the drinking water use was based on monitored contaminants listed in the PRWQSR and the data obtained from the Source Water Assessment Program (SWAP). The additional criterion used to assess raw source of drinking water use was the presence of a water intake in the assessment unit. To assess the RSDW use, we considered compliance of water quality standards for the various parameters indicated below:

Cadmium (Cd)	Nitrates + Nitrites ($NO_3 + NO_2$)	
Copper (Cu)	Selenium (Se)	
Cyanides (CN)	Silver (Ag)	
Fluoride	Total Chromium (Cr)	
Lead (Pb) Total Phosphorus (P)		
Mercury (Hg)		

4. Aquatic Life Use Support (ALUS) for rivers, lakes, estuaries and coasts:

The aquatic life use support was determined on the basis of physical and chemical data obtained from the monitoring stations. At the present time PREQB's efforts to implement the current EPA developed Rapid Bioassessment Protocol (RBP) have not been successful. We have continued to participate with EPA in seeking different alternatives to determine if lower resolution of taxonomic identification provides useful relationships to determine if the RBP are applicable or not to the Caribbean waters. Currently, the ALUS was based on the physical/chemical data collected on a semi-annual frequency grab sampling during key periods (high and low flows) for all parameters applicable to this use as indicated in the PRWQSR.

In all cases, each parameter considered was evaluated strictly in accordance with the applicable standard. The toxic parameters taken into consideration were:

Ammonia (NH ₃)	Mercury (Hg)	Selenium (Se)
Arsenic (As)	Silver (Ag)	Surfactants
Cadmium (Cd)	Total Chromium (Cr)	Copper (Cu)
Cyanides (CN)	Lead (Pb)	

For these toxic parameters, <u>a single violation of the standard was enough to classify the</u> segment as non-support for the aquatic life use.

The conventional parameters used for the assessment of aquatic life use support were:

Dissolved Woxygen (D)O)	Temperature
Turbidity (Lakes only)	рН

C6. Assessment Results

Table 6: Size of Waters Assigned to Reporting Categories

			CA	TOTAL IN	TOTAL				
WAILINDODTTIFL	1	2	3	4a	4b	4c	5	STATE	ASSESSED
Rivers and Streams - miles	236.5	0	1,112.4	397.9	0	520.9	2777.7	5045.4	5045.4
Reservoirs - acres	236.5	0	0	0	0	0	6990	7323	7323
Estuaries - acres	127.9	0	3,001.2	0	0	182.8	118.5	3430.4	3430.4
Costal Waters - miles	105.0	207.8	216.7	0	0	0	20.4	549.9	549.9
Total of assessed miles without monitoring station 1,412.8									

Total of assessed miles without monitoring station Total of assessed miles with monitoring station

<u>3,640.0</u> TOTAL 5,052.8

Rivers and Streams

Table 7: Size of waters Impaired by Causes (Monitored Miles for Rivers and Streams)

CAUSES OF IMPAIRMENTS	SIZE OF WATERS IMPAIRED (miles)
Fecal Coliforms (1700)	2,977.3
Arsenic (0510)	2,252.9
Turbidity (2500)	1,549.4
Low Dissolved Oxygen (1200)	1,061.2
Surfactants (0400)	726.8
Copper (0530)	409.3
Thermal Modifications (1400)	282.7
Cyanide (0720)	264.0
Ammonia (0600)	215.3
Pesticides (0200)	209.4
Phosphorus (0910)	197.7
Lead (0550)	120.7
Mercury (0560)	106.5
pH (1000)	92.5

Table 8: Size of Waters Impaired by Sources (Assessed and Monitored Rivers and Streams)

SOURCES OF IMPAIRMENTS	SIZE OF WATER IMPAIRED
Onsite Wastewater Systems (6500)	4,678.8
Confined Animal Feeding Operations (1640)	3,171.6
Urban Runoff/Storm Sewers (4000)	2,859.6
Minor Industrial Point Source (0120)	2,827.1
Landfills (6300)	2,005.6
Agriculture (1000)	1,926.7
Collection System Failure (0500)	1,815.8
Minor Municipal Point Source (0200)	1,029.6
Major Municipal Point Source (0210)	920.8
Surface Mining (5100)	478.5
Package Plants (Small Flows) (0230)	441.6
Major industrial Point Source (0110)	119.9

BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	MONITORING STATIONS NS = Network SS = Synoptic Study	DESI	GNATE CATE(D USES GORIES	S AND	NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
				R1	R2	AL	DW			compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
QUEBRADA DE LOS CEDROS	QUEBRADA DE LOS CEDROS PRNQ1A	12	NS 5007000	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
QUEBRADA DEL TORO	QUEBRADA DEL TORO PRNQ2A	1.0		3	3	3	3		Onsite Wastewater systems (6500)	None Known
RIO GUAJATACA	RIO GUAJATACA PRNR3A1	9.9	NS 50011400	5	1	5	5		Onsite Wastewater Systems (6500) Landfills (6300) Minor Industrial Point Source (0120) Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Low Dissolved Oxygen (1200) Arsenic (0510) Turbidity (2500) <i>Cyanide (0720)</i>
	RIO GUAJATACA PRNR3A2	22	NS 50010500	5	5	5	5		Onsite Wastewater Systems (6500) Collection System Failure(0500) Confined Animal Feeding Operations (1640) Major Municipal Point Source (0210)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) <i>Copper (0530)</i> <i>MBAS (0400)</i> <i>Lead (0550)</i>
	QUEBRADA LAS SEQUIAS PRNQ3B	3.5		3	3	3	3		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Arsenic (0510) Cyanide (0720) Low Dissolved Oxygen (1200) (Fecal Coliform (1700))
QUEBRADA BELLACA	QUEBRADA BELLACA PRNQ4	1.7		3	3	3	3		Onsite Wastewater Systems (6500)	None Known
RIO CAMUY	RIO CAMUY PRNR5A	48.5		3	3	3	3		Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	None Known

	WATERBODY NAME	WATERBODY SIZE (MILES)	MONITORING STATIONS NS = Network SS = Synoptic Study	DESI	GNATE CATEC	D USES FORIES	S AND	NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN				R1	R2	AL	DW			compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
QUEBRADA SECA	QUEBRADA SECA PRNQ6	2.0		3	3	3	3		Collection System Failure (0500) Onsite Wastewater Systems (6500)	None Known
RIO GRANDE DE ARECIBO	RIO GRANDE DE ARECIBO PRNR7A1	31.4	NS 50029000 50027250 A1-B	5	1	5	5		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Urban Runoff/Storm Sewers (4000) Major Industrial Point Source (0110) Minor Industrial Point Source (0120)	Arsenic (0510) Low Dissolved Oxygen (1200) Fecal Coliform (1700) <i>Copper (0530)</i> <i>Cyanide (0720)</i> <i>MBAS (0400)</i> <i>Turbidity (2500)</i> <i>(Lead (0550))</i>
	RIO GRANDE DE ARECIBO PRNR7A2	122.8	NS 50025000 A3-A A3-B	5	5	5	5		Confined Animal Feeding Operations (1640) Agriculture (1000) Minor Municipal Point Source (0220) Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure(0500) Landfills (6300)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) Pesticides (0200) Thermal Modifications (1400) <i>Copper (0530)</i> <i>MBAS (0400)</i> <i>Cyanide (0720)</i> <i>(Lead (0550))</i>
	TUNEL PRNR7A3	28.9	NS 50020500	5	1	5	5		Confined Animal Feeding Operations (1640) Agriculture (1000) Minor Municipal Point Source (0220) Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure(0500)	Arsenic (0510) Fecal Coliform (1700) <i>Cyanide (0720)</i>
BASIN	WATEPRODV NAME	WATERBODY	MONITORING	DESIGNATED USES AND CATEGORIES SOURCES OF					CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in	
-------	--------------------------	---------------------------	---	---	-----	----	----	-------	---	--
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO CAONILLAS PRNR7C1	87	NS A4-A A4-B	5	1	5	2		Confined Animal Feeding Operations (1640) Minor Industrial Point Source (0120) Agriculture (1000) Collection System Failure(0500) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300)	Fecal Coliform (1700) Low Dissolved Oxygen (1200) Arsenic (0510) Cyanide (0720) MBAS (0400) (Copper (0530))
	RIO LIMON PRNR7C2	40.7	NS A1-A	1	1	1	2		Onsite Wastewater Systems (6500) Package Plants (Small Flows) (0230) Agriculture (1000)	Fecal Coliform (1700)
	RIO YUNES PRNR7C3	32.7	NS A2-A A2-B	1	1	1	2		Onsite Wastewater Systems (6500)	Fecal Coliform (1700)
	RIO TANAMA PRNR7B1	16.2		N/A	N/A	3	3		Minor Industrial point Source (0120) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	None Known
	RIO TANAMA PRNR7B2	43.5	NS 50028000 A5-A (A5-A2)	5	1	1	1		Agriculture (1000) Minor Industrial Point Source (0120) Collection System Failure(0500) Onsite Wastewater Systems (6500)	Fecal Coliform (1700) Turbidity (2500) Arsenic (0510) Cyanide (0720) Copper (0530) (Mercury (0560))

			MONITORING	DESI	GNATE CATEC	D USES GORIES	SAND			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO GRANDE DE MANATÍ	RIO GRANDE DE MANATÍ PRNR8A1	31	NS 50038100	5	1	5	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Confined Animal Feeding Operations (1640) Major Municipal Point Source (0210) Collection System Failure(0500) Landfills (6300)	MBAS (0400) Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) Copper (0530) Lead (0550) <i>Cyanide (0720)</i>
	RIO GRANDE DE MANATÍ PRNR8A2	38.1	NS 50035500 50031200 SS 50031000 50032100	5	1	5	5		Confined Animal Feeding Operations (1640) Collection System Failure(0500) Landfills (6300) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Surfactants (0400) Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) Copper (0530) <i>Cyanide (0720)</i> (<i>Mercury (0560)</i>)
	RIO GRANDE DE MANATÍ PRNR8A3	27	SS 50029900 50029800	5	1	5	5		Confined Animal Feeding Operations (1640) Minor Industrial Point Source (0120) Minor Municipal Point Source (0220) Landfills (6300)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) <i>Cyanide (0720)</i> <i>Copper (0530)</i> <i>MBAS (0400)</i> (<i>Mercury (0560))</i>
	RIO CIALITO PRNR8B	25.8	NS 50035950 SS 50035900 50035700	5	1	5	5		Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700) <i>Cyanide (0720)</i> <i>MBAS (0400)</i> <i>(Copper (0530))</i>
	RIO TORO NEGRO PRNR8C1	41.5	SS 50033200 50033000 50032450 50032700	5	1	5	5		Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Minor Industrial Point Source (0120)	Arsenic (0510) Fecal Coliform (1700) Copper (0530) <i>Cyanide (0720)</i> <i>Turbidity (2500)</i>

BASIN WATERBODY NAMI			MONITORING	IG DESIGNATED USES AND CATEGORIES						CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO BAUTA PRNR8C2	27.6	SS 50034000 50034500	1	1	5	5		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Arsenic (0510) Copper (0530)
	RIO SANA MUERTOS PRNR8D	16	SS 50031500	5	1	5	5		Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510) Copper (0530) Fecal Coliform (1700) Turbidity (2500)
	RIO OROCOVIS PRNR8E1	19.8	NS 50030700 SS 50030800 50030450	5	1	5	5		Minor Industrial Point Source(0120) Minor Municipal Point Source (0220) Major Municipal Point Source (0210) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300)	Arsenic (0510) Copper (0530) Fecal Coliform (1700) Turbidity (2500) <i>Cyanide (0720)</i> <i>MBAS (0400)</i> (<i>Mercury (0560))</i>
	RIO BOTIJAS PRNR8E2	19.1	SS 50030300	5	5	5	5		Minor Industrial point Source(0120) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500)
RIO CIBUCO	RIO CIBUCO PRNR9A	31.1	NS 50038320 50039500	4a	4a	5	5	В	Major Municipal Point Source (0210) Landfills (6300) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510) Turbidity (2500) MBAS (0400) <i>Cyanide (0720)</i> <i>Copper (0530)</i> <i>Low Dissolved Oxygen (1200)</i>

BASIN WATERBODY		WATERBODY	MONITORING	DESI	GNATE CATEG	D USES ORIES	AND			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO INDIO PRNR9B1	12.5		4a	4a	5	5	В	Minor Industrial Point Source (0120) Collection System Failure (0500) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Urban Runoff/Storm Sewers (4000) Landfills (6300)	Arsenic (0510) Cyanide (0720) Turbidity (2500) Copper (0530) MBAS (0400) Low Dissolved Oxygen (1200)
	RIO MOROVIS PRNR9B2	25.5		4a	4a	3	3	В	Minor Industrial Point Source (01200 Minor Municipal Point Source (0220) Package Plant Small Flows (0230) Collection System Failure (0500) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Urban Runoff/Storm Sewers (4000) Landfills (6300)	None Known
	RIO UNIBON PRNR9B3	17.4		4a	4 a	3	3	В	Minor Municipal Point Source (0220) Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500)	None Known
	RIO MAVILLAS PRNR9C	34.0		4 a	4 a	3	3	В	Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	None Known

BASIN			MONITORING	DESI	GNATE CATEC	D USES GORIES	S AND S			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO DE LOS NEGROS PRNR9D	24.1		4a	4a	3	3	В	Minor Industrial Point Source (0120) Mayor Municipal Point Source (0220) Collection System Failure (0500) Agriculture (1000) Confined Animal Feeding Operations (1640) Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500)	Arsenic (0510) Cyanide (0720) MBAS (0400)
RIO DE LA PLATA	RIO DE LA PLATA PRER10A1	21	NS 50046000	4a	1	5	5	С	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Minor Municipal Point Source (0220) Major Industrial Point Source (0110) Major Municipal Point Source (0210) Surfaces Mining (5100)	Arsenic (0510) Low Dissolved Oxygen (1200) Turbidity (2500) <i>Cyanide (0720)</i> <i>MBAS (0400)</i>
	RIO DE LA PLATA PRER10A2	14.3		4a	4a	3	3	C	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500)	None Known
	RIO DE LA PLATA PRER10A3	55.7	NS 50044000 LP-5 LP-6	4a	1	5	5	C	Confined Animal Feeding Operations (1640) Major Municipal Point Source (0210) Onsite Wastewater Systems (6500) Landfills (6300)	Arsenic (0510) Low Dissolved Oxygen (1200) pH (1000) <i>Cyanide (0720)</i> <i>(Copper (0530))</i> <i>(Selenium (0570))</i>

BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	MONITORING STATIONS NS = Network SS = Synoptic Study	DESI	GNATE CATEG R2	D USES ORIES AL	AND DW	NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006
	RIO DE LA PLATA PRER10A4	10.2	NS 50043000 LP-4	4a	1	5	5	С	Confined Animal Feeding Operations (1640) Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Landfills (6300)	<i>cycle)</i> Arsenic (0510) Turbidity (2500) Thermal Modifications (1400) <i>Cyanide (0720)</i> <i>MBAS (0400)</i> <i>(Copper (0530))</i>
	RIO DE LA PLATA PRER10A5	92.7		4 a	4 a	3	3	С	Minor Industrial Point Source (0120) Major Municipal Point Source (0210) Minor Municipal Point Source (0220) Collection System Failure (0500) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban/Runoff/Storm Sewers (4000)	Arsenic (0510) Cyanide (0720) MBAS (0400) Turbidity (2500) (Copper (0530))
	RIO LAJAS PRER10B	16.6		4 a	4 a	3	3	С	Minor Industrial Point Source (0120) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Surface Mining (5100)	Arsenic (0510) Cyanide (0720) Low Dissolved Oxygen (1200) MBAS (0400)
	RIO BUCARABONES PRER10C	19.2		4 a	4 a	3	3	С	Major Municipal Point Source (0210) Collection System Failure (0500) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500)	Arsenic (0510) Cyanide (0720) Low Dissolved Oxygen (1200) MBAS (0400)
	RIO CAÑAS PRER10D	10.4		4a	4a	3	3	С	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500)	None Known

BASIN W	WATERBODY NAME WATE		MONITORING	DESIGNATED USES AND CATEGORIES				CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in		
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO GUADIANA PRER10E	21.8	NS 50044850	4 a	4 a	5	5	С	Confined Animal Feeding Operations (1640) Minor Industrial Point Source (0120) Minor Municipal Point Source(0220)	Arsenic (0510) Turbidity (2500) <i>Cyanide (0720)</i>
	RIO CUESTA ARRIBA PRER10F	10.6		4 a	4 a	3	3	С	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500)	None Known
	RIO ARROYATA PRER10G	36.8	NS LP-3	1	1	5	2	С	Confined Animal Feeding Operations (1640) Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500)	pH (1000)
	RIO HONDO PRER10H	25.6		4 a	4 a	3	3	С	Minor Industrial Point Source (0120) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Landfills (6300)	None Known
	RIO USABON PRER10I1	54.6		4a	4a	3	3	С	Minor Industrial Point Source (0120) Minor Municipal Point Source (0220) Collection System Failure (0500) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known

			MONITORING	DESI	GNATE CATE(D USES FORIES	S AND			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO AIBONITO PRER10I2	18.7		4a	4a	3	3	С	Minor Industrial Point Source (0120) Minor Municipal Point Source (0220) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
	RIO MATON PRER10J	15.8	NS LP-1 LP-2	4a	1	5	5	С	None known	Arsenic (0510) Cyanide (0720) MBAS (0400) Turbidity (2500) (Copper (0530))
	RIO GUAVATE PRER10K	19.8		4a	4a	3	3	С	Confined Animal Feeding Operations (1640) Collection System Failure (0500) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
RIO HONDO	RIO HONDO PRER11A	22	NS 50047530	5	5	5	5		Urban Runoff/Storm Sewers (4000) Collection System Failure(0500) Onsite Wastewater Systems (6500)	MBAS (0400) Arsenic (0510) Low Dissolved Oxygen (1200) Turbidity (2500) Fecal Coliforms (1700) Selenium (0570) Other inorganics (0800) (Ammonia (0600))
RIO BAYAMÓN	RIO BAYAMÓN PRER12A1	33.6	NS 50048510	5	5	5	5		Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Arsenic (0510) MBAS (0400) <i>Cyanide (0720)</i> <i>(Copper (0530))</i>

BASIN WATERBODY NAME		MONITORING WATERBODY STATIONS			GNATE CATEG	D USES SORIES	AND			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO BAYAMÓN PRER12A2	83.7	NS 50047600	5	1	5	5		Collection System Failure(0500) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Minor Industrial Point Source (0120) Landfills (6300)	Fecal Coliform (1700) Arsenic (0510) Turbidity (2500) <i>Cyanide (0720)</i> <i>MBAS (0400)</i>
	RIO GUAYNABO PRER12B	50.7	NS 50047990	5	5	5	5		Collection System Failure(0500) Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Mercury (0560) Arsenic (0510) Turbidity (2500) Surfactants (0400) <i>Cyanide (0720)</i> <i>Low dissolved Oxygen (1200)</i> <i>(Copper (0530))</i>
	RIO MINILLAS PRER12C	8.7		3	3	3	3		Collection System Failure(0500) Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Surfaces Mining (5100) Minor Industrial Point Sources (0120)	None Known
RIO GRANDE DE LOIZA	RIO GRANDE DE LOIZA PRER14A1	31	NS 50059100	4a	4a	5	5	D	Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Surfaces Mining (5100) Collection System Failure(0500) Confined Animal Feeding Operations (1640) Minor Industrial Point Sources (0120)	Arsenic (0510) Turbidity (2500) Cyanide (0720) MBAS (0400) Low Dissolved Oxygen (1200)

			MONITORING	DESI	GNATE CATEG	D USES ORIES	AND			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO GRANDE DE LOIZA PRER14A2	86.6	NS 50055000 L-2 L-3	4a	4a	5	5	D	Onsite Wastewater Systems (6500) Surfaces Mining (5100) Confined Animal Feeding Operations (1640) Collection System Failure(0500) Landfills (6300) Urban Runoff/Storm Sewers (4000) Minor Industrial Point Source (0120) Major Municipal Point Source (0210)	Arsenic (0510) Turbidity (2500) Low Dissolved Oxygen (1200) Copper (0530) Pesticides (0200) <i>Cyanide (0720)</i> <i>MBAS (0400)</i> <i>(Ammonia (0600))</i>
	RIO CANOVANAS PRER14B	28.9		3	3	3	3	G	Confined Animal Feeding Operations (1640) Package Plant Small Flows (0230) Minor Industrial Point Source(0120) Land Development (3200) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Arsenic (0510) Cyanide (0720)
	RIO CANOVANILLAS PRER14C	27.9		3	3	3	3	G	Confined Animal Feeding Operations (1640) Minor Municipal Point Source (0220) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Arsenic (0510) Cyanide (0720)
	QUEBRADA MARACUTO PREQ14D	11.9		3	3	3	3	G	Confined Animal Feeding Operations (1640) Land Development (3200) Onsite Wastewater Systems (6500)	Arsenic (0510) Cyanide (0720)
	QUEBRADA GRANDE PREQ14E	1.2		3	3	3	3	G	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Package Plant Small Flows (0230)	Arsenic (0510) Cyanide (0720) MBAS (0400)

BASIN WATERBODY NAME		MONITORING WATERBODY STATIONS		DESI	GNATE CATEG	D USES ORIES	SAND			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO CAÑAS PRER14F	9.4		4a	4a	3	3	D and G	Confined Animal Feeding Operations (1640) Collection System Failure(0500) Onsite Wastewater Systems (6500)	Arsenic (0510) Cyanide (0720)
	RIO GURABO PRER14G1	124.3	NS 50057025 (50057000)	4a	4a	5	5	D	Onsite Wastewater Systems (6500) Landfills (6300) Confined Animal Feeding Operations (1640) Surfaces Mining (5100) Major Municipal Point Source(0210) Minor Industrial Point Source(0120) Package Plant Small Flows (0230) Collection System Failure(0500)	Arsenic (0510) Low Dissolved Oxygen (1200) Turbidity (2500) <i>Cyanide (0720)</i> <i>Copper (0530)</i> <i>Lead (0550)</i> <i>MBAS (0400)</i>
	RIO VALENCIANO PRER14G2	42.8	NS L-1 EPA Special Study	4a	1	5	5	D	Major Municipal Point Source (0210) Minor Industrial Point Source(0120) Package Plant Small Flows (0230) Landfills (6300) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure(0500)	Arsenic (0510) Copper (0530) <i>Cyanide (0720) MBAS (0400)</i> <i>Turbidity (2500)</i>

305(b) and 303(d) Integrated Report

BASIN WATERBODY NAME		MONITORI WATERBODY STATION		DESI	GNATE CATEG	D USES AND ORIES				CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO BAIROA PRER14H	16.3	NS 50055400 (50055410) EPA Special Study	4a	1	5	5	D	Collection System Failure(0500) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Major Municipal Point Source(0210) Minor Industrial Point Source(0120) Major Industrial Point source (0110)	MBAS (0400) Arsenic (0510) Phosphorus (0910) Cyanide (0720) Copper (0530) <i>Turbidity (2500)</i> <i>Low Dissolved Oxygen (1200)</i> <i>Lead (0550)</i> <i>Ammonia (0600)</i>
	RIO CAGÜITAS PRER14I	33.9	NS 50055250	4a	4a	5	5	D	Onsite Wastewater Systems (6500) Surfaces Mining (5100) Confined Animal Feeding Operations (1640) Collection System Failure(0500) Urban Runoff/Storm Sewers (4000)	MBAS (0400) Arsenic (0510) Copper (0530) Lead (0550) Cyanide (0720) Low Dissolved Oxygen (1200) Thermal Modifications (1400) Turbidity (2500) Ammonia (0600)
	RIO TURABO PRER14J	54.7	NS L-5	4a	1	1	2	D	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure(0500) Minor Industrial Point Source (0120) Minor Municipal Point Source (0220)	Turbidity (2500) Arsenic (0510) Cyanide (0720) MBAS (0400)

DACINI	WATERDORY NAME	WATERBODY	MONITORING STATIONS	G DESIGNATED USES AND CATEGORIES N				NOTES	SOURCES OF	CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in compliance during 2008 cycle
BASIN	WATERBODY NAME	SIZE (MILES)	NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	POLLUTION	(Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO CAYAGUAS PRER14K	38.5	NS L-4	4a	1	5	2	D	Confined Animal Feeding Operations (1640)	Low Dissolved Oxygen (1200) Arsenic (0510) Cyanide (0720) MBAS (0400) Turbidity (2500) Copper (0530) Lead (0550)
	RIO EMAJAGUA PRER14L	8.5		4a	4a	3	3	D and G	Onsite Wastewater Systems (6500)	Arsenic (0510) Cyanide (0720) MBAS (0400)
RIO HERRERA	RIO HERRERA PRER15A	17		3	3	3	3	G	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO ESPIRITU SANTO	RIO ESPIRITU SANTO PRER16A	58.4	NS 50063800	5	1	5	1		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Minor Industrial Point Source(0120) Landfills (6300) Collection System Failure(0500)	MBAS (0400) Fecal Coliform (1700) Turbidity (2500) <i>Arsenic (0510)</i> <i>Cyanide (0720)</i> <i>Copper (0530)</i> <i>Lead (0550)</i> <i>Selenium (0570)</i>
RIO MAMEYES	RIO MAMEYES PRER17A	38.9		3	3	3	3	G	Onsite Wastewater Systems (6500) Minor Industrial Point Sources (0120) Confined Animal Feeding Operations (1640) Landfills (6300)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)

BASIN	WATEDBODY NAME		MONITORING	DESIGNATED USES AND CATEGORIES						CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
QUEBRADA MATA DE PLATANO	QUEBRADA MATA DE PLATANO PREQ18A	4.0		3	3	3	3	G	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO SABANA	RIO SABANA PRER19A	33.1		3	3	3	3	G	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Surfaces Mining (5100) Minor Industrial Point Sources (0120)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO JUAN MARTÍN	RIO JUAN MARTÍN PRER20A	7.8		3	3	3	3	G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700)
QUEBRADA FAJARDO	QUEBRADA FAJARDO PREQ21A	10.0		3	3	3	3	G	Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO FAJARDO	RIO FAJARDO PRER22A	59.0	NS 50071000 50072605	5	1	5	5		Onsite Wastewater Systems (6500) Collection System Failure(0500) Confined Animal Feeding Operations (1640) Urban Runoff/Storm Sewers (4000) Landfills (6300) Minor Industrial Point Source (0120)	Arsenic (0510) Copper (0530) Fecal Coliform (1700) Turbidity (2500) <i>Cyanide (0720)</i> <i>MBAS (0400)</i> <i>Low Dissolved Oxygen (1200)</i> <i>(Lead (0550))</i>
RIO DEMAJAGUA	RIO DEMAJAGUA PRER23A	2.8		3	3	3	3	G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700)
QUEBRADA CEIBA	QUEBRADA CEIBA PREQ24A	5.0		3	3	3	3	G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)

BASIN	WATERDODY NAME		MONITORING	G DESIGNATED USES AND CATEGORIES						CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
QUEBRADA AGUAS CLARAS	QUEBRADA AGUAS CLARAS PREQ25A	4.8		3	3	3	3	G	Major Municipal Point Sources (0210) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Low Dissolved Oxygen (1200) Thermal Modifications (1400)
RIO DAGUAO	RIO DAGUAO PRER26A	13.8		3	3	3	3	G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
QUEBRADA PALMA	QUEBRADA PALMA PREQ27A	11.8		3	3	3	3	G	Package Plants (Small Flows) (0230) Onsite Wastewater Systems (6500)	Fecal Coliform (1700)
QUEBRADA BOTIJAS	QUEBRADA BOTIJAS PREQ28A	7.4		3	3	3	3	G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO SANTIAGO	RIO SANTIAGO PRER29A	15.3		3	3	3	3	G	Collection System Failure (0500) Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Minor Industrial Point Sources (0120) Landfills (6300)	Fecal Coliform (1700)
RIO BLANCO	RIO BLANCO PRER30A	45.0		3	3	3	3	G	Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Minor Industrial Point Sources (0120)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
	QUEBRADA PEÑA POBRE PREQ30B	13.4		3	3	3	3	G	Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO ANTON RUIZ	RIO ANTON RUIZ PRER31A	20.4		3	3	3	3	G	Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Fecal Coliform (1700)
QUEBRADA FRONTERA	QUEBRADA FRONTERA PREQ32A	8.5		3	3	3	3	G	Collection System Failure (0500) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)

BASIN	WATERBODY NAME		MONITORING	DESIGNATED USES AND CATEGORIES						CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO HUMACAO	RIO HUMACAO PRER33A	55.8	NS 50082000	5	5	5	5		Collection System Failure (0500) Landfills (6300) Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Urban Runoff/Storm Sewers (4000)	MBAS (0400) Arsenic (0510) Copper (0530) Lead (0550) Mercury (0560) Fecal Coliform (1700) Turbidity (2500) Thermal Modifications (1400) <i>Cyanide (0720)</i>
RIO CANDELERO	RIO CANDELERO PRER34A	10.4		3	3	3	3	G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700)
RIO GUAYANES	RIO GUAYANES PRER35A	94.6		3	3	3	3	G	Minor Industrial Point Sources (0120) Landfills (6300) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Agriculture (1000) Package Plants (Small Flows) (0230)	Fecal Coliform (1700) Low Dissolved Oxygen (1200) Arsenic (0510) Cyanide (0720) Turbidity (2500) Copper (0530) Lead (0550) MBAS (0400)
QUEBRADA EMAJAGUA	QUEBRADA EMAJAGUA PREQ36A	2.5		3	3	3	3	G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700)
RIO MAUNABO	RIO MAUNABO PRER37A	36.0	NS 50091000	5	1	5	5		Minor Industrial Point Source (0120) Minor Municipal Point Source(0220) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Agriculture (1000) Landfills (6300)	MBAS (0400) Arsenic (0510) Fecal Coliform (1700) Cyanide (0720) <i>Ammonia (0600)</i> (<i>Copper (0530)</i>)
QUEBRADA MANGLILLO	QUEBRADA MANGLILLO PRSQ38A	1.0		3	3	3	3		Onsite Wastewater Systems (6500)	None Known

			MONITORING	DESI	GNATE CATE(D USES FORIES	S AND		TES SOURCES OF	CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
QUEBRADA FLORIDA	QUEBRADA FLORIDA PRSQ39A	3.0		NE	NE	NE	NE			
RIO JACABOA	RIO JACABOA PRSR40A	13.0	SS 50091500	4c	4c	4c	4c	A	Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	None Known
QUEBRADA PALENQUE	QUEBRADA PALENQUE PRSQ41A	1	SS 50091525	4c	4c	4c	4c	A	Onsite Wastewater Systems (6500)	None Known
RIO CHICO	RIO CHICO PRSR42A	14.6	SS 50091800	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Agriculture (1000) Confined Animal Feeding Operations (1640)	Low Dissolved Oxygen (1200) Copper (0530) MBAS (0400) Fecal Coliform (1700) Ammonia (0600) Arsenic (0510) Phosphorus (0910) (Mercury (0560)) Lead (0550)) Silver (no code))
RIO GRANDE DE PATILLAS	RIO GRANDE DE PATILLAS PRSR43A1	4.0	NS 50092000 SS 50094300	5	1	5	5		Minor Industrial Point Source(0120) Major Municipal point source(0210) Onsite Wastewater Systems (6500)	Arsenic (0510) Fecal Coliform (1700)
	RIO GRANDE DE PATILLAS PRSR43A2	35.9		3	3	3	3		Onsite Wastewater Systems (6500)	Arsenic (0510) Cyanide (0720) Turbidity (2500) (Fecal Coliform (1700))
	RIO MARIN PRSR43B	8.7		3	3	3	3		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	None Known

BASIN	WATERBODY NAME	WATERRORY	MONITORING	DESIGNATED USES AND CATEGORIES						CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WA TERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
QUEBRADA YAUREL	QUEBRADA YAUREL PRSQ44A	6.0	SS 50094315	4c	4c	1	4c	A	Onsite Wastewater Systems (6500)	None Known
RIO NIGUAS DE ARROYO	RIO NIGUAS DE ARROYO PRSR45A	21	SS 50094500 50094410	1	1	1	2		None Known	None Known
QUEBRADA SALADA	QUEBRADA SALADA PRSQ46A	1.7	SS 50094515	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500) Surface Mining (5100)	None Known
QUEBRADA CORAZON	QUEBRADA CORAZON PRSQ47A	9.7	SS 50094523	4c	4c	4c	4c	A	Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	None Known
QUEBRADA BRANDERI	QUEBRADA BRANDERI PRSQ48A	4.5	SS 50094530	4c	4c	1	4c	A	Onsite Wastewater Systems (6500)	None Known
RIO GUAMANI	RIO GUAMANI PRSR49A	22.0	SS 50095210 50095500 50095550	4c	4c	4c	4c	A	Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Urban Runoff/Storm Sewers (4000)	None Known
QUEBRADA MELANIA	QUEBRADA MELANIA PRSQ50A	7.0	SS 50095900 50096010	4c	4c	5	4c	A	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300)	Low Dissolved Oxygen (1200)
RI <mark>O SECO</mark>	RIO SECO PRSR51A	24.7	SS 50097500 50097800 50098000 50096990 50097010	4c	4c	1	4c	A	Onsite Wastewater Systems (6500) Agriculture (1000)	Low Dissolved Oxygen (1200)
QUEBRADA AMOROS	QUEBRADA AMOROS PRSQ52A	0.7	SS 50098600	4c	4c	5	4c	A	Onsite Wastewater Systems (6500)	Low Dissolved Oxygen (1200)

BASIN		WATERDODY	MONITORING	DESIGNATED USES AND CATEGORIES					TES SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
QUEBRADA AGUAS VERDES	QUEBRADA AGUAS VERDES PRSQ53A	15.0	SS 50099050 50099200 50099400	4c	4c	4c	4c	A	Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	None Known
RIO NIGUAS DE SALINAS	RIO NIGUAS DE SALINAS PRSR54A	102.5	SS 50100400 50100450 50100150 50100250 50100700 50099300 50101400 50101800 50101600 50102010	4c	4c	5	4c	A	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Confined Animal Feeding Operations (1640) Surfaces Mining (5100)	Low Dissolved Oxygen (1200) Fecal Coliform (1700)
RIO JUEYES	RIO JUEYES PRSR55A	11.0	SS 50102450 50102900	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300) Confined Animal Feeding Operations (1640) Agriculture (1000)	None Known
RIO CAYURES	RIO CAYURES PRSR56A	5.0	SS 50103100	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500) Agriculture (1000)	None Known
RIO COAMO	RIO COAMO PRSR57A1	7.5	SS 50107000	4c	4c	4c	4c	A	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300) Confined Animal Feeding Operations (1640) Minor Municipal Point Source(0220) Agriculture (1000)	None Known

			MONITORING	DESIGNATED USES AND CATEGORIES						CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO COAMO PRSR57A2	59.0	NS 50106500	5	1	5	5		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Agriculture (1000) Minor Industrial Point Source (0120) Landfills (6300) Urban Runoff/Storm Sewers (4000) Minor Municipal Point Source(0220)	MBAS (0400) Arsenic (0510) Cyanide (0720) Fecal Coliform (1700) <i>Thermal modifications (1400)</i> <i>Turbidity (2500)</i>
	RIO CUYON PRSR57B	49.2		3	3	3	3		Package Plans Small Flow (0230) Agriculture (1000) Confined Animal Feeding Operations (1640) Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500)	Fecal Coliform (1700) Thermal Modifications (1400) Arsenic (0510) Cyanide (0720) Turbidity (2500)
RIO DESCALABRADO	RIO DESCALABRADO PRSR58A	18.8	SS 50108400 50108000 50108500	4c	4c	1	4c	Α	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Confined Animal Feeding Operations (1640)	None Known
RIO CAÑAS	RIO CAÑAS PRSR59A	8.0	SS 50109100 50119200 50109500	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500) Agriculture (1000)	None Known
RIO JACAGUAS	RIO JACAGUAS PRSR60A1	22.8	SS 50112000	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Agriculture (1000) Landfills (6300) Collection System Failure (0500) Minor Industrial Point Source (0120)	None Known

	WATEDBODV NAME		MONITORING	DESI	DESIGNATED USES AND CATEGORIES					CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO JACAGUAS PRSR60A2	29.3		3	3	3	3		Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Confined Animal Feeding Operations (1640) Landfills (6300)	None Known
RIO INABON	RIO INABON PRSR61A	66.7	SS 50113400	1	1	1	2		None Known	None Known
RIO BUCANA- CERRILLOS	RIO BUCANA-CERRILLOS PRSR62A1	27.8	NS 50114000 SS 50114600	5	1	5	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Surfaces Mining (5100)	Arsenic (0510) Cyanide (0720) Fecal Coliform (1700)
	RIO BUCANA-CERRILLOS PRSR62A2	32.6		3	3	3	3		Onsite Wastewater Systems (6500) Agriculture (1000)	None Known
RIO PORTUGUE	S RIO PORTUGUES PRSR63A	54.0	NS 50115000 50116200 SS 50116500	5	5	5	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Minor Industrial Point Source (0120)	Arsenic (0510) Low Dissolved Oxygen (1200) Fecal Coliform (1700) Turbidity (2500) <i>Cyanide (0720)</i> <i>(Copper (0530))</i>

305(b) and 303(d) Integrated Report

BASIN	WATERRODY NAME	WATEDDODV	MONITORING	DESI	GNATE CATEC	D USES GORIES	S AND			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO MATILDE - PASTILLO	RIO MATILDE-PASTILLO PRSR64A	51.2	SS 50116970 50118300	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500) Landfills (6300) Urban Runoff/Storm Sewers (4000) Agriculture (1000) Major Industrial Point Source (0110) Minor Municipal Point Source (0220) Minor Industrial Point Source(0120) Confined Animal Feeding Operations (1640)	None Known
RIO TALLABOA	RIO TALLABOA PRSR65A	59.6	SS 50121000 50122000	1	1	1	2		None Known	None Known
RIO MACANA	RIO MACANA PRSR66A	21.7	SS 50122900 50122800	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Agriculture (1000)	None Known
RIO GUAYANILLA	RIO GUAYANILLA PRSR67A	60.0	NS 50124700 SS 50123190 50124700	5	1	5	5		Minor Municipal Point Source (0220) Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Agriculture (1000) Landfills (6300)	MBAS (0400) Arsenic (0510) Cyanide (0720) Ammonia (0600) Low Dissolved Oxygen (1200) Fecal Coliform (1700) Phosphorus (0910) Thermal Modifications (1400) <i>Turbidity (2500)</i>

BASIN WATERBODY NAME			MONITORING	DESI	GNATE CATE(D USES GORIES	S AND			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WATERBODY SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO YAUCO	RIO YAUCO PRSR68A1	61.4	SS 50127400 50128110	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300) Major Municipal Point Source (0210) Minor Industrial Point Source (0120) Collection System Failure(0500) Agriculture (1000)	None Known
	RIO YAUCO PRSR68A2	18.3	SS 50126050	1	1	1	4c	Α	Onsite Wastewater Systems (6500) Agriculture (1000)	None Known
RIO LOCO	RIO LOCO PRSR69A1	92.4	SS 50129600	1	1	1	4c	Α	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300) Minor Industrial Point Source (0120) Agriculture (1000) Minor Municipal Point Source (0220)	Arsenic (0510) Cyanide (0720) Turbidity (2500) MBAS (0400) Fecal Coliform (1700) Low Dissolved Oxygen (1200) (Lead (0550))
	RIO LOCO PRSR69A2	19.5	SS 50129620	5	1	1	4c	Α	Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Agriculture (1000)	Fecal Coliform (1700)
RIO ARROYO CAJUL	RIO ARROYO CAJUL PRSR70A	7.4	SS 50129820 50129825	N/A	N/A	N/A	N/A	F	Onsite Wastewater Systems (6500)	NONE
QUEBRADA BOQUERON	QUEBRADA BOQUERON PRWQ71A	11.7	SS 50130000	5	1	1	4c	A	Onsite Wastewater Systems (6500)	Fecal Coliform (1700)
QUEBRADA ZUMBON	QUEBRADA ZUMBON PRWQ72A	1.7	SS 50130050	4c	4c	4c	4c	Α	Collection System Failure(0500) Onsite Wastewater Systems (6500)	None Known
QUEBRADA GONZALEZ	QUEBRADA GONZALEZ PRWQ73A	1.8	SS 50130100	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500)	None Known

		WATEDDODY	MONITORING	DESIGNATED USES AND CATEGORIES					SOURCES OF	CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	SIZE (MILES)	NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	POLLUTION	(Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
QUEBRADA LOS PAJARITOS	QUEBRADA LOS PAJARITOS PRWQ74A	2.7	SS 50130150	4c	4c	1	4c	Α	Onsite Wastewater Systems (6500)	None Known
CAÑO CONDE AVILA	CAÑO CONDE AVILA PRWK75A	4.0		3	3	3	3		Onsite Wastewater Systems (6500)	None Known
QUEBRADA IRIZARRY	QUEBRADA IRIZARRY PRWK76A	2.0		3	3	3	3		Onsite Wastewater Systems (6500)	None Known
RIO GUANAJIBO	RIO GUANAJIBO PRWR77A	121.4	NS 50138000 50133600	5	1	5	5		Onsite Wastewater Systems (6500) Collection System Failure(0500) Urban Runoff/Storm Sewers (4000) Landfills (6300) Major Municipal Point Source (0210) Minor Industrial Point Source(0120)	Arsenic (0510) Ammonia (0600) Low Dissolved Oxygen (1200) Fecal Coliform (1700) Phosphorus (0910) Turbidity (2500) <i>Cyanide (0720)</i> <i>MBAS (0400)</i> (<i>Lead (0550)</i>)
	RIO HONDO PRWR77B	17.2		3	3	3	3		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
	RIO ROSARIO PRWR77C	58.3	NS 50136400	5	1	5	5		Onsite Wastewater Systems (6500) Landfills (6300) Urban Runoff/Storm Sewers (4000) Minor Industrial Point Source (0120) Minor Municipal Point Source (0220) Agriculture (1000) Confined Animal Feeding Operations (1640)	MBAS (0400) Arsenic (0510) Fecal Coliform (1700) <i>Cyanide (0720)</i> <i>Turbidity (2500)</i> <i>(Lead (0550))</i> <i>(Copper (0530))</i>

	WATERBODY NAME	WATERBODY SIZE (MILES)	MONITORING	DESI	GNATE CATE(CD USES GORIES	S AND			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN			STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO VIEJO PRWR77D	21.1		3	3	3	3		Collection System Failure (0500) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
	RIO DUEY Y RIO HOCONUCO PRWR77E	39.9		3	3	3	3		Agriculture (1000) Onsite Wastewater Systems (6500)	Arsenic (0510) Cyanide (0720) Turbidity (2500) MBAS (0400) Fecal Coliform (1700)
	RIO CAIN PRWR77F	22.4		3	3	3	3		Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500)	None Known
	RIO CUPEYES PRWR77G	8.0		3	3	3	3		Major Industrial Point Sources (0110) Collection System Failure (0500) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
	RIO CRUCES PRWR77H	13.8		3	3	3	3		Major Industrial Point Sources (0110) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
	RIO GRANDE PRWR77I	22.5		3	3	3	3		Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
CAÑO MERLE	CAÑO MERLE PRWK78A	11.1	SS 50138265	4c	4c	4c	4c	A	Collection System Failure(0500) Onsite Wastewater Systems (6500)	None Known
RIO YAGÜEZ	RIO YAGÜEZ PRWR79A	42.2	NS 50138800	5	1	5	5		Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Agriculture (1000)	Arsenic (0510) Fecal Coliform (1700) <i>Cyanide (0720)</i> (<i>MBAS (0400)</i>)

		WATERBODY SIZE (MILES)	MONITORING STATIONS NS = Network SS = Synoptic Study	DESI	GNATE CATE(ED USES GORIES	S AND			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME			R1	R2	AL	DW	NOTES	POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
QUEBRADA DEL ORO	QUEBRADA DEL ORO PRWQ80A	10.0	SS 50139660	1	1	1	4c	A	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Confined Animal Feeding Operations (1640)	None Known
CAÑO MANI	CAÑO MANI PRWK81A	3.0		3	3	3	3		Onsite Wastewater Systems (6500)	None Known
CAÑO BOQUILLA	CAÑO BOQUILLA PRWK82A	12.3	SS 50039710	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500)	None Known
RIO GRANDE DE AÑASCO	RIO GRANDE DE AÑASCO PRWR83A	126.0	NS 50146000 50144000 50143000 SS 50143800	5	5	5	5		Collection System Failure(0500) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Minor Industrial Point Source (0120) Confined Animal Feeding Operations (1640) Agriculture (1000)	Arsenic (0510) Fecal Coliform (1700) <i>Cyanide (0720)</i> <i>Turbidity (2500)</i> <i>MBAS (0400)</i> <i>Low Dissolved Oxygen (1200)</i> <i>Lead (0550)</i> <i>(Copper (0530))</i> <i>(Cadmium (0520))</i>
	RIO CAÑAS PRWR83B	54.4	SS 50146065	5	1	1	1		Onsite Wastewater Systems (6500) Agriculture (1000)	Fecal Coliform (1700)
	RIO CASEY PRWR83C	38.1	SS 50145600	5	1	5	5		Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510) Fecal Coliform (1700) <i>Cyanide</i> (0720) <i>Turbidity</i> (2500) <i>MBAS</i> (0400) <i>Low Dissolved Oxygen</i> (1200) <i>Lead</i> (0550) (Copper (0530)) (Cadmium (0520))

		WATERBODY SIZE (MILES)	MONITORING	DESI	GNATE CATE(D USES GORIES	S AND			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME		STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	RIO HUMATA PRWR83D	13.3		3	3	3	3		Agriculture (1000) Onsite Wastewater Systems (6500)	Arsenic (0510) Cyanide (0720) Turbidity (2500) MBAS (0400) Fecal Coliform (1700) Low Dissolved Oxygen (1200) Lead (0550) (Copper (0530)) (Cadmium (0520))
	RIO ARENAS PRWR83E	18.3		3	3	3	3		Minor Municipal Point Sources (0220) Agriculture (1000) Onsite Wastewater Systems (6500) Landfills (6300)	None Known
	RIO MAYAGUECILLO PRWR83F	18.0	SS 50143600	5	1	5	5		Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510) Fecal Coliform (1700)
	RIO GUABA PRWR83G	68.1	SS 50143110 50143150 50143250	1	1	5	5		Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510)
	RIO BLANCO PRWR83H	79.9		3	3	3	3		Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510) Cyanide (0720) Fecal Coliform (1700) (Copper (0530)) (Lead (0550))
	RIO PRIETO PRWR83I	59.8	SS 50142710 50142900	5	1	5	5		Confined Animal Feeding Operations (1640) Agriculture (1000) Onsite Wastewater Systems (6500) Minor Industrial Point Source (0120)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) <i>Cyanide (0720)</i> <i>(Copper (0530))</i> <i>(Lead (0550))</i>
QUEBRADA JUSTO	QUEBRADA JUSTO PRWQ84A	1.0	SS 50146130	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500)	None Known

D 4 G D 4	WATERBODY NAME	WATERBODY SIZE (MILES)	MONITORING STATIONS NS = Network SS = Synoptic Study	DESI	GNATE CATEC	D USES GORIES	AND		S SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN				R1	R2	AL	DW	NOTES		compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
QUEBRADA ICACOS	QUEBRADA ICACOS PRWQ85A	1.4	SS 50146135	4c	4c	4c	4c	A	Onsite Wastewater Systems (6500)	None Known
QUEBRADA CAGUABO	QUEBRADA CAGUABO PRWQ86A	1.0	SS 50146140	4c	4c	4c	4c	A	Onsite Wastewater Systems (6500)	None Known
CAÑO GARCIA	CAÑO GARCIA PRWK87A	2.0	SS 50146145	4c	4c	4c	4c	A	Onsite Wastewater Systems (6500)	None Known
QUEBRADA GRANDE DE CALVACHE	QUEBRADA GRANDE DE CALVACHE PRWQ88A	14.8	SS 50146150	4c	4c	5	4c	A	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
QUEBRADA LOS RAMOS	QUEBRADA LOS RAMOS PRWQ89A	6.9	SS 50146155	4c	4c	5	4c	Α	Landfills (6300) Collection System Failure(0500) Onsite Wastewater Systems (6500)	Low Dissolved Oxygen (1200)
QUEBRADA PUNTA ENSENADA	QUEBRADA PUNTA ENSENADA PRWQ90A	5.0	SS 50146160	4c	4c	4c	4c	Α	Collection System Failure(0500) Onsite Wastewater Systems (6500)	None Known
QUEBRADA PILETAS	QUEBRADA PILETAS PRWQ91A	2.0	SS 50146165	4c	4c	4c	4c	A	Onsite Wastewater Systems (6500)	None Known
RIO GRANDE	RIO GRANDE PRWR92A	21.8	SS 50146200	4c	4c	4c	4c	A	Onsite Wastewater Systems (6500)	None Known
CAÑO DE SANTI PONCE	CAÑO DE SANTI PONCE PRWK93A	4.8	SS 50146180	4c	4c	4c	4c	Α	Onsite Wastewater Systems (6500)	None Known
RIO GUAYABO	RIO GUAYABO PRWR94A	43.1	SS 50146610 50146550 50146620 50146400 50146300	5	1	5	2		Package Plant Small Flows(0230) Onsite Wastewater Systems (6500) Collection System Failure(0500) Urban Runoff/Storm Sewers (4000)	Low Dissolved Oxygen (1200) Fecal Coliform (1700)

			MONITORING	DESI	GNATE CATEG	D USES GORIES	S AND			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO CULEBRINAS	RIO CULEBRINAS PRWR95A	142.6	NS 50149100 50147600 SS 50146665 50146800 50147050 50147800 50148050	5	5	5	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Minor Municipal Point Source (0220) Major Municipal Point Source (0210) Minor Industrial Point Source (0120) Landfills (6300) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) MBAS (0400) <i>Cyanide (0720)</i> <i>Lead (0550)</i> <i>(Copper (0530))</i> <i>(Mercury (0560))</i>
	RIO CANO (RIO CANAS) PRWR95B	33.3	SS 50148500 50148700	5	5	5	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Arsenic (0510) Fecal Coliform (1700) <i>Turbidity (2500)</i> <i>Cyanide (0720)</i> <i>Lead (0550)</i> <i>MBAS (0400)</i> <i>(Copper (0530))</i> <i>(Mercury (0560))</i>
	QUEBRADA GRANDE (SECTOR CUCHILLAS) PRWQ95C	11.4	SS 50147997	5	1	5	5		Onsite Wastewater Systems (6500) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700)
	QUEBRADA LAS MARIAS PRWQ95D	9.8	SS 50147900	5	5	5	5		Onsite Wastewater Systems (6500) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700)
	QUEBRADA YAGRUMA PRWQ95E	20.6		3	3	3	3		Onsite Wastewater Systems (6500) Agriculture (1000) Confined Animal Feeding Operations (1640)	None Known

			MONITORING	DESIGNATED USES AND CATEGORIES						CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	SIZE (MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
	QUEBRADA LA SALLE PRWQ95F	11.8	SS 50147675	5	5	5	5		Onsite Wastewater Systems (6500) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700)
	QUEBRADA EL SALTO PRWQ95G	7.8	SS 50147630	5	5	5	5		Onsite Wastewater Systems (6500) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700)
	QUEBRADA GRANDE DE LA MAJAGUA PRWQ95H	5.6		3	3	3	3		Onsite Wastewater Systems (6500)	Fecal Coliform (1700) Arsenic (0510) Cyanide (0720)
	QUEBRADA SALADA PRWQ95I	7.9	SS 50147475	5	5	5	5		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700) <i>Cyanide (0720)</i>
	RIO SONADOR PRWR95J	37.7	SS 50147400 50147450	5	1	5	5		Onsite Wastewater Systems (6500) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700) <i>Cyanide (0720)</i>
	RIO GUATEMALA PRWR95K	20.3	SS 50147200	5	1	5	5		Minor Municipal Point Source (0220) Minor Industrial Point Source (0120) Landfills (6300) Confined Animal Feeding Operations (1640) Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500)	Arsenic (0510) Fecal Coliform (1700)
CAÑO CORAZONES	CAÑO CORAZONES PRWK96A	1.3		3	3	3	3		Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Collection System Failure (0500)	None Known

NOTES:

- A Watershed and subwatersheds under Category 4c are waterbodies that lack adequate flow, which impaired some of the designated uses.
- **B** Watershed that have and approved TMDL. for Río Cibuco the TMDL was approved on September 2002, the pollutant was fecal coliform
- C Watershed that have and approved TMDL for Río de la Plata the TMDL was approved on September 2003, the pollutant was fecal coliform
- D Watershed that have and approved TMDL. Río Grande de Loíza the TMDL was approved on September 2007, the pollutant was fecal coliform
- E This segment was inadvertently omitted from the 305b/303d 2006 cycle integrated report
- F 7.4 miles of this waterbody, rio arroyo cajul, was not evaluated because this watershed was always dry in this cycle
- G Watershed and subwatershed that were monitored by a synoptic study and were included in the 2006 303(d) list.
- EPA Special Study Field Sampling Report & Data Presentation, Puerto Rico Wastewater Treatment Plants and Receiving Streams (EPA and PRASA) NE Not evaluated
- NE Not evaluated
- R1 Primary Contact Recreation
- R2 Secondary Contact Recreation
- AL Aquatic Life
- DW Raw Source for Drinking Water

Estuaries

Table 10: Size of waters Impaired by Causes (Estuaries) acres

CAUSES OF IMPAIRMENTS	SIZE OF WATERS IMPAIRED (acres)
Arsenic (0510)	23.29
Fecal Coliforms (1700)	110.3
Low Dissolved Oxygen (1200)	120.83
Mercury (0560)	0
Pesticides (0200)	0
Surfactants (0400)	0
Turbidity (2500)	0

Table 11: Size of Waters Impaired by Sources (Estuaries) acres

CAUSES OF IMPAIRMENTS	SIZE OF WATERS IMPAIRED (acres)
Agriculture (1000)	218.5
Confined Animal Feeding Operations (1640)	1,488.6
Landfills (6300)	760
Major Municipal Point Source (0210)	73.7
Minor Industrial Point Source (0120)	100.6
Minor Municipal Point Source (0200)	368.5
Onsite Wastewater Systems (6500)	3,093.2
Urban Runoff/Storm Sewers (4000)	18.4
Collection System Failure (0500)	1,758
Land Development (3200)	0
Surface Mining (5100)	116.3
Major Industrial Point Sources (0110)	125.43
Minor municipal Point Sources (0220)	368.5
Highway/Road/Bridge Construction (3100)	18.4
Upstream Impoundment (7350)	256.2

BASIN	WATERBODY NAME ASSESSMENT UNIT-ID	WATERBODY SIZE (ACRES/MILES)	MONITORING STATIONS NS = Network SS = Synoptic Study	DESIG	GNATE CATEG	D USE FORIE	CS AND S	,		CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
				R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION (Parameters in parenthesis) Italics, Noncompliance in 20 but in compliance during 20 cycle)	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO GUAJATACA PRNR3A	RIO GUAJATACA PRNR3A	30.72		1	1	3	N/A		Urban Runoff/Storm Sewers (4000) Surface Mining (5100)	None Known
QUEBRADA BELLACA PRNO4A	QUEBRADA BELLACA PRNQ4A	2.68		1	1	1	N/A		None Known	None Known
RIO CAMUY PRNR5A	RIO CAMUY PRNR5A	26.88		1	1	3	N/A		Minor Industrial Point Source (0120)	None Known
RIO GRANDE DE ARECIBO PRNR7A	RIO GRANDE DE ARECIBO PRNR7A	54.20		3	1	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Agriculture (1000)	None Known
CAÑO TIBURONES PRNE7.1	CAÑO TIBURONES PRNE7.1	187.1		3	3	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Confined Animal Feeding Operations (1640)	None Known
CAÑO TIBURONES PRNE7.1	CAÑO TIBURONES PRNE7.1	38.7 mi		3	3	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300)	None Known
RIO GRANDE DE MANATÍ PRNR8A	RIO GRANDE DE MANATÍ PRNR8A	164.86		3	1	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Minor Municipal Point Sources (0220)	None Known
RIO CIBUCO PRNR9A	RIO CIBUCO PRNR9A	189.69 acres		N/A	N/A	3	N/A		Mangrove Area	None Known

Table 12: Estuaries Assessment (Except San Juan Estuary System)

		WATERBODY	MONITORING	DESIGNATED USES AND CATEGORIES						CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	ASSESSMENT UNIT-ID	SIZE (ACRES/MILES)	NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO CIBUCO PRNR9A	RIO CIBUCO PRNR9A	19.6 mi		3	3	3	3		Collection System Failure(0500) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300) Confined Animal Feeding Operations (1640) Major Municipal Point Source (0210)	None Known
RIO DE LA PLATA PRER10A	RIO DE LA PLATA PRER10A	528.38 acres		3	3	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure(0500) Confined Animal Feeding Operations (1640) Major Municipal Point Source (0210)	None Known
RIO DE LA PLATA PRER10A	RIO DE LA PLATA PRER10A	24.4mi		3	1	3	1		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Confined Animal Feeding Operations (1640)	None Known
RIO GRANDE DE LOIZA PRER14A	RIO GRANDE DE LOIZA PRER14A	116.6 acres		3	1	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Confined Animal Feeding Operations (1640) Collection System Failure (0500)	None Known
RIO GRANDE DE LOIZA PRER14A	RIO GRANDE DE LOIZA PRER14A	439.04 acres		3	3	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Confined Animal Feeding Operations (1640) Collection System Failure (0500)	None Known

	WATERBODY NAME ASSESSMENT UNIT-ID	WATERBODY	MONITORING	DESIG (NATEI CATEG	D USE ORIES	S AND S			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN		SIZE (ACRES/MILES)	NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO GRANDE DE LOIZA PRER14A	RIO GRANDE DE LOIZA PRER14A	13.2 mi		3	1	3	1		Onsite Wastewater Systems (6500) Collection System Failure (0500) Confined Animal Feeding Operations (1640) Minor Municipal Point Source (0220)	None Known
RIO HERRERA PRER15A	RIO HERRERA PREE15A	65.28		3	3	3	N/A		Landfills(6300)Onsite Wastewater Systems(6500)	Fecal Coliforms (1700)
RIO ESPIRITU SANTO PRER16A	RIO ESPIRITU SANTO PREE16A	316.8		3	3	3	N/A		Minor Municipal Point Sources (0220) Onsite Wastewater Systems (6500)	Fecal Coliforms (1700) Low Dissolved Oxygen (1200)
CAÑO RODRÍGUEZ PREE16.1	CAÑO RODRÍGUEZ PREE16.1	69.12		1	1	1	N/A		None Known	None Known
RIO MAMEYES PRER17A	RIO MAMEYES PRER17A	107.13		3	1	3	N/A		Onsite Wastewater Systems (6500) Surface Mining (5100)	None Known
RIO SABANA PRER19A	RIO SABANA PRER19A	18.43		3	1	1	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
RIO JUAN MARTÍN PRER20A	RIO JUAN MARTÍN PRER20A	1.79		1	1	1	N/A		None Known	None Known
RIO FAJARDO PRER22A	RIO FAJARDO PRER22A	43.52		3	1	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known

		WATERBODY	MONITORING	DESIG (INATE CATEG	D USE ORIE	S AND S			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME ASSESSMENT UNIT-ID	SIZE (ACRES/MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO DEMAJAGUA PRER23A	RIO DEMAJAGUA PREE23A	1.79		3	3	3	N/A		Collection System Failure (0500) Onsite Wastewater Systems (6500)	Fecal Coliforms (1700)
QUEBRADA AGUAS CLARAS PREQ25A	QUEBRADA AGUAS CLARAS PREQ25A	1.53		3	3	3	N/A		Upstream Impoundment (7350)	None Known
RIO DAGUAO PRER26A	RIO DAGUAO PRER26A	43.0		3	1	3	N/A		Upstream Impoundment (7350)	None Known
QUEBRADA PALMA PREQ27A	QUEBRADA PALMA PREQ27A	3.2		3	1	3	N/A		Upstream Impoundment (7350)	None Known
QUEBRADA BOTIJAS PREQ28A	QUEBRADA BOTIJAS PREQ28A	12.28		3	1	1	N/A		Upstream Impoundment (7350)	None Known
RIO SANTIAGO PRER29A	RIO SANTIAGO PRER29A	16.12		3	1	1	N/A		Onsite Wastewater Systems (6500)	None Known
RIO BLANCO PRER30A	RIO BLANCO PRER30A	32.76		1	1	1	N/A		None Known	None Known
RIO ANTON RUIZ PREE31A	RIO ANTON RUIZ PREE31A	82.94		3	1	1	N/A		Upstream Impoundment (7350)	None Known
RIO HUMACAO PRER33A	RIO HUMACAO PREE33A	79.36		3	3	3	N/A		Landfills (6300) Onsite Wastewater Systems (6500)	Fecal Coliforms (1700)
RIO CANDELERO PRER34A	RIO CANDELERO PREE34A	49.92		3	3	3	N/A		Onsite Wastewater Systems (6500)	Fecal Coliforms (1700) Low Dissolved Oxygen (1200)
RIO GUAYANES PRER35A	RIO GUAYANES PREE35A	23.29	NS 50083500	5	5	5	N/A		Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510) Fecal Coliform (1700) <i>Cyanide (0720)</i> <i>Low Dissolved Oxygen (1200)</i>
CAÑO SANTIAGO PREK35.1	CAÑO SANTIAGO PREE35.1	73.72		3	3	3	N/A		Major Industrial Point Sources (0110) Onsite Wastewater Systems (6500) Agriculture (1000)	Fecal Coliforms (1700) Low Dissolved Oxygen (1200)
		WATERBODY	MONITORING	DESIC	GNATEI CATEG	D USE ORIE:	S AND S			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
--------------------------------------	--------------------------------------	---------------	---	-------	-----------------	----------------	------------	-------	--	--
BASIN	WATERBODY NAME ASSESSMENT UNIT-ID	(ACRES/MILES)	STATIONS NS = Network SS = Synoptic Study	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
CAÑO SANTIAGO PREK35.1	CAÑO SANTIAGO PREE35.1	11.9 miles	SS 50087000	5	1	1	N/A		Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Major Municipal Point Sources (0210) Minor Industrial Point Sources (0120) Landfills (6300)	Fecal Coliforms (1700)
RIO CHICO PRSR42A	RIO CHICO PRSR42A	5.12		3	3	3	N/A		Onsite Wastewater Systems (6500)	None Known
RIO GRANDE DE PATILLAS PRSR43A	RIO GRANDE DE PATILLAS PRSR43A	8.70		3	3	3	N/A		Urban Runoff/Storm Sewers (4000) Upstream Impoundment (7350)	None Known
QUEBRADA SALADA PRSQ46A	QUEBRADA SALADA PRSE46A	3.84	SS 50094515	4c	4c	4c	N/A	Α	Onsite Wastewater Systems (6500) Surface Mining (5100)	None Known
QUEBRADA CORAZON PRSQ47A	QUEBRADA CORAZON PRSE47A	3.45	SS 50094523	4c	4c	4c	N/A	A	Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	None Known
QUEBRADA BRANDERI PRSQ48A	QUEBRADA BRANDERI PRSQ48A	7.68		3	3	3	N/A		Onsite Wastewater Systems (6500)	None Known
QUEBRADA MELANIA PRSQ50A	QUEBRADA MELANIA PRSQ50A	7.68		3	3	1	N/A		Onsite Wastewater Systems (6500)	None Known
RIO SECO PRSR51A	RIO SECO PRSR51A	2.30		3	3	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known

		WATEPBODV	MONITORING	DESIG (INATE CATEG	D USE ORIES	S AND S			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME ASSESSMENT UNIT-ID	BODY NAME IENT UNIT-ID IENT UNI		SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)					
QUEBRADA AMOROS PRSQ52A	QUEBRADA AMOROS PRSQ52A	2.68		3	3	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
QUEBRADA AGUAS VERDES PRSQ53A	QUEBRADA AGUAS VERDES PRSQ53A	2.30		3	3	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Upstream Impoundment (7350)	None Known
RIO NIGUAS DE SALINAS PRSR54A	RIO NIGUAS DE SALINAS PRSR54A	7.04		3	3	3	N/A		Onsite Wastewater Systems (6500) Upstream Impoundment (7350)	None Known
RIO COAMO PRSR57A	RIO COAMO PRSR57A	7.29		3	3	3	N/A		Onsite Wastewater Systems (6500) Upstream Impoundment (7350) Agriculture (1000)	None Known
RIO DESCALABRADO PRSR58A	RIO DESCALABRADO PRSR58A	3.07		3	3	3	N/A		Onsite Wastewater Systems (6500) Agriculture (1000)	None Known
RIO INABON PRSR61A	RIO INABON PRSR61A	2.30		3	3	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
RIO JACAGUAS PRSR60A	RIO JACAGUAS PRSE60A	7.04	SS 50112100	4c	4c	4c	N/A	A	Onsite Wastewater Systems (6500) Agriculture (1000)	None Known
RIO MATILDE- PASTILLO PRSR64A	RIO MATILDE- PASTILLO PRSE64A	27.64	SS 50119000	4c	4c	4c	N/A	A	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
RIO TALLABOA PRSR65A	RIO TALLABOA PRSE65A	21.5	SS 50122050	1	1	1	N/A		None Known	None Known
RIO MACANA PRSR66A	RIO MACANA PRSR66A	2.30		3	3	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
RIO YAUCO PRSR68A	RIO YAUCO PRSR68A	1.92		3	3	3	N/A		Onsite Wastewater Systems (6500) Upstream Impoundment (7350)	None Known

		WATEDBODY	MONITORING	DESIG (SNATEI CATEG	D USE ORIES	S AND S			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME ASSESSMENT UNIT-ID	SIZE (ACRES/MILES)	S) STATIONS NS = Network SS = Synoptic Study		R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO LOCO PRSR69A	RIO LOCO PRSR69A	5.37		3	3	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Surface Mining (5100)	None Known
QUEBRADA BOQUERON PRWQ71A	QUEBRADA BOQUERON PRWQ71A	6.14		3	3	3	N/A		Onsite Wastewater Systems (6500)	None Known
QUEBRADA ZUMBON PRWQ72A	QUEBRADA ZUMBON PRWQ72A	1.92		3	3	3	N/A		Onsite Wastewater Systems (6500)	None Known
QUEBRADA GONZALEZ PRWQ73A	QUEBRADA GONZALEZ PRWQ73A	5.12		3	3	3	N/A		Onsite Wastewater Systems (6500)	None Known
QUEBRADA LOS PAJARITOS PRWQ74A	QUEBRADA LOS PAJARITOS PRWQ74A	1.92		3	3	3	N/A		Onsite Wastewater Systems (6500)	None Known
RIO GUANAJIBO PRWR77A	RIO GUANAJIBO PRWR77A	36.86		3	3	3	N/A		Onsite Wastewater Systems (6500)	None Known
CAÑO MERLE PRWK78A	CAÑO MERLE PRWE78A	101.12	SS 50138265	4c	4c	4c	N/A	A	Collection System Failure(0500) Onsite Wastewater Systems (6500)	None Known
RIO YAGÜEZ PRWR79A	RIO YAGÜEZ PRWR79A	12.28		3	3	3	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure (0500) Minor Industrial Point Sources (0120)	None Known
CAÑO BOQUILLA PRWK82A	CAÑO BOQUILLA PRWE82A	39.68	SS 50039710	4c	4c	4c	N/A	A	Onsite Wastewater Systems (6500)	None Known
QUEBRADA GRANDE CALVACHE PRWQ88A	QUEBRADA GRANDE CALVACHE PRWE88A	1.28	SS 50146150	4c	4c	5	N/A	A	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
QUEBRADA LOS RAMOS PRWQ89A	QUEBRADA LOS RAMOS PRWQ89A	0.38		3	3	3	N/A		Collection System Failure (0500) Onsite Wastewater Systems (6500)	None Known

WATERRODYNA		WATERBODY	MONITORING	DESIC	GNATE CATEG	D USE ORIE	S AND S			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME ASSESSMENT UNIT-ID	SIZE (ACRES/MILES)	ES) STATIONS NS = Network SS = Synoptic Study		R2	AL	DW	NOTES	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO GRANDE PRWR92A	RIO GRANDE PRWR92A	1.79		3	3	3	N/A		Onsite Wastewater Systems (6500)	None Known
CAÑO DE SANTI PONCE PRWK93A	CAÑO DE SANTI PONCE PRWK93A	2.04		3	3	3	N/A		Onsite Wastewater Systems (6500)	None Known
RIO GUAYABO PRWR94A	RIO GUAYABO PRWE94A	18.43	SS 50146630	5	1	5	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Confined Animal Feeding Operations (1640) Land Development (3200)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO CULEBRINAS PRWR95A	RIO CULEBRINAS PRWR95A	86.01		3	3	3	N/A		Onsite Wastewater Systems (6500) Upstream Impoundment (7350)	None Known

NOTES:

A - Watershed and subwatersheds under category 4c are waterbodies that lack adequate flow, which impaired some of the designated uses.

R1 - Primary Contact Recreation
 R2 - Secondary Contact Recreation
 AL - Aquatic Life

DW - Raw Source for Drinking Water

	WATERBODY	WATERBODY	MONITORING	DES ANI	IGNA D CA'	ATED TEG(USES DRIES			CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in
BASIN	ASSESSMENT UNIT-ID	SIZE (ACRES/MILES)	STATIONS NS = Network	R1	R2	AL	DW	NOTES	SOURCES OF POLLUTIO	2006 but in compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
SISTEMA ESTUARINO	PREE13A1 Caño Control de La Malaria Bahía de San Juan Caño San Antonio Laguna Del Condado	8.0 mi 5.5 mi 3.4 mi 0.6 mi 0.6 mi 0.5 mi	NS 50049920 070 071 072	5	1	2	N/A		Onsite Wastewater System (6500) Urban Runoff/Storm Sewers (4000) Major Industrial Point Sources (0110) Major Municipal Point Sources (0210) Minor Industrial Point Sources (0120) Marinas and Recreational Boating (7900)	Fecal Coliform (1700) Low Dissolved Oxygen (1200) Arsenic (0510) Copper (0530) Cyanide (0720) Mercury (0560) Selenium (0570) pH (1000) MBAS (0400) Thermal Modifications (1400) Lead (0550) Ammonia (0600)
SISTEMA ESTUARINO	PREE13A2 Río Piedras Lago Las Curías	64.6 acres 55.9 mi	NS 89027 89028 50049100 50048800	5	5	5	5		Onsite Wastewater System (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300) Major Industrial Point Sources (0110) Collection System Failure (0500) Confined Animal Feeding Operations (1640)	Arsenic (0510) Copper (0530) Lead (0550) Fecal Coliform (1700) Low Dissolved Oxygen (1200) Ammonia (0600) MBAS (0400) Turbidity (2500) <i>Cyanide (0720)</i>
SISTEMA ESTUARINO	PREE13A3 Caño Martín Peña Quebrada Juan Méndez Quebrada San Antón Quebrada Blasina Canal Machicote Canal Suárez Laguna San José Laguna Torrecillas Laguna de Piñones	403.2acres 47.9 mi 1,129acres 608.0 acres 249.0 acres	NS 50050300 50049820	5	5	5	N/A		Onsite Wastewater System (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure (0500) Confined Animal Feeding Operations (1640) Major Industrial Point Sources (0110) Upstream Impoundment (7350)	Fecal Coliform (1700) Arsenic (0510) Low Dissolved Oxygen (1200) MBAS (0400) pH (1000) Cyanide (0720) Copper (0530) Mercury (0560) Ammonia (0600) Turbidity (2500) Lead (0550) Cadmium (0520) (Phosphorus (0910))

Table 13: San Juan Bay Estuary System Assessment

NOTES:

R1 - Primary Contact Recreation AL - Aquatic Life **R2** - Secondary Contact Recreation **DW** - Raw Source for Drinking Water

Lagoons

Table 14: Size of waters Impaired by Causes (Lagoons) acres

CAUSES OF IMPAIRMENTS	SIZE OF WATERS IMPAIRED
Arsenic (0510)	554
Fecal Coliforms (1700)	0
Low Dissolved Oxygen (1200)	216
Mercury (0560)	0
Pesticides (0200)	0
Surfactants (0400)	0
Turbidity (2500)	0
pH (1000)	216

Table 15: Size of Waters Impaired by Sources (Lagoons)

CAUSES OF IMPAIRMENTS	SIZE OF WATERS IMPAIRED
Agriculture (1000)	0
Confined Animal Feeding Operations (1640)	300
Landfills (6300)	0
Major Municipal Point Source (0210)	0
Minor Industrial Point Source (0120)	0
Minor Municipal Point Source (0200)	0
Onsite Wastewater Systems (6500)	1,661
Urban Runoff/Storm Sewers (4000)	1,352

Table	16:	Lagoons	Assessment
--------------	-----	---------	------------

					DESIC AND	GNATEI CATEG	O USES ORIES			CAUSES OF IMPAIRMENT Parameter in italics,
MUNICIPALITY	WATERBODY NAME	ASSESSMENT UNIT (AU-ID)	MONITORING STATIONS NS = Network	WB SIZE (ACRES)	R1	R2	AL	NOTES	SOURCES OF POLLUTION	Noncompliance in 2006 but in compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
MAYAGÜEZ	Laguna Joyudas	PRWN0005		339	3	3	3		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
VEGA BAJA MANATÍ	Laguna Tortuguero	PRNN0006	NS 50038200	554	1	1	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Arsenic (0510) <i>Cyanide (0720)</i>
DORADO	Laguna San José	PREN0008		1,129				A	None Known	None Known
DORADO	Laguna Mata Redonda	PRNN0007		15	3	3	3		None Known	None Known
CAROLINA	Laguna Torrecilla	PREN0009		608				A	None Known	None Known
LOIZA	Laguna de Piñones	PREN0010		249				A	None Known	None Known
FAJARDO	Laguna Aguas Prietas	PREN0011		128	1	1	1		None Known	None Known
FAJARDO	Laguna Grande	PREN0012	SPECIAL STUDY	216	1	1	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Marinas and Recreational Boating (7900)	Low Dissolved Oxygen (1200) pH (1000)
CEIBA	Laguna Ceiba	PREN0013		120	1	1	1		None Known	None Known
GUAYAMA	Laguna Pozuelo	PRSN0014		35	3	3	3		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known

					DESI AND	DESIGNATED USES AND CATEGORIES				CAUSES OF IMPAIRMENT Parameter in italics,
MUNICIPALITY	WATERBODY NAME	ASSESSMENT UNIT (AU-ID)	MONITORING STATIONS NS = Network	WB SIZE (ACRES)	R1	R2	AL	NOTES	SOURCES OF POLLUTION	Noncompliance in 2006 but in compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
SALINAS	Laguna Mar Negro	PRSN0015		208	3	3	3		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	None Known
SALINAS	Laguna Punta Arenas	PRSN0016		18	1	1	1		None Known	None Known
SALINAS	Laguna Tiburones	PRSN0017		14	3	3	3		Landfills (6300)	None Known
PONCE	Laguna Salinas	PRSN0018		77	3	3	3		Highway/Road/Bridge Construction (3100) Inappropriate Waste Disposal (6350)	None Known
CABO ROJO	Laguna Salinas I	PRSN0019		294	3	3	3		Onsite Wastewater Systems (6500)	None Known
CABO ROJO	Laguna Cabo Rojo 2	PRSN0020		190	1	1	1		None Known	None Known
CABO ROJO	Laguna Cabo Rojo 3 (El Faro)	PRSN0021		69	1	1	1		None Known	None Known
RINCÓN – CABO ROJO	Caño Boquerón	PRSN0022		183	3	3	3		None Known	None Known
CABO ROJO	Laguna Guaniquilla	PRSN0023		22	1	1	1		None Known	None Known

					DESI AND	GNATEI CATEGO) USES ORIES			CAUSES OF IMPAIRMENT Parameter in italics,
MUNICIPALITY	WATERBODY NAME	ASSESSMENT UNIT (AU-ID)	MONITORING STATIONS NS = Network	WB SIZE (ACRES)	R1	R2	AL	NOTES	SOURCES OF POLLUTION	Noncompliance in 2006 but in compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
LAJAS	Laguna Cartagena	PRSN0024		300			3		Cofined Animal Feeding Operations 1640)	None Known

NOTES:

R1 - Primary Contact Recreation **R2** - Secondary Contact Recreation

AL - Aquatic Life
 SPECIAL STUDY - Baseline Water-Quality Conditions for Laguna Grande, Fajardo, Puerto Rico, December 2005 - September 2006, USGS.
 A – Was evaluated as part of the San Juan Bay Estuary System

Lakes

Table 17: Size of waters Impaired by Causes (Lakes) acres

CAUSES OF IMPAIRMENTS	SIZE OF WATERS IMPAIRED (acres)
Low Dissolved Oxygen (1200)	6,716.0
Pesticides (0200)	2,133.0
Fecal Coliforms (1700)	1,825.0
Arsenic (0510)	1,713.0
Mercury (0560)	1,000.0
Turbidity (2500)	713.0
Surfactants (0400)	0

Table 18: Size of Waters Impaired by Sources (Lakes) acres

CAUSES OF IMPAIRMENTS	SIZE OF WATERS IMPAIRED (acres)
Onsite Wastewater Systems (6500)	6,016.0
Agriculture (1000)	2,767.0
Confined Animal Feeding Operations	2,252.0
(1640)	
Urban Runoff/Storm Sewers (4000)	1,413.0
Collection System failure (0500)	1,086.0
Minor Industrial Point Source (0120)	919.0
Landfills (6300)	560.0
Package Plants (Small Flows) (0230)	560.0
Major Industrial Point Source (0110)	285.0
Major Municipal Point Source (0210)	0
Minor Municipal Point Source (0200)	0

Table ⁻	19:	Lakes	Assessment
--------------------	-----	-------	------------

		WD CUZE	MONITORING	DE AN	SIGN ND CA	ATED TEGO	USES RIES		SOUDCES OF	CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	(ACRES/MILES)	STATION NS = Network	R1	R2	AL	DW	Notes	POLLUTION	(Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO GUAJATACA	LAGO GUAJATACA PRNL3A1	1000 ac. 2.6 mi	NS 50010720 50010790 50011000	1	1	5	5		Onsite Wastewater Systems (6500)	Arsenic (0510) Low Dissolved Oxygen (1200) Mercury (0560)
RIO GRANDE DE ARECIBO	LAGO DOS BOCAS PRNL ₁ 7A1	634 ac. 6.9 mi	NS 50025110 50027090	1	1	5	1		Confined Animal Feeding Operations (1640) Minor Industrial Point Sources (0120) Onsite Wastewater Systems (6500) Agriculture (1000)	Low Dissolved Oxygen (1200) Fecal Coliform (1700) Arsenic (0510) Cyanide (0720) Copper (0530) Surfactants (0400)
RIO GRANDE DE ARECIBO	LAGO CAONILLAS PRNL ₂ 7C1	700 ac. 11.8 mi	NS 89001 89002 89003	1	1	5	1		Onsite Wastewater Systems (6500) Agriculture (1000)	Pesticides (0200) Low Dissolved Oxygen (1200)
RIO GRANDE DE ARECIBO	LAGO GARZAS PRNL ₃ 7A3	108 ac. 2.7 mi	NS 50020050	1	1	5	1		Agriculture (1000)	Pesticides (0200) <i>Low Dissolved Oxygen (1200)</i>
RIO GRANDE DE MANATÍ	LAGO GUINEO PRNL ₁ 8C1	54 ac. 1.7 mi	NS 89007 89008	1	1	5	1		Agriculture (1000)	Pesticides (0200) Low Dissolved Oxygen (1200)
RIO GRANDE DE MANATÍ	LAGO MATRULLAS PRNL ₂ 8C1	77 ac. 3.0 mi	NS 89009 89010	5	1	1	1		Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) (<i>Low Dissolved Oxygen (1200)</i> <i>pH (1000)</i>
RIO DE LA PLATA	LAGO DE LA PLATA PREL ₁ 10A1	560 ac. 15.0 mi	NS 50044400 50044950	1	1	5	1		Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Package Plants Small Flows (0230) Landfills (6300)	Low Dissolved Oxygen (1200) pH (1000) Phosphorus (0910) Arsenic (0510) Cyanide (0720)
RIO DE LA PLATA	LAGO CARITE PREL ₂ 10A5	333 ac. 11.3 mi	NS 50039900 50039950	1	1	1	1		None	Low Dissolved Oxygen (1200)

	WB SIZE MONITORING DESIGNATED US AND CATEGORII		USES RIES		SOURCES OF	CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in				
BASIN	WATERBODY NAME	WB SIZE (ACRES/MILES)	STATION NS = Network	R1	R2	AL	DW	Notes	SOURCES OF POLLUTION	<i>compliance during 2008 cycle</i> (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO BAYAMON	LAGO CIDRA PREL12A2	268 ac. 8.3 mi	NS 89029 89030 89031	1	1	5	1		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Low Dissolved Oxygen (1200)
RIO GRANDE DE LOIZA	LAGO LOIZA PREL14A1	713 ac. 7.2 mi	NS 50057500 50058800 50059000	5	1	5	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure(0500) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700) Low Dissolved Oxygen (1200) Turbidity (2500) <i>Phosphorus (0910)</i>
RIO GRANDE DE PATILLAS	LAGO PATILLAS PRSL43A1	312ac.	NS 89022 89023 89024 89025	1	1	5	1		Onsite Wastewater Systems (6500) Agriculture (1000)	Pesticides (0200) Low Dissolved Oxygen (1200)
QUEBRADA MELANIA	LAGO MELANIA PRSL50A	35ac.	NS 89026	1	1	5	1		Agriculture (1000)	Pesticides (0200) (<i>Low Dissolved Oxygen (1200))</i>
RIO JACAGUAS	LAGO GUAYABAL PRSL160A	373 ac. 5.9 mi	NS 89011 89012 89013	1	1	5	1		Onsite Wastewater Systems (6500) Collection System Failure(0500) Agriculture (1000)	Pesticides (0200) Low Dissolved Oxygen (1200)
RIO JACAGUAS	LAGO TOA VACA PRSL ₂ 60A	836 ac. 31.5 mi	NS 89014 89015 89016	1	1	5	1		Onsite Wastewater Systems (6500)	Low Dissolved Oxygen (1200)
RIO BUCANA- CERRILLOS	LAGO CERRILLOS PRSL62A	700ac.	89032 89033 89034	5	1	5	1		Urban Runoff/Storm Sewers (4000)	Low Dissolved Oxygen (1200) Fecal Coliform (1700)
RIO YAUCO	LAGO LUCHETTI PRSL68A1	266 ac. 14.0 mi	NS 89017 89018 89019	5	1	5	1		Onsite Wastewater Systems (6500) Agriculture (1000)	Pesticides (0200) Low Dissolved Oxygen (1200) Fecal Coliform (1700)

			MONITORING	DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES				CAUSES OF IMPAIRMENT Parameter in italics, Noncompliance in 2006 but in
BASIN	WATERBODY NAME	WB SIZE (ACRES/MILES)	STATION NS = Network	R1	R2	AL	DW	Notes	SOURCES OF POLLUTION	compliance during 2008 cycle (Parameters in parenthesis and Italics, Noncompliance in 2004, but in compliance during 2006 cycle)
RIO LOCO	LAGO LOCO PRSL69A	69 ac. 1.5 mi	NS 89020 89021	5	1	5	1		Onsite Wastewater Systems (6500)	Low Dissolved Oxygen (1200) Fecal Coliform (1700)
RIO GRANDE DE AÑASCO	LAGO GUAYO PRWL83H	285 ac. 12.7 mi	NS 89004 89005 89006	1	1	5	1		Onsite Wastewater Systems (6500) Agriculture (1000) Minor Industrial Point Sources (0120) Major Industrial Point Sources (0110)	Pesticides (0200) Low Dissolved Oxygen (1200) <i>pH (1000)</i>

NOTES:

R1 - Primary Contact Recreation
 R2 - Secondary Contact Recreation
 AL - Aquatic Life
 DW - Raw Source for Drinking Water

CWA Section 314 (Clean Lakes Program)

Table 20: Trophic Status of Significant Lakes/Reservoirs

DESCRIPTION	NUMBER OF LAKES/RESERVOIRS	ACRES OF LAKES/RESERVOIRS
Total in State	19	7,323
Assessed	19	7,323
Oligotrophic	0	0
Mesotrophic	12	4,954
Eutrophic	6	2,369

Table 21: OPSI/CEPIS * Criteria For The Determination Of The Trophic Status

TROPHIC STATUS	P CONCENTRATION (mg/L)
Oligotrophic	< 0.03
Mesotrophic	0.03 - 0.05
Eutrophic	> 0.05

* **OPSI/CEPIS** =" Oficina Panamericana de la Salud e Ingeniería / Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente".

	TROP	TRENDS		
LAILE	OCT .99- SEPT.01	OCT.01-SEPT.03	OCT.03-SEPT-05 ³	mendo
Las Curias	(.22) E	(.16) E	(<. 05) M	IMPROVED
Cidra	(.33) E	(.09) E	(<. 05) M	IMPROVED
Patillas	(.21) E	(.05) M	(<. 05) M	STABLE
Melanía	(.63) E	(.24) M	(<. 05) M ³	IMPROVED
Guayabal	(.18) E	(.42) E	(<. 05) M	IMPROVED
Luchetty	(.16) E	(.21) E	(.05) M	IMPROVED
Loco	(.16) E	(.60) E	(.12) E	STABLE
Caonillas	(.31) E	(.23) E	(.05) M	IMPROVED
Guayo	(.29) E	(.24) E	(.07) E	STABLE
Matrullas	(.22) E	(.25) E	(.05) M	IMPROVED
Toa Vaca	(.14) E	(.19) E	(<. 05) M	IMPROVED
Cerrillos	(.19) E	0 0	(.05) M	DEGRADED
Guineo	-	-	(<. 05) M	-
Guajataca	(.30) M	(.01) O	(<. 05) M	DEGRADED
Dos	(.30) M	(.08) E	(.30) E	STABLE
Bocas				
Carite	(<. 20) O	(.030) M	(<. 05) M	STABLE
Garzas	(<. 20) O	(<. 2) O	(1.14) E ³	DEGRADED
Loíza	(.38) E	(.09) E	(3.09) E ³	STABLE
La Plata	(.70) E	(.01) O	(1.03) E	DEGRADED

Table 22: Puerto Rico Lakes Trophic Status

(1) LAKES TROPHIC STATUS:

<u>Oligotrophic (O)-</u> Low levels of nutrients in lakes, poor primary production and sunlight. <u>Mesotrophic (M)-</u> Moderate levels of nutrients in lakes, primary production and moderate penetration of sunlight. <u>Eutrophic (E)</u>- High levels of nutrients, high primary production, dense aquatic plants growth, low sunlight penetration. (2) Phosphorous value corresponds at the average data during two year period and do not represent a violation to the PR quality Standard Regulation which is 1 mg/L.

For these lakes one (1) data result were consider. (3)

TABLE 23: Trend Analyses For Selected Parameters In Puerto Rico Lakes

LAKES	LAKE SIZE (Acres)	DO mg/l	P (TOTAL) mg/l	FECAL COLIFORMS col/100mL
Caonillas	700	Degraded	Improved	Improved
Guayo	285	Stable	Stable	Improved
Matrullas	77	Degraded	Improved	Improved
Guayabal	373	Improved	Improved	Improved
Toa Vaca	836	Degraded	Improved	Improved
Luchetti	266	Stable	Improved	Improved
Loco	69	Degraded	Stable	Improved
Patillas	312	Degraded	Stable	Improved
Curias	55	Improved	Improved	Improved
Cidra	268	Stable	Improved	Improved
Cerrillos	700	Degraded	Improved	Stable
Loíza	713	Degraded	Stable	Degraded
Guajataca	1000	Degraded	Improved	Degraded
Dos Bocas	634	Degraded	Stable	Degraded
Carite	333	Stable	Stable	Degraded
La Plata	560	Degraded	Degraded	Degraded
Garzas	108	Degraded	Degraded	Degraded
Melania	35	Improved	Improved	Improved

Parameter	Improved (Acres)	Degraded (Acres)	Stable (Acres)
DO	463	5709	1152
Phosphorous	4310	668	2346
Fecal Coliforms	3276	3348	700

TABLE 24: Trends In Significant Public Lakes Category

Note: These trends analyses were based on OPSI/CEPIS criteria, not on the PRWQSR criteria.

Coastal Shoreline

Table 25: Coastal Shoreline - Water Quality Assessment Summary Puerto Rico 2008 - 305(B)/303(D) Report

CATEGORY	UNMONITORED (MILES)**	MONITORED (MILES)*	TOTAL MILES	
Category 1	105.0		105.0	
Category 2		207.8	207.8	
Category 3	216.7		216.7	
Category 4b				
Category 5		20.4	20.4	
Total	321.7	228.2	549.9	

* - The attainment determination was based on water quality data.
 ** - The attainment was based on best professional judgment, partial ambient monitoring data and other water quality data.

Table 26: Coastal Shoreline Water Quality Assessment Summary For Monitored Waters Puerto Rico 2008 - 305(B)/303(D)Report (North Coast)

ASSESSMENT		SEGMENT	CATEGORY (Miles)					
UNIT	SEGMENT NAME	SIZE (Miles)	1	2	3	4 b	5	
PRNS0001b_00	BAHIA DE AGUADILLA	3.0		3.0				
PRNS0001c_00	BORINQUEN EN AGUADILLA	2.9		2.9				
PRNS0001d_01	PUNTA BORINQUEN, BASE RAMEY	2.3		2.3				
PRNS0001d_03	PUNTA JACINTO, ISABELA	1.9		1.9				
PRNS0001d_04	PUNTA JACINTO, ISABELA	2.3		2.3				
PRNS0001e_00	BAJURA, ISABELA	3.0		3.0				
PRNS0001g_00	RIO GUAJATACA	3.0		3.0				
PRNS0001h_02	PEÑON BRUSI	1.8					1.8	
PRNS0001i_00	PUNTA MANGLILLO, HATILLO	3.0		3.0				
PRNS0001j_00	PUNTA MARACAYO	1.4		1.4				
PRNS0001m_00	PUNTA CARACOLES, ARECIBO	1.9		1.9				
PRNS0001n_02	LAS CRIOLLAS, BARCELONETA	2.7		2.7				
PRNS0001n_03	PALMAS ALTAS, BARCELONETA	1.5		1.5				
PRNS0001o_00	RIO GRANDE DE MANATI TO PTA. MANATI	3.0		3.0				
PRNS0001p_02	PUNTA MAR CHIQUITA, MANATI	3.0		3.0				
PRNS0001q_00	PUERTO NUEVO, VEGA BAJA	3.0		3.0				
PRNS0001s_00	CERRO GORDO, VEGA ALTA	1.9		1.9				
	Total	41.6		39.8			1.8	

Table 27: Coastal Shoreline Assessment Summary For Monitored Waters With Sources And Causes Puerto Rico 2008 - 305(B)/303(D) Report (North Coast)

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES OF POLLUTION	CAUSES OF POLLUTION
PRNS0001b_00	BAHIA DE AGUADILLA	3.0	2		
PRNS0001c_00	BORINQUEN,AGUADILLA	2.9	2		
PRNS0001d_01	PUNTA BORINQUEN, BASE RAMEY	2.3	2		
PRNS0001d_03	PUNTA JACINTO, ISABELA	1.9	2		
PRNS0001d_04	PUNTA JACINTO, ISABELA	2.3	2		
PRNS0001e_00	BAJURA, ISABELA	3.0	2	Major Municipal Point Sources (0210)	
PRNS0001g_00	RIO GUAJATACA	3.0	2		
PRNS0001h_02	PEÑON BRUSI	1.8	5	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Enterococcus
PRNS0001i_00	PUNTA MANGLILLO, HATILLO	3.0	2		
PRNS0001j_00	PUNTA MARACAYO	1.4	2		
PRNS0001m_00	PUNTA CARACOLES, ARECIBO	1.9	2		
PRNS0001n_02	LAS CRIOLLAS, BARCELONETA	2.7	2		
PRNS0001n_03	PALMAS ALTAS, BARCELONETA	1.5	2		
PRNS0001o_00	RIO GRANDE DE MANATI	3.0	2		
PRNS0001p_02	PUNTA MAR CHIQUITA, MANATI	3.0	2		
PRNS0001q_00	PUERTO NUEVO, VEGA BAJA	3.0	2		
PRNS0001s_00	CERRO GORDO, VEGA ALTA	1.9	2		

Table 28: Coastal Shoreline Water Quality Assessment Summary For Unmonitored Waters Puerto Rico 2008 – 305(B)/303(D) Report(North Coast)

ASSESSMENT		SEGMENT		CATE	GORY (Miles)	
UNIT	SEGMENT NAME	SIZE (Miles)	1	2	3	4	5
PRNS0001a_00	RIO CULEBRINAS, AGUADA	0.9			0.9		
PRNS0001d_02	PUNTA BORINQUEN	3.4	3.4				
PRNS0001f_00	PUNTA SARDINA	1.9	1.9				
PRNS0001h_01	MOUTH OF QUEBRADA BELLACA	4.1			4.1		
PRNS0001k_00	QUEBRADA SECA	4.4			4.4		
PRNS0001I_00	MOUTH OF RIO GRANDE DE ARECIBO	3.0			3.0		
PRNS0001n_01	PUNTA CARACOLES TO ISLOTE ARECIBO	5.1			5.1		
PRNS0001p_01	PUNTA BOQUILLA, MANATI	1.6	1.6				
PRNS0001p_03	PUERTO DE TORTUGUERO	3.4	3.4				
PRNS0001r_00	RIO CIBUCO	2.3	2.3				
	Total	30.1	12.6		17.5		

Table 29: Coastal Shoreline Assessment Summary For Unmonitored Waters With Sources Puerto Rico 2008 - 305(B)/303(D) Report (North Coast)

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES OF POLLUTION
PRNS0001a_00	RIO CULEBRINAS, AGUADA	0.9	3	Major Municipal Point Sources (0210) Urban Runoff/Storm Sewers (4000)
PRNS0001d_02	PUNTA BORINQUEN	3.4	1	
PRNS0001f_00	PUNTA SARDINA	1.9	1	
PRNS0001h_01	QUEBRADA BELLACA AT MOUTH	4.1	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Major Municipal Point Sources (0210)
PRNS0001k_00	QUEBRADA SECA	4.4	3	Collection System Failure (0500) Urban Runoff/Storm Sewers (4000)
PRNS0001L_00	RIO GRANDE DE ARECIBO AT MOUTH	3.0	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)
PRNS0001n_01	PUNTA CARACOLES TO ISLOTE ARECIBO	5.1	3	Onsite Wastewater Systems (6500)
PRNS0001p_01	PUNTA BOQUILLA, MANATI	1.6	1	
PRNS0001p_03	PUERTO DE TORTUGUERO	3.4	1	
PRNS0001r_00	RIO CIBUCO	2.3	1	

Table 30: Coastal Shoreline Water Quality Assessment Summary For Monitored Waters Puerto Rico 2008 - 305(B)/303(D) Report(East Coast)

ASSESSMENT		SEGMENT		CAT	EGORY ((Miles)	es) 4b 5 			
UNIT	SEGMENT NAME	SIZE (Miles)	1	2	3	4b	5			
PRES0002a_01	PLAYA LOS TOCONES	2.8		2.8						
PRES0002a_02	PLAYA DE SARDINERA, DORADO	1.9		1.9						
PRES0002b_00	RIO LA PLATA AT MOUTH	3.0		3.0						
PRES0002d_00	PTA. COROZO A PTA. SALINAS	2.0		2.0						
PRES0002e_00	PUNTA SALINAS, LEVITTOWN	0.2		0.2						
PRES0002f_00	ENSENADA DE BOCA VIEJA, LEVITTOWN	3.0		3.0						
PRES0002g_02	CAÑO SAN ANTONIO TO BAHIA DE SAN JUAN	5.5		5.5						
PRES0002h_00	LAGUNA DEL CONDADO	0.6		0.6						
PRES0002i_00	LAGUNA DEL CONDADO	0.5		0.5						
PRES0002j_00	LAGUNA DEL CONDADO	0.6					0.6			
PRES0002m_01	PARQUE SIXTO ESCOBAR	0.5		0.5						
PRES0002m_02	EL ESCAMBRON	0.5		0.5						
PRES0002m_03	FUERTE SAN GERONIMO	0.9		0.9						
PRES0002n_00	AVE. ASHFORD	1.2		1.2						
PRES0002o_00	EL CONDADO	0.3		0.3						
PRES0002p_00	PUNTA PIEDRITA TO ASHFORD HOSPITAL	0.4		0.4						
PRES0002q_00	AVE DE DIEGO FINAL SAN JUAN	0.6		0.6						
PRES0002r_00	PARQUE OCEAN PARK	1.8		1.8						
PRES0002s_00	CEM. PR MEMORIAL A ISLA VERDE	1.3		1.3						
PRES0002t_00	BALNEARIO DE ISLA VERDE	2.2		2.2						
PRES0002u_01	PTA. CANGREJOS TO PIÑONES	2.5		2.5						
PRES0002u_02	FROM PIÑONES TO PLAYA TRES PALMITAS	2.2		2.2						
PRES0002u_03	PUNTA VACIA TALEGA	2.1		2.1						

ASSESSMENT	ASSESSMENT			CATEGORY (Miles)				
UNIT	SEGMENTNAME	SIZE (Miles)	1	2	3	4b	5	
PRES0002w_00	PUNTA IGLESIAS	1.2		1.2				
PRES0002x_00	RIO HERRERA AT MOUTH	3.0					3.0	
PRES0002z_00	BALNEARIO DE LUQUILLO	3.0		3.0				
PRES0002z1_01	PLAYA AZUL, LUQUILLO	1.6		1.6				
PRES0002z2_00	BALNEARIO SEVEN SEAS, BAHIA LAS CABEZAS	3.0		3.0				
PRES0002z5_00	RIO FAJARDO	1.8					1.8	
PRES0002z9_00	PUERTO DE NAGUABO, BAHIA DE LIMA	1.9					1.9	
PRES0002z10_01	TROPICAL BEACH, NAGUABO	0.8					0.8	
PRES0002z10_02	RIO ANTON RUIZ AT MOUTH	1.5		1.5				
PRES0002z11_00	BOCA PRIETA	0.3		0.3				
PRES0002z12_00	PLAYA DE HUMACAO	2.4		2.4				
PRES0002z14_00	RIO HUMACAO	3.0		3.0				
PRES0002z17_00	PLAYA GUAYANES	2.1					2.1	
PRES0002z18_00	PUERTO DE YABUCOA	2.1		2.1				
PRES0002z19_01	PLAYA DE LUCIA	0.5					0.5	
PRES0002z19_02	PTA. QUEBRADA HONDA A PTA. YEGUAS	1.1		1.1				
PRES0002z21_00	PUERTO DE MAUNABO	3.0		3.0				
	Total	68.9		58.2			10.7	

Table 31: Coastal Shoreline Assessment Summary For Monitored Waters With Sources And Causes Puerto Rico 2008 305(B)/303(D) Report (East Region)

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES	CAUSES OF POLLUTION
PRES0002a_01	PLAYA LOS TOCONES	2.8	2		
PRES0002a_02	PLAYA DE SARDINERA, DORADO	1.9	2		
PRES0002b_00	RIO LA PLATA	3.0	2		
PRES0002d_00	PTA. COROZO A PTA. SALINAS	2.0	2		
PRES0002e_00	PUNTA SALINAS, LEVITTOWN	0.2	2		
PRES0002f_00	ENSENADA DE BOCA VIEJA, LEVITTOWN	3.0	2		
PRES0002g_02	CAÑO SAN ANTONIO TO BAHIA DE SAN JUAN	5.5	2	Major Industrial Point Sources (0110) Major Municipal Point Sources (0210)	
PRES0002h_00	LAGUNA DEL CONDADO	0.6	2		
PRES0002i_00	LAGUNA DEL CONDADO	0.5	2		
PRES0002j_00	LAGUNA DEL CONDADO	0.6	5	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms
PRES0002m_01	PARQUE SIXTO ESCOBAR	0.5	2		
PRES0002m_02	EL ESCAMBRON	0.5	2		
PRES0002m_03	FUERTE SAN GERONIMO	0.9	2		
PRES0002n_00	AVE. ASHFORD	1.2	2		
PRES00020_00	EL CONDADO	0.3	2		
PRES0002p_00	PUNTA PIEDRITA TO ASHFORD HOSP.	0.4	2		
PRES0002q_00	AVE DE DIEGO FINAL SAN JUAN	0.6	2		

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES	CAUSES OF POLLUTION
PRES0002r_00	PARQUE OCEAN PARK	1.8	2		
PRES0002s_00	CEM. PR MEMORIAL A ISLA VERDE	1.3	2		
PRES0002t_00	BALNEARIO DE ISLA VERDE	2.2	2		
PRES0002u_01	PTA. CANGREJOS TO PIÑONES	2.5	2		
PRES0002u_02	PIÑONES TO PLAYA TRES PALMITAS	2.2	2		
PRES0002u_03	PUNTA VACIA TALEGA	2.1	2		
PRES0002w_00	PUNTA IGLESIAS	1.2	2		
PRES0002x_00	RIO HERRERA AT MOUTH	3.0	5	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Enterococcus
PRES0002z_00	BALNEARIO DE MONSERRATTE	3.0	2		
PRES0002z1_01	PLAYA AZUL	1.6	2		
PRES0002z2_00	BALNEARIO SEVEN SEAS, BAHIA LAS CABEZAS	3.0	2		
PRES0002z5_00	RIO FAJARDO	1.8	5	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms
PRES0002z9_00	PUERTO DE NAGUABO	1.9	5	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms
PRES0002z10_01	TROPICAL BEACH, NAGUABO	0.8	5	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms Enterococcus
PRES0002z10_02	RIO ANTON RUIZ AT MOUTH	1.5	2		
PRES0002z11_00	BOCA PRIETA	0.3	2		
PRES0002z12_00	PLAYA DE HUMACAO	2.4	2		
PRES0002z14_00	RIO HUMACAO	3.0	2		
PRES0002z17_00	PLAYA GUAYANES	2.1	5	Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Enterococcus
PRES0002z18_00	PUERTO DE YABUCOA	2.1	2	Major Industrial Point Sources (0110)	

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES	CAUSES OF POLLUTION
PRES0002z19_01	PLAYA DE LUCIA	0.5	5	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Enterococcus
PRES0002z19_02	PTA. QUEBRADA HONDA A PTA. YEGUAS	1.1	2		
PRES0002z21_00	PUERTO DE MAUNABO	3.0	2		

Table 32: Coastal Shoreline Water Quality Assessment Summary For Unmonitored Waters Puerto Rico 2008 - 305(B)/303(D) Report (East Coast)

ASSESSMENT		SEGMENT		CA	TEGORY	1	
UNIT	SEGMENT NAME	SIZE (MILES)	1	2	3	4	5
PRES0002c_00	MAMEYAL, DORADO	3.3	3.3				
PRES0002g_01	ISLA DE CABRAS - PALO SECO	6.9			6.9		
PRES0002k_00	BAHIA DE SAN JUAN	2.0			2.0		
PRES0002I_00	LA PUNTILLA BAHIA DE SAN JUAN	1.4			1.4		
PRES0002II_00	PUNTA DEL MORRO	2.3			2.3		
PRES0002v_00	PUNTA ARENA TO MOUTH OF RIO GRANDE DE LOIZA	3.0			3.0		
PRES0002y_00	RIO ESPIRITU SANTO AT MOUTH TO PTA. PERCHAS	7.4	7.4				
PRES0002z1_02	RIO JUAN MARTIN AT MOUTH	4.6	4.6				
PRES0002z3_00	PUNTA GORDA	4.3	4.3				
PRES0002z4_00	PLAYA SARDINERA, FAJARDO	1.1			1.1		
PRES0002z6_00	PTA. BARRANCAS TO PTA. PUERCAS	13.7			13.7		
PRES0002z7_00	BAHIA DE PUERCA TO ENSENADA HONDA	7.6			7.6		
PRES0002z8_00	COSTA ESTE	9.6			9.6		
PRES0002z13_00	QUEBRADA FRONTERAS AT MOUTH	0.4			0.4		
PRES0002z15_00	PUNTA CANDELERO	3.1			3.1		
PRES0002z16_00	NEAR PTA. GUAYANES	1.1	1.1				
PRES0002z20_00	PUNTA TORO, MAUNABO	3.5			3.5		
PRES002z22_00	CABO MALA PASCUA, PATILLAS	0.5	0.5				
	Total	75.8	21.2		54.6		

Table 33: Coastal Shoreline Assessment Summary For Unmonitored Waters With Sources Puerto Rico 2008 - 305(B)/303(D) Report(East Coast)

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES OF POLLUTION
PRES0002c_00	MAMEYAL, DORADO	3.3	1	
PRES0002g_01	ISLA DE CABRAS - PALO SECO	6.9	3	Major Industrial Point Sources (0110) Major Industrial Point Sources (0110)
PRES0002k_00	BAHIA DE SAN JUAN	2.0	3	Urban Runoff/Storm Sewers (4000) Marinas and Recreational Boating (7900)
PRES0002I_00	LA PUNTILLA BAHIA DE SAN JUAN	1.4	3	Urban Runoff/Storm Sewers (4000) Marinas and Recreational Boating (7900)
PRES0002II_00	PUNTA DEL MORRO	2.3	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Marinas and Recreational Boating (7900) Collection System Failure (0500)
PRES0002v_00	PUNTA ARENA TO RIO GRANDE DE LOIZA AT MOUTH	3.0	3	Urban Runoff/Storm Sewers (4000) Major Municipal Point Sources (0210)
PRES0002y_00	RIO ESPIRITU SANTO AT MOUTH TO PTA. PERCHAS	7.4	1	
PRES0002z1_02	RIO JUAN MARTIN AT MOUTH	4.6	1	
PRES0002z3_00	PUNTA GORDA	4.3	1	
PRES0002z4_00	PLAYA SARDINERA, FAJARDO	1.1	3	Onsite Wastewater Systems (6500) Marinas and Recreational Boating (7900)
PRES0002z6_00	PTA. BARRANCAS TO PTA. PUERCAS	13.7	3	Marinas and Recreational Boating (7900)
PRES0002z7_00	BAHIA DE PUERCA TO ENSENADA HONDA	7.6	3	Major Industrial Point Sources (0110) Marinas and Recreational Boating (7900)
PRES0002z8_00	COSTA ESTE	9.6	3	Major Industrial Point Sources (0110)
PRES0002z13_00	QUEBRADA FRONTERAS AT MOUTH	0.4	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)
PRES0002z15_00	PUNTA CANDELERO	3.1	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Marinas and Recreational Boating (7900)

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES OF POLLUTION
PRES0002z16_00	NEAR TO PTA. GUAYANES	1.1	1	
PRES0002z20_00	PUNTA TORO MAUNABO	3.5	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)
PRES002z22_00	CABO MALA PASCUA, PATILLAS	0.5	1	

Table 34: Coastal Shoreline Water Quality Assessment Summary For Monitored Waters Puerto Rico 2008 - 305(B)/303(D) Report(South Coast)

ASSESSMENT		SEGMENT SIZE	CATEGORY (Miles)				
UNIT	SEGMENT NAME	(Miles)	1	2	3	4b	5
PRSS0003a_02	RIO CHICO, BALNEARIO DE PATILLAS	3.0					3.0
PRSS0003b_00	BALNEARIO DE ARROYO	3.0		3.0			
PRSS0003d_00	PTA. OLA GRANDE	2.0		2.0			
PRSS0003e_00	MUELLE PHILLIPS, GUAYAMA	1.2		1.2			
PRSS0003h_00	PUERTO DE JOBOS	3.0		3.0			
PRSS0003j_00	CENTRAL AGUIRRE	3.0					3.0
PRSS0003I_02	BAHIA DE JAUCA	0.9		0.9			
PRSS0003m_00	PLAYA SANTA ISABEL	3.0		3.0			
PRSS0003p_00	MUELLE DE PONCE	2.2		2.2			
PRSS0003q_00	PLAYA DE PONCE	2.2		2.2			
PRSS0003s_00	PUNTA CUCHARA	1.9		1.9			
PRSS0003u_00	BAHIA DE TALLABOA	2.1		2.1			
PRSS0003v_00	RIO TALLABOA	2.1		2.1			
PRSS0003x_00	BAHIA DE GUAYANILLA	2.5		2.5			
PRSS0003y_00	BAHIA DE GUAYANILLA	1.6		1.6			
PRSS0003z_00	BAHIA DE GUAYANILLA	2.1		2.1			
PRSS0003z3_00	PUNTA VENTANA, GUAYANILLA	3.0		3.0			
PRSS0003z5_00	BALNEARIO DE CAÑA GORDA	3.0		3.0			
PRSS0003z7_00	PLAYA DE GUANICA	2.7		2.7			
PRSS0003z9_02	CALETAS SALINAS (PLAYA SANTA)	3.0		3.0			
PRSS0003z11_00	ENTRE LA PARGUERA Y PUNTA PARGO	2.7		2.7			
PRSS0003z15_02	PLAYA EL COMBATE, CABO ROJO	2.5		2.5			
PRSS0003z15_03	PLAYA MOJA CASABE, CABO ROJO	2.0		2.0			
PRSS0003z16_00	BALNEARIO DE BOQUERON	3.0		3.0			
PRSS0003z17_02	PLAYA BUYE, CABO ROJO	2.1		2.1			
PRSS0003z17_03	PTA. BOCA BUEY AND PTA. LA MELA	0.7		0.7			
	Total	60.5		54.5			6.0

 Table 35: Coastal Shoreline Assessment Summary For Monitored Waters With Sources And Causes Puerto Rico 2008 - 305(B)/303(D)

 Report (South Coast)

ASSESSMENT		SEGMENT					
UNIT	SEGMENT NAME		CATEGORY	SOURCES	CAUSES		
PRSS0003a_02	BALNEARIO PATILLAS	3.0	5	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms Enterococcus		
PRSS0003b_00	BALNEARIO DE ARROYO	3.0	2				
PRSS0003d_00	PTA. OLA GRANDE	2.0	2				
PRSS0003e_00	MUELLE PHILLIPS	1.2	2				
PRSS0003h_00	PUERTO DE JOBOS	3.0	2				
PRSS0003j_00	CENTRAL AGUIRRE	3.0	5	Major Industrial Point Sources (0110) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms		
PRSS0003I_02	BAHIA DE JAUCA	0.9	2				
PRSS0003m_00	PLAYA SANTA ISABEL	3.0	2	Major Municipal Point Sources (0210)			
PRSS0003p_00	MUELLE DE PONCE	2.2	2				
PRSS0003q_00	PLAYA DE PONCE	2.2	2	Major Municipal Point Sources (0110)			
PRSS0003s_00	PUNTA CUCHARA	1.9	2				
PRSS0003u_00	BAHIA DE TALLABOA	2.1	2	Major Industrial Point Sources (0110)			
PRSS0003v_00	RIO TALLABOA	2.1	2	Major Industrial Point Sources (0110)			
PRSS0003x_00	BAHIA DE GUAYANILLA	2.5	2	Major Industrial Point Sources (0110)			
PRSS0003y_00	BAHIA DE GUAYANILLA	1.6	2	Major Industrial Point Sources (0110)			
PRSS0003z_00	BAHIA DE GUAYANILLA	2.1	2				
PRSS0003z3_00	PUNTA VENTANA	3.0	2				
PRSS0003z5_00	BALNEARIO DE CAÑA GORDA	3.0	2				
PRSS0003z7_00	PLAYA DE GUANICA	2.7	2	Minor Municipal Point Sources (0220)			
PRSS0003z9_02	CALETAS SALINAS	3.0	2				
PRSS0003z11_00	ENTRE LA PARGUERA Y PUNTA PARGO	2.7	2				
PRSS0003z15_02	PLAYA EL COMBATE	2.5	2				

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES	CAUSES
PRSS0003z15_03	PLAYA MOJA CASABE	2.0	2		
PRSS0003z16_00	BALNEARIO DE BOQUERON	3.0	2		
PRSS0003z17_02	PLAYA BUYE	2.1	2		
PRSS0003z17_03	PTA. BOCA BUEY AND PTA. LA MELA	0.7	2		

 Table 36: Coastal Shoreline Water Quality Assessment Summary For Unmonitored Waters Puerto Rico 2008 - 305(B)/303(D) Report

 (South Coast)

ASSESSMENT		SEGMENT	CATEGORY				
UNIT		SIZE	1	2	3	4	5
PRSS0003a_01	QUEBRADA FLORIDA, PATILLAS	3.6			3.6		
PRSS0003a_03	RIO GRANDE DE PATILLAS	1.0			1.0		
PRSS0003c_00	PTA. FIGURAS A PTA. BARRANCAS	5.8			5.8		
PRSS0003f_00	CABO CARIBE, GUAYAMA	4.6			4.6		
PRSS0003g_00	BAHÍA DE JOBOS	2.7	2.7				
PRSS0003i_00	GUAYAMA	0.9			0.9		
PRSS0003k_00	COSTA SUR	0.4	0.4				
PRSS0003I_01	BAHÍA DE RINCÓN	18.5			18.5		
PRSS0003I_03	JAUCA, SANTA ISABEL	6.6	6.6				
PRSS0003n_00	PLAYA CORTADA, SANTA ISABEL	14.8			14.8		
PRSS0003r_00	PUNTA CUCHARAS	2.3	2.3				
PRSS0003t_00	PEÑON DE PONCE	1.4	1.4				
PRSS0003w_00	BAHÍA DE TALLABOA	2.3			2.3		
PRSS0003z1_00	PUERTO DE GUAYANILLA	3.8			3.8		
PRSS0003z2_00	PUNTA VERRACO, GUAYANILLA	0.9	0.9				
PRSS0003Z4_00	BAHÍA DE LA BALLENA	4.1	4.1				
PRSS0003z6_00	PLAYA DE JABONCILLO	0.3	0.3				
PRSS0003z8_00	BAHÍA DE GUÁNICA	3.5			3.5		
PRSS0003z9_01	ENSENADA LOS PARDOS, GUÁNICA	4.7	4.7				
PRSS0003z9_03	BAHÍA MONTALVA, LAJAS	6.3			6.3		
PRSS0003z10_00	BAHIA FOSFORESCENTE	2.0	2.0				
PRSS0003z12_00	LA PARGUERA	1.5			1.5		
PRSS0003z13_00	COSTA SUR	2.8	2.8				
PRSS0003z14_00	OSTA SUR	1.8	1.8				
PRSS0003z15_01	PTA. PITAHAYA, CABO ROJO	17.6	17.6				
PRSS0003z17_01	COSTA SUR	2.4			2.4		
	Total	116.6	47.6		69.0		

Table 37: Coastal Shoreline Assessment For Unmonitored Waters With Sources Puerto Rico 2008 - 305(B)/303(D) Report(South Coast)

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES OF POLLUTION
PRSS0003a_01	QUEBRADA FLORIDA, PATILLAS	3.6	3	Onsite Wastewater Systems (6500)
PRSS0003a_03	RIO GRANDE DE PATILLAS	1.0	3	Urban Runoff/Storm Sewers (4000)
PRSS0003c_00	PTA. FIGURAS A PTA. BARRANCAS	5.8	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm/Sewers (4000) Major Industrial Point Sources (0110)
PRSS0003f_00	CABO CARIBE, GUAYAMA	4.6	3	Onsite Wastewater Systems (6500)
PRSS0003g_00	BAHÍA DE JOBOS	2.7	1	
PRSS0003i_00	GUAYAMA	0.9	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm/Sewers (4000)
PRSS0003k_00	COSTA SUR	0.4	1	
PRSS0003I_01	BAHÍA DE RINCÓN	18.5	3	Onsite Wastewater Systems (6500)
PRSS0003I_03	JAUCA, SANTA ISABEL	6.6	1	
PRSS0003n_00	PLAYA CORTADA, SANTA ISABEL	14.8	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)
PRSS0003r_00	PUNTA CUCHARAS	2.3	1	
PRSS0003t_00	PEÑON DE PONCE	1.4	1	
PRSS0003w_00	BAHÍA DE TALLABOA	2.3	3	Major Industrial Point Sources (0110) Marinas and Recreational Boating (7900)
PRSS0003z1_00	PUERTO DE GUAYANILLA	3.8	3	Urban Runoff/Storm Sewers (4000)
PRSS0003z2_00	PUNTA VERRACO, GUAYANILLA	0.9	1	
PRSS0003Z4_00	BAHÍA DE LA BALLENA	4.1	1	
PRSS0003z6_00	PLAYA DE JABONCILLO	0.3	1	
PRSS0003z8_00	BAHÍA DE GUÁNICA	3.5	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)
PRSS0003z9_01	ENSENADA LOS PARDOS, GUÁNICA	4.7	1	
PRSS0003z9_03	BAHÍA MONTALVA, LAJAS	6.3	3	Onsite Wastewater Systems (6500)
PRSS0003z10_00	BAHIA FOSFORESCENTE	2.0	1	
PRSS0003z12_00	LA PARGUERA	1.5	3	Landfill (6300)

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES OF POLLUTION
PRSS0003z13_00	COSTA SUR	2.8	1	
PRSS0003z14_00	COSTA SUR	1.8	1	
PRSS0003z15_01	PTA. PITAHAYA, CABO ROJO	17.6	1	
PRSS0003z17_01	BAHIA DE BOQUERON	2.4	3	Onsite Wastewater Systems (6500) Minor Municipal Point Sources (0220) Collection System Failure (0500)

Table 38: Coastal Shoreline Water Quality Assessment Summary For Monitored Waters Puerto Rico 2008 - 305(B)/303(D) Report (West Coast)

ASSESSMENT		SEGMENT SIZE	CATEGORY (Miles)				
UNIT	SEGMENT NAME	(Miles)	1	2	3	4b	5
PRWS0004a_02	PUNTA OSTIONES	3.0		3.0			
PRWS0004c_00	BAHIA DE MAYAGÜEZ	2.5		2.5			
PRWS0004d_00	MALECON DE MAYAGÜEZ	1.9					1.9
PRWS0004f_00	BALNEARIO DE AÑASCO, BAHÍA DE AÑASCO	3.0		3.0			
PRWS0004g_02	BALNEARIO DE RINCON	2.3		2.3			
PRWS0004g_03	QUEBRADA RAMOS AT MOUTH, RINCON	2.3		2.3			
PRWS0004g_04	CAÑO SANTI PONCE TO RIO GRANDE DE AÑASCO AT MOUTH (PLAYA PICO DE PIEDRA)	6.9		6.9			
	Total	21.9		20.0			1.9
Table 39: Coastal Shoreline Water Quality Assessment For Monitored Waters With Sources And Causes Puerto Rico 2008 -
305(B)/303(D) Report (West Coast)

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES	CAUSES
PRWS0004a_02	PUNTA OSTIONES	3.0	2		
PRWS0004c_00	BAHIA DE MAYAGÜEZ	2.5	2		
PRWS0004d_00	MALECON DE MAYAGÜEZ	1.9	5	Onsite Wastewater Systems (6500)	Pathogens(1700) Fecal Coliforms
PRWS0004f_00	BALNEARIO DE AÑASCO	3	2		
PRWS0004g_02	BALNEARIO DE RINCON	2.3	2		
PRWS0004g_03	QUEBRADA RAMOS AT MOUTH, RINCON	2.3	2		
PRWS0004g_04	CAÑO SANTI PONCE TO RIO GRANDE DE AÑASCO AT MOUTH (PLAYA PICO DE PIEDRA)	6.9	2		

Table 40: Coastal Shoreline Water Quality Assessment Summary For Unmonitored Waters Puerto Rico 2008 - 305(B)/303(D) Report (West Coast)

ASSESSMENT	SEGMENT NAME SEGMENT CATEG			TEGOR	Y		
UNIT	SEGMENT NAME	SIZE (MILES)	1	2	3	4	5
PRWS0004a_01	PUERTO REAL, CABO ROJO	2.8			2.8		
PRWS0004a_03	JOYUDA, CABO ROJO	5.0			5.0		
PRWS0004b_00	GUANAJIBO HOMES	1.2			1.2		
PRWS0004e_00	MANI, MAYAGÜEZ	2.6			2.6		
PRWS0004g_01	QUEBRADA CAGUABO	1.0	1.0				
	Total	12.6	1.0		11.6		

Table 41: Coastal Shoreline Assessment For Unmonitored Waters With Sources Puerto Rico 2008 - 305(B)/303(D) Report (West Coast)

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES
PRWS0004a_01	PUERTO REAL, CABO ROJO	2.8	3	Onsite Wastewater Systems (6500)
PRWS0004a_03	JOYUDA, CABO ROJO	5.0	3	Onsite Wastewater Systems (6500)
PRWS0004b_00	GUANAJIBO HOMES	1.2	3	Onsite Wastewater Systems (6500)
PRWS0004e_00	MANI, MAYAGÜEZ	2.6	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)
PRWS0004g_01	QUEBRADA CAGUABO	1.0	1	

Table 42: Coastal Shoreline Assessment For Monitored Waters Of Culebra Island Puerto Rico 2008 - 305(B)/303(D) Report (Offshore Islands)

ASSESSMENT	OF ONENT NAME	SEGMENT SIZE	CATEGORY				
UNIT	SEGMENT NAME	(Miles)	1	2	3	4	5
PRES0306b_00	PLAYA FLAMENCO, PLAYA RESACA, PLAYA BRAVA, PLAYA						
	LARGA, BAHIA MOSQUITO Y ENSENADA HONDA (CULEBRA	31.7		31.7			
	COAST)						
PRES0307d_00	ENSENADA ZOMBE (VIEQUES COAST)	3.6		3.6			
	Total	35.3		35.3			

Table 43: Coastal Shoreline Assessment For Unmonitored Waters Of Culebra, Vieques And Mona Islands Puerto Rico 2008 -
305(B)/303(D) Report (Offshore Islands)

ASSESSMENT		WBSIZE		C	ATEGO	RY	
UNIT	SEGMENT NAME	(Miles)	1	2	3	4	5
PRES0306a_00	BAHIA SARDINERA (CULEBRA COAST)	1.0	1.0				
PRES0307a_00	PUERTO VIEQUES (VIEQUES COAST)				1.0		
PRES0307b_00	NAVAL BASE (VIEQUES COAST)	43.4			43.4		
PRES0307c_00	BIOLUMINESCENT BAY (PUERTO MOSQUITO) (VIEQUES COAST)	3.0	3.0				
PRES0307e_00	LA ESPERANZA (VIEQUES COAST)	0.6			0.6		
PRES0307f_00	PUERTO REAL TO ISABEL SEGUNDA (VIEQUES COAST)	19.0			19.0		
PRWS0308_00	MONA ISLAND (OFF THE WEST COAST OF PR)	18.6	18.6				
	Total	86.6	22.6		64.0		

Table 44: Coastal Shoreline Assessment For Unmonitored Waters With Sources Puerto Rico 2008 - 305(B)/303(D) Report(Offshore Islands)

ASSESSMENT UNIT	SEGMENT NAME	SEGMENT SIZE (MILES)	CATEGORY	SOURCES OF POLLUTION
PRES0306a_00	BAHIA SARDINERA (CULEBRA COAST)	1.0	1	
PRES0307a_00	PUERTO VIEQUES (VIEQUES COAST)	1.0	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)
PRES0307b_00	NAVAL BASE (VIEQUES COAST)	43.4	3	Hazardous Waste (6600) Flow Regulations/Modification (7400) Debris and bottom deposits (8520)
PRES0307c_00	BIOLUMINESCENT BAY (VIEQUES COAST)	3.0	1	
PRES0307e_00	LA ESPERANZA (VIEQUES COAST)	0.6	3	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)
PRES0307f_00	PUERTO REAL A ISABEL SEGUNDA (VIEQUES COAST)	19.0	3	Hazardous Waste (6600) Debris and bottom deposits (8520) Minor Municipal Point Sources (0220) Onsite Wastewater Systems (6500)
PRWS0308_00	ISLA DE MONA (OFF WEST COAST PR)	18.6	1	

C7 <u>303(d) List</u>

C7.1. Listing Criteria

The Puerto Rico 2008 List of Impaired Waters (303(d) List) is based on the water quality data generated through the water quality monitoring networks, evaluations of non-point sources in accordance with Section 319 of the Clean Water Act and special water quality studies. In the case of the 2008 303(d) List, we considered the most recent two consecutive years of available water quality data for each parameter in each AU. In this cycle, the AU was assessed on the basis of multiple categories for each use. This approach allows the identification of previously listed 303(d) segments within the new AU.

Where applicable, the new AU that has included in it previously 303(d) listed segments or newly listed segments will include these segments specifically identified as Category 5, along with the parameters that were the driving cause for listing. In the case of basins for which TMDLs have been developed, the segments will continue to be listed for those parameters that were not addressed in the TMDL. Those parameters addressed in the TMDL are de-listed from the respective segments.

For the 2008 cycle, PREQB used the 2003 amended PR Water Quality Standards Regulation (amended PRWQSR) and the EPA promulgation, where applicable. The waters considered to be impaired have been included in Category 5. The PREQB 2008 CWA 303(d) List is included as Appendix I in the 2008 IR.

If any of the parameters listed in the 2004 cycle violated the applicable water standard at least once, the parameter continued to appear as an impairment cause and the segment continued to be listed in Category 5. If, on the other hand, a previously listed parameter complied fully with the applicable water quality standard during the 2004 cycle and during the 2006 cycle, that specific parameter will be delisted from Category 5.

C7.2. <u>Delisting Criteria</u>

When an assessment unit previously listed parameter complied fully with the applicable water quality standard during the 2004 cycle and during the 2006 cycle, that specific parameter will be delisted from Category 5.

Also, PREQB delisted a specific parameter from the list when the Total Maximum Daily Load for the corresponding assessment unit was approved by EPA.

Follows the segment/pollutant combinations that PREQB require to be delisting from the 2006 cycle.

Table 45: Segment/Pollutant Combinations Removed (Delisting) from Puerto RicoYear 2006 Section 303(d) List

SEGMENT / POLLUTANT COMBINATION		SUMMARY RATIONALE FOR
FROM PUERTO RICO YEAR 2006 SECTION	SEGMENT ID	DELISTING OF SEGMENT /
	PRNR9A	EPA approval of TMDI
2. BÍO CIBUCO/FECAL COLIFORMS	PRNR9B1	EPA approval of TMDL
3. BÍO CIBUCO/FECAL COLIFORMS	PRNR9B2	EPA approval of TMDL
4. RÍO CIBUCO/FECAL COLIFORMS	PRNR9C	EPA approval of TMDL
5. RÍO CIBUCO/FECAL COLIFORMS	PRNR9B3	EPA approval of TMDL
6. RÍO CIBUCO/FECAL COLIFORMS	PRNR9D	EPA approval of TMDL
7. RIO DE LA PLATA/FECAL COLIFORMS	PRER10A1	EPA approval of TMDL
8. RIO DE LA PLATA/FECAL COLIFORMS	PRER10A2	EPA approval of TMDL
9. RIO DE LA PLATA/FECAL COLIFORMS	PRER10A3	EPA approval of TMDL
10. RIO DE LA PLATA/FECAL COLIFORMS	PRER10A4	EPA approval of TMDL
11. RIO DE LA PLATA/FECAL COLIFORMS	PRER10E	EPA approval of TMDL
12. RIO DE LA PLATA/FECAL COLIFORMS	PRER10G	EPA approval of TMDL
13. RIO DE LA PLATA/FECAL COLIFORMS	PRER10H	EPA approval of TMDL
14. RIO DE LA PLATA/FECAL COLIFORMS	PRER10J	EPA approval of TMDL
15. RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14A1	EPA approval of TMDL
16. RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14A2	EPA approval of TMDL
17. RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14F	EPA approval of TMDL
18. RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14G1	EPA approval of TMDL
19. RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14G2	EPA approval of TMDL
20. RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14H	EPA approval of TMDL
21. RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14I	EPA approval of TMDL
22. RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14J	EPA approval of TMDL
23. RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14L	EPA approval of TMDL
24. RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14K	EPA approval of TMDL

C7.3. Priority Ranking and TMDL Development Status

In October of 1998, the PREQB in collaboration with the Natural Resources Conservation Service (NRCS) and EPA developed the document Puerto Rico Unified Watershed Assessment and restoration Activities (*"Evaluación de Cuencas y Actividades de Restauración para Puerto Rico"*). As a result of this initiative eighteen (18) main basins were identified as water bodies of high priority where the PREQB would implement restoration activities. These basins are detached next according to the corresponding region:

BASIN	REGION
Quebrada Blasina	East
Río Bayamón	East
Río Blanco	East
Río Grande de Loíza	East
Río Hondo	East
Río La Plata	East
Río Piedras	East
Río Cibuco	North
Río Grande de Arecibo	North
Río Grande de Manatí	North
Río Guajataca	North
Río Coamo	South
Río Grande de Patillas	South
Río Guayanilla	South
Río Culebrinas	West
Río Grande de Añasco	West
Río Guanajibo	West
Río Yaguez	West

The criteria used to establish the priority ranking and selection of basins appear in the document "Puerto Rico Unified Watershed Assessment and Restoration Activities (PRUWA) and were discussed in the Integrated Report of 2004.

The List 303 (d) of 2002, the PREQB established a priority ranking to determine the sequence of development for restoration activities, including the development and implementation of the total maximum daily loads (TMDL). This priority ranking considered the priority of basins restoration and established three levels of priority. These are:

- ✓ High Priority: basins including in the PRUWA as basins of priority due to the high pollution level related to all the designated uses.
- ✓ Intermediate Priority: basins that were not including in the PRUWA and have 50% or more of its waters as impaired for some designated use.
- ✓ Low Priority: basins that were not including in the PRUWA and have less than 50% of its waters as impaired for some designated use.

According, to the priority ranking established the PREQB in collaboration of EPA and others federal and state agencies worked together in order to develop and implement the TMDL for those watersheds. The next table presents a summary of the TMDL development status in Puerto Rico.

	SEGMENT/POLLUTANT	SEGMENT ID	PROJECT STATUS	PROJECTED TMDL SUBMITTAL DATE
1.	RIO BAIROA/COPPER	PRER14H	IN DRAFT	Submitted to EPA on August 2007
2.	RIO BAIROA/DISSOLVED OXYGEN	PRER14H	IN DRAFT	Submitted to EPA on August 2007
3.	RIO CAGUITAS/COPPER	PRER14I	IN DRAFT	Submitted to EPA on August 2007
4.	RIO CAGUITAS/DISSOLVED OXYGEN	PRER14I	IN DRAFT	Submitted to EPA on August 2007
5.	RÍO CIBUCO/FECAL COLIFORMS	PRNR9A	Approved by EPA	
6.	RÍO CIBUCO/FECAL COLIFORMS	PRNR9B1	Approved by EPA	
7.	RÍO CIBUCO/FECAL COLIFORMS	PRNR9B2	Approved by EPA	
8.	RÍO CIBUCO/FECAL COLIFORMS	PRNR9B3	Approved by EPA	
9.	RÍO CIBUCO/FECAL COLIFORMS	PRNR9C	Approved by EPA	
10.	RÍO CIBUCO/FECAL COLIFORMS	PRNR9D	Approved by EPA	
11.	RIO DE LA PLATA/FECAL COLIFORMS	PRER10A1	Approved by EPA	
12.	RIO DE LA PLATA/FECAL COLIFORMS	PRER10A2	Approved by EPA	
13.	RIO DE LA PLATA/FECAL COLIFORMS	PRER10A3	Approved by EPA	
14.	RIO DE LA PLATA/FECAL COLIFORMS	PRER10A4	Approved by EPA	
15.	RIO DE LA PLATA/FECAL COLIFORMS	PRER10A5	Approved by EPA	
16.	RIO DE LA PLATA/FECAL COLIFORMS	PRER10B	Approved by EPA	
17.	RIO DE LA PLATA/FECAL COLIFORMS	PRER10C	Approved by EPA	
18.	RIO DE LA PLATA/FECAL COLIFORMS	PRER10D	Approved by EPA	

Table 46: TMDL Development Status

S	EGMENT/POLLUTANT	SEGMENT ID	PROJECT STATUS	PROJECTED TMDL SUBMITTAL DATE
19. RIO DE COLIFO	E LA PLATA/FECAL ORMS	PRER10E	Approved by EPA	
20. RIO DE COLIFO	E LA PLATA/FECAL ORMS	PRER10F	Approved by EPA	
21. RIO DE COLIFO	E LA PLATA/FECAL ORMS	PRER10G	Approved by EPA	
22. RIO DE COLIFO	E LA PLATA/FECAL ORMS	PRER10H	Approved by EPA	
23. RIO DE COLIFO	E LA PLATA/FECAL ORMS	PRER10I1	Approved by EPA	
24. RIO DE COLIF	E LA PLATA/FECAL ORMS	PRER10I2	Approved by EPA	
25. RIO DE COLIFO	E LA PLATA/FECAL ORMS	PRER10J	Approved by EPA	
26. RIO DE COLIFO	E LA PLATA/FECAL ORMS	PRER10K	Approved by EPA	
27. RIO GF COLIF(RANDE DE AÑASCO/FECAL ORMS	PRWR83A	IN DRAFT	FY08
28. RIO GF COLIF	RANDE DE AÑASCO/FECAL ORMS	PRWR83B	IN DRAFT	FY08
29. RIO GF COLIF	RANDE DE AÑASCO/FECAL ORMS	PRWR83C	IN DRAFT	FY08
30. RIO GF COLIF	RANDE DE AÑASCO/FECAL ORMS	PRWR83D	IN DRAFT	FY08
31. RIO GF COLIF	RANDE DE AÑASCO/FECAL ORMS	PRWR83E	IN DRAFT	FY08
32. RIO GF COLIF	RANDE DE AÑASCO/FECAL ORMS	PRWR83F	IN DRAFT	FY08
33. RIO GF COLIF	RANDE DE AÑASCO/FECAL ORMS	PRWR83G	IN DRAFT	FY08
34. RIO GF COLIF	RANDE DE AÑASCO/FECAL ORMS	PRWR83H	IN DRAFT	FY08
35. RIO GF COLIF	RANDE DE AÑASCO/FECAL ORMS	PRWR83I	IN DRAFT	FY08
36. RIO GF COLIF	RANDE DE ARECIBO/FECAL ORMS	PRNR7A1	IN DRAFT	FY08
37. RIO GF COLIF	RANDE DE ARECIBO/FECAL ORMS	PRNR7A2	IN DRAFT	FY08
38. RIO GF COLIF	RANDE DE ARECIBO/FECAL ORMS	PRNR7A3	IN DRAFT	FY08
39. RIO GF COLIF	RANDE DE ARECIBO/FECAL ORMS	PRNR7B1	IN DRAFT	FY08
40. RIO GF COLIF	RANDE DE ARECIBO/FECAL ORMS	PRNR7B2	IN DRAFT	FY08
41. RIO GF COLIF	RANDE DE ARECIBO/FECAL ORMS	PRNR7C1	IN DRAFT	FY08
42. RIO GF	RANDE DE ARECIBO/FECAL ORMS	PRNR7C2	IN DRAFT	FY08
43. RIO GF	RANDE DE ARECIBO/FECAL ORMS	PRNR7C3	IN DRAFT	FY08
44. RIO GF LOIZA/	RANDE DE DISSOLVED OXYGEN	PRER14A2	IN DRAFT	Submitted to EPA on August 2007

	SEGMENT/POLLUTANT	SEGMENT ID	PROJECT STATUS	PROJECTED TMDL SUBMITTAL DATE
45.	RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14A1	Approved by EPA	
46.	RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14A2	Approved by EPA	
47.	RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14F	Approved by EPA	
48.	RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14G1	Approved by EPA	
49.	RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14G2	Approved by EPA	
50.	RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14H	Approved by EPA	
51.	RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14I	Approved by EPA	
52.	RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER1JF	Approved by EPA	
53.	RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14K	Approved by EPA	
54.	RIO GRANDE DE LOIZA/FECAL COLIFORMS	PRER14L	Approved by EPA	
55.	RIO GRANDE DE MANATÍ/FECAL COLIFORMS	PRNR8A1	IN DRAFT	FY08
56.	RIO GRANDE DE MANATÍ/FECAL COLIFORMS	PRNR8A2	IN DRAFT	FY08
57.	RIO GRANDE DE MANATÍ/FECAL COLIFORMS	PRNR8A3	IN DRAFT	FY08
58.	RIO GRANDE DE MANATÍ/FECAL COLIFORMS	PRNR8B	IN DRAFT	FY08
59.	RIO GRANDE DE MANATÍ/FECAL COLIFORMS	PRNR8C1	IN DRAFT	FY08
60.	RIO GRANDE DE MANATÍ/FECAL COLIFORMS	PRNR8C2	IN DRAFT	FY08
61.	RIO GRANDE DE MANATÍ/FECAL COLIFORMS	PRNR8D	IN DRAFT	FY08
62.	RIO GRANDE DE MANATÍ/FECAL COLIFORMS	PRNR8E1	IN DRAFT	FY08
63.	RIO GRANDE DE MANATÍ/FECAL COLIFORMS	PRNR8E2	IN DRAFT	FY08
64.	RIO GURABO/DISSOLVED OXYGEN	PRER14G1	IN DRAFT	Submitted to EPA on August 2007
65.	RIO BAYAMON/FECAL COLIFORM	PRER12A1	TO BE DEVELOPED	FY09
66.	RIO BAYAMON/FECAL COLIFORM	PRER12A2	TO BE DEVELOPED	FY09
67.	RIO BAYAMON/FECAL COLIFORM	PRER12B	TO BE DEVELOPED	FY09
68.	RIO HONDO/FECAL COLIFORM	PRER11A	TO BE DEVELOPED	FY09

Also, in coordination with EPA contractor we are ready to developed fecal coliforms for the rest of the island in the near future.

PART D. GROUND WATER MONITORING AND ASSESSMENT

Under this monitoring network the PREQB conducts sampling and analyses once per year for: nitrates, VOC's, SVOC's, pathogens, metals and pesticides. However, not all the wells were sampled for all the parameters during both years. Table I below shows the names, location and sampling year of the selected wells.

TABLE I							
IDENTIFICATION OF WELLS USED AS PART OF THE							
GROUI	GROUNDWATER MONITORING NETWORK						
Well Name	Coordinates	Municipality	Sampling Year				
Saltillo	180845/664130	Adjuntas	2006, 2007				
Saltillo Vaca	180756/664341	Adjuntas	2006, 2007				
Garrochales 3 (Viejo)	182737/663557	Arecibo	2006, 2007				
Matadero	182456/664225	Arecibo	2006, 2007				
Ojo de Agua 1(Urbano)	182340/664124	Arecibo	2006, 2007				
Belinda	175920/660314	Arroyo	2006, 2007				
Pozo I (Arroyo, Urbano I))	175834/655824	Arroyo	2006				
Cruce Davila	182554/663401	Barceloneta	2006, 2007				
Pajonal I (San Agustin)	182305/663348	Barceloneta	2006, 2007				
Pajonal II (Cortes)	182323/663309	Barceloneta	2006, 2007				
Cabo Rojo I	180625/670749	Cabo Rojo	2006, 2007				
Cabo Rojo II	180559/670554	Cabo Rojo	2006, 2007				
Villa Coqui	180900/660417	Caguas	2006, 2007				
Piedra Gorda	182633/6652540	Camuy	2006, 2007				
Zanja V	182708/665124	Camuy	2006				
Beatriz III	180853/660639	Cayey	2006, 2007				
Bungalo	180708/660842	Cayey	2006				
Mogote	180714/661020	Cayey	2006				
Florida #5 (La Ceiba)	182125/663351	Florida	2006, 2007				
Florida #9 (Parque Ceiba)	182126/663331	Florida	2006, 2007				
La Joya (Santa Rita)	180016/665304	Guanica	2006, 2007				
Los Caños	180048/665241	Guanica	2006, 2007				
Guayanilla Viejo	180122/664755	Guayanilla	2006, 2007				
Los Sitios	180135/664736	Guayanilla	2006, 2007				
Quebrada Nuevo	180159/664754	Guayanilla	2006, 2007				
Pozo Estacion Experimental 1	181551/655925	Gurabo	2006				
Mamey	181455/655700	Gurabo	2006, 2007				
Campo Alegre I	182431/664650	Hatillo	2006, 2007				
Campo Alegre III	182433/664727	Hatillo	2006, 2007				
Hormigueros III	180708/670727	Hormigueros	2006, 2007				
Amelia II	180022/662816	Juana Diaz	2006, 2007				
Experimental (Juana Diaz)	180135/663132	Juana Diaz	2006, 2007				
Rio Cañas	180038/662808	Juana Diaz	2006, 2007				
Manati 2	182550/663003	Manati	2006, 2007				

TABLE I											
IDENTIFICATION OF WELLS USED AS PART OF THE											
GROU	NDWATER MONITO	RING NETWORK									
	Coordinates	Municipality	Sampling Year								
Tiburones II	182604/663450	Manati	2006, 2007								
Viskase III	182536/663324	Manati	2006, 2007								
Bordaleza	180012/655354	Maunabo	2006, 2007								
Calzada	180014/655449	Maunabo	2006, 2007								
Bateyes	181152/670400	Mayaguez	2006, 2007								
Marini	181215/670527	Mayaguez	2006, 2007								
Jacaboas I	175857/655824	Patillas	2006, 2007								
Jacaboas II	175907/655823	Patillas	2006, 2007								
Jacaboas III	175926/655806	Patillas	2007								
Alambra II	180056/663610	Ponce	2006, 2007								
Commercial AAA	180043/663651	Ponce	2006								
Hanes II	175955/663659	Ponce	2006, 2007								
Calvache II	181910/671341	Rincon	2006, 2007								
Puente II	182055/671335	Rincon	2006								
Alberge Olimpico	180217/661416	Salinas	2006, 2007								
Army II	175927/661711	Salinas	2006, 2007								
Coco IV	175929/661658	Salinas	2006, 2007								
Godreau II	175924/661703	Salinas	2006, 2007								
Las Mareas	175658/661553	Salinas	2006, 2007								
Las Monjas (Coqui 2)	175821/661345	Salinas	2006, 2007								
Urbano II	175851/661744	Salinas	2006, 2007								
Cain Alto (Capriles)	180620/673017	San German	2006, 2007								
Duey II (San Agustin)	180722/670417	San German	2006, 2007								
Roosevelt	182509/660409	San Juan	2006								
Esmeralda II	185935/662046	Santa Isabel	2006								
Ollas	180026/662606	Santa Isabel	2007								
Paso Seco V	175855/662413	Santa Isabel	2007								
Paso Seco VI	175833/662415	Santa Isabel	2006, 2007								
Plavita Cortada	175933/662636	Santa Isabel	2006, 2007								
Campanilla #8	182530/661319	Toa Baia	2006, 2007								
Monserrate	182629/662150	Vega Alta	2006, 2007								
Pugnado II	182544/662438	Vega Baia	2006. 2007								
Guavanes	180417/655013	Yabucoa	2006								
La Grua	180404/655231	Yabucoa	2006. 2007								
Barinas	180132/665034	Yauco	2006								
Rio Loco	180151/665315	Yauco	2006, 2007								

The ambient groundwater quality data compiled by PREQB during the current reporting cycle indicates the presence of fecal coliforms in ambient samples at some of the aquifer stations monitored. Table II below shows a summary of the water quality assessment for drinking groundwater public supply.

0

TABLE II WATER QUALITY ASSESSMENT FOR GROUNDWATER SYSTEMS PUERTO RICO 2008 305 (b) /303(d) INTEGRATED REPORT											
Pollutant Type	Number of Wells Data Where F	s for Which Reported	Number Impacte Excee	of Wells d by MCL edance	Suspected Pollutant Source						
	2006	2007	2006	2007	N1/A						
Metals	None	None	None	None	N/A						
Pesticides	59	59	0	0	N/A						
VOC	63	57	0	0	N/A						
SVOC	None	None	None	None	N/A						
Nitrates	None	None	None	None	N/A						
Fecal Coliforms	23	57	3	1	Onsite disposal (septic tanks)						

PART E. PUBLIC PARTICIPATION

According to EPA requirements of involving the public and other stakeholders in the development of the Section 303(d) List (40 CFR 130.7(a)) PREQB has held a public hearing on February 22, 2008.

The public hearing was appropriated noticed in two (2) local newspapers of island wide circulation (Copy enclosed). Also, 303(d) List was circulated among PREQB's offices including the regional offices and other agencies.

The Public participation element serves to encourage the involvement of universities, private institutions, agencies, communities and general public in water quality issues.

The determination of the Governing Board of PREQB was established in resolution number R-08-14-1, copy enclosed in Apendix IV.

APENDIX I - 2008 Cycle 303(d) List

Evaluation and Strategic Planning Area Puerto Rico Environmental Quality Board Table 47: 2008 Cycle 303(d) List – List of Rivers and Streams

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network	DESIGNATED USES AND CATEGORIES		DESIGNATED USES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES			DESIGNATED USES AND CATEGORIES N			ATED USES		NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle
			ss = synoptic study	R1	R2	AL	DW													
RIO GUAJATACA	RIO GUAJATACA PRNR3A1	9.9	NS 50011400	5	1	5	5		Onsite Wastewater Systems (6500) Landfills (6300) Minor Industrial Point Source (0120) Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Low Dissolved Oxygen (1200) Arsenic (0510) Turbidity (2500)										
RIO GUAJATACA	RIO GUAJATACA PRNR3A2	22	NS 50010500	5	5	5	S		Onsite Wastewater Systems (6500) Collection System Failure(0500) Confined Animal Feeding Operations (1640) Major Municipal Point Source (0210)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500)										
RIO GRANDE DE ARECIBO	RIO GRANDE DE ARECIBO PRNR7A1	31.4	NS 50029000 50027250 A1-B	5		5	5		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Urban Runoff/Storm Sewers (4000) Major Industrial Point Source (0110) Minor Industrial Point Source (0120)	Arsenic (0510) Low Dissolved Oxygen (1200) Fecal Coliform (1700)										
RIO GRANDE DE ARECIBO	RIO GRANDE DE ARECIBO PRNR7A2	122.8	NS 50025000 A3-A A3-B	5	5	5	3		Confined Animal Feeding Operations (1640) Agriculture (1000) Minor Municipal Point Source (0220) Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure(0500) Landfills (6300)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) Pesticides (0200) Thermal Modifications (1400)										
RIO GRANDE DE ARECIBO	TUNEL PRNR7A3	28.9	NS 50020500	5	1	5	5		Confined Animal Feeding Operations (1640) Agriculture (1000) Minor Municipal Point Source (0220) Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure(0500)	Arsenic (0510) Fecal Coliform (1700)										

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network	DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		DESIGNATED USES AND CATEGORIES		NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle
			SS = Synoptic Study	R1	R2	AL	DW																																																							
RIO GRANDE DE ARECIBO	RIO CAONILLAS PRNR7C1	87	NS A4-A A4-B	5	1	5	2		Confined Animal Feeding Operations (1640) Minor Industrial Point Source (0120) Agriculture (1000) Collection System Failure(0500) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)																																																				
RIO GRANDE DE ARECIBO	RIO TANAMA PRNR7B2	43.5	NS 50028000 A5-A (A5-A2)	5	1	1			Agriculture (1000) Minor Industrial Point Source (0120) Collection System Failure(0500) Onsite Wastewater Systems (6500)	Fecal Coliform (1700) Turbidity (2500)																																																				
RIO GRANDE DE MANATÍ	RIO GRANDE DE MANATÍ PRNR8A1	31	NS 50038100	5		5	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)Confined Animal Feeding Operations (1640)Major Municipal Point Source (0210)Collection System Failure(0500)Landfills (6300)	Surfactants (0400)Arsenic (0510)Fecal Coliform (1700) Turbidity (2500)Copper (0530) Lead (0550)																																																				
RIO GRANDE DE MANATÍ	RIO GRANDE DE MANATÍ PRNR8A2	38.1	NS 50035500 50031200 SS 50034000 50032100	5	1	5	5		Confined Animal Feeding Operations (1640) Collection System Failure(0500) Landfills (6300) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Surfactants (0400) Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) Copper (0530)																																																				
RIO GRANDE DE MANATÍ	RIO GRANDE DE MANATÍ PRNR8A3	27	58 50029900 50029800	5	1	5	5		Confined Animal Feeding Operations (1640) Minor Industrial Point Source (0120) Minor Municipal Point Source (0220) Landfills (6300)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500)																																																				
RIO GRANDE DE MANATÍ	RIO CIALITO PRNR8B	25.8	NS 50035950 SS 50035900 50035700	5	1	5	5		Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700)																																																				

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network	DESIGNATED USES AND CATEGORIES		TED USES NOTES		SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in	
			SS = Synoptic Study	R1	R2	AL	DW			compliance auring 2008 cycle
RIO GRANDE DE MANATÍ	RIO TORO NEGRO PRNR8C1	41.5	SS 50033200 50033000 50032450 50032700	5	1	5	5		Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Minor Industrial Point Source (0120)	Arsenic (0510) Fecal Coliform (1700) Copper (0530)
RIO GRANDE DE MANATÍ	RIO BAUTA PRNR8C2	27.6	SS 50034000 50034500	1	1	5	5		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Arsenic (0510) Copper (0530)
RIO GRANDE DE MANATÍ	RIO SANA MUERTOS PRNR8D	16	SS 50031500	5	1	5	5		Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510) Copper (0530) Fecal Coliform (1700) Turbidity (2500)
RIO GRANDE DE MANATÍ	RIO OROCOVIS PRNR8E1	19.8	NS 50030700 SS 50030800 50030450	5	1	5	5		Minor Industrial Point Source(0120)Minor Municipal Point Source (0220)Major Municipal Point Source (0210)Confined Animal Feeding Operations (1640)Onsite Wastewater Systems (6500)Urban Runoff/Storm Sewers (4000)Landfills (6300)	Arsenic (0510)Copper (0530) Fecal Coliform (1700) Turbidity (2500)
RIO GRANDE DE MANATÍ	RIO BOTIJAS PRNR8E2	19.1	SS 50030300	5	5	5	5		Minor Industrial point Source(0120) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500)
RIO CIBUCO	RIO CIBUCO PRNR9A	31.1	NS 50038320 50039500	4a	4 a	5	5	В	Major Municipal Point Source (0210) Landfills (6300) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) Surfactants (0400)
RIO DE LA PLATA	RIO DE LA PLATA PRER10A1	21	NS 50046000	4 a	1	5	5	С	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Minor Municipal Point Source (0220) Major Industrial Point Source (0110) Major Municipal Point Source (0210) Surfaces Mining (5100)	Arsenic (0510) Low Dissolved Oxygen (1200) Fecal Coliform (1700) Turbidity (2500)

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network	DESIGNATED USES AND CATEGORIES		DESIGNATED USES		NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle
			SS = Synoptic Study	R1	R2	AL	DW			
RIO DE LA PLATA	RIO DE LA PLATA PRER10A3	55.7	NS 50044000 LP-5 LP-6	4a	1	5	5	С	Confined Animal Feeding Operations (1640) Major Municipal Point Source (0210) Onsite Wastewater Systems (6500) Landfills (6300)	Fecal Coliform (1700) Arsenic (0510) Low Dissolved Oxygen (1200) pH (1000)
RIO DE LA PLATA	RIO DE LA PLATA PRER10A4	10.2	NS 50043000 LP-4	4 a	1	5	5	C	Confined Animal Feeding Operations (1640) Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Landfills (6300)	Fecal Coliform (1700) Arsenic (0510) Turbidity (2500) Thermal Modifications (1400)
RIO DE LA PLATA	RIO GUADIANA PRER10E	21.8	NS 50044850	4a	4 a	5	5	C	Confined Animal Feeding Operations (1640) Minor Industrial Point Source (0120) Minor Municipal Point Source(0220)	Fecal Coliform (1700) Arsenic (0510) Turbidity (2500)
RIO DE LA PLATA	RIO ARROYATA PRER10G	36.8	NS LP-3			5	2		Confined Animal Feeding Operations (1640) Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500)	рН (1000)
RIO HONDO	RIO HONDO PRER11A	22	NŠ 50047530	5	5	5	5		Urban Runoff/Storm Sewers (4000) Collection System Failure(0500) Onsite Wastewater Systems (6500)	Surfactants (0400) Arsenic (0510) Low Dissolved Oxygen (1200) Turbidity (2500)
RIO BAYAMÓN	RIO BAYAMÓN PRER12A1	33.6	NS 50048510	5	5	5	5	<u>r</u>	Urban Runoff/Storm Sewers (4000)Onsite Wastewater Systems (6500)Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Arsenic (0510)Surfactants (0400)
RIO BAYAMÓN	RIO BAYAMÓN PRER12A2	83.7	NS 50047600	5	1	5	5		Collection System Failure(0500) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Minor Industrial Point Source (0120) Landfills (6300)	Fecal Coliform (1700) Arsenic (0510) Turbidity (2500)
RIO BAYAMÓN	RIO GUAYNABO PRER12B	50.7	NS 50047990	5	5	5	5		Collection System Failure(0500) Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Mercury (0560) Arsenic (0510) Turbidity (2500) Surfactants (0400)

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network	DESI AND	DESIGNATED USES AND CATEGORIES		NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle	
			SS = Synoptic Study	R1	R2	AL	DW			compliance auring 2000 cycle
RIO GRANDE DE LOIZA	RIO GRANDE DE LOIZA PRER14A1	31	NS 50059100	5	5	5	5	A	Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Surfaces Mining (5100) Collection System Failure(0500) Confined Animal Feeding Operations (1640) Minor Industrial Point Sources (0120)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) Cyanide (0720) Surfactants (0400) Low Dissolved Oxygen (1200)
RIO GRANDE DE LOIZA	RIO GRANDE DE LOIZA PRER14A2	86.6	NS 500555000 L-2 L-3	4a	4a	5	5		Onsite Wastewater Systems (6500) Surfaces Mining (5100) Confined Animal Feeding Operations (1640) Collection System Failure(0500) Landfills (6300) Urban Runoff/Storm Sewers (4000) Minor Industrial Point Source (0120) Major Municipal Point Source (0210)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) Low Dissolved Oxygen (1200) Copper (0530) Pesticides (0200) <i>Cyanide (0720)</i> <i>Surfactants (0400)</i>
RIO GRANDE DE LOIZA	RIO CANOVANAS PRER14B	28.9	53	5				¢,	Confined Animal Feeding Operations (1640) Package Plant Small Flows (0230) Minor Industrial Point Source(0120) Land Development (3200) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Arsenic (0510) Cyanide (0720)
RIO GRANDE DE LOIZA	RIO CANOVANILLAS PRER14C	27.9	50067160 50061510	5	5	5	5	G	Confined Animal Feeding Operations (1640) Minor Municipal Point Source (0220) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Arsenic (0510) Cyanide (0720)
RIO GRANDE DE LOIZA	QUEBRADA MARACUTO PREQ14D	11.9	SS50060200	1	1	5	5	G	Confined Animal Feeding Operations (1640) Land Development (3200)Onsite Wastewater Systems (6500)	Arsenic (0510)Cyanide (0720)
RIO GRANDE DE LOIZA	QUEBRADA GRANDE PREQ14E	1.2	SS 50059210	1	1	5	5	G	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Package Plant Small Flows (0230)	Arsenic (0510) Cyanide (0720) Surfactants (0400)
RIO GRANDE DE LOIZA	RIO CAÑAS PRER14F	9.4	SS 50058350	5	5	5	5	G	Confined Animal Feeding Operations (1640) Collection System Failure(0500) Onsite Wastewater Systems (6500)	Fecal Coliform (1700) Arsenic (0510) Cyanide (0720)

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network	DESI AND	IGN/) CA'	ATEI TEG	D USES ORIES	NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle
			ss = synopuc study	R1	R2	AL	DW			
RIO GRANDE DE LOIZA	RIO GURABO PRER14G1	124.3	NS 50057025 (50057000)	4 a	4 a	5	5	D	Onsite Wastewater Systems (6500) Landfills (6300) Confined Animal Feeding Operations (1640) Surfaces Mining (5100) Major Municipal Point Source(0210) Minor Industrial Point Source(0120) Package Plant Small Flows (0230) Collection System Failure(0500)	Arsenic (0510) Low Dissolved Oxygen (1200) Fecal Coliform (1700) Turbidity (2500) <i>Cyanide (0720)</i> <i>Copper (0530)</i> <i>Lead (0550)</i> <i>Surfactants (0400)</i>
RIO GRANDE DE LOIZA	RIO VALENCIANO PRER14G2	42.8	NS L-1	4 a	1	1	2	D	Major Municipal Point Source (0210) Minor Industrial Point Source(0120) Package Plant Small Flows (0230) Landfills (6300) Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure(0500)	Fecal Coliform (1700) Arsenic (0510) Cyanide (0720) Surfactants (0400) Turbidity (2500)
RIO GRANDE DE LOIZA	RIO BAIROA PRER14H	16.3	NS 50055400 (50055410)	4 a		3	5	D	Collection System Failure(0500) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Major Municipal Point Source(0210) Minor Industrial Point Source(0120) Major Industrial Point source (0110)	Surfactants (0400) Arsenic (0510) Fecal Coliform (1700) Phosphorus (0910) Cyanide (0720) <i>Turbidity (2500)</i> <i>Low Dissolved Oxygen (1200)</i> <i>Lead (0550)</i> <i>Ammonia (0600)</i>

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network SS = Synoptic Study		ATEI FEG(O USES ORIES	NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle	
			SS = Synoptic Study	R1	R2	AL	DW			
RIO GRANDE DE LOIZA	RIO CAGÜITAS PRER14I	33.9	NS 50055250	4 a	4 a	5	5	D	Onsite Wastewater Systems (6500)Surfaces Mining (5100)Confined Animal Feeding Operations (1640)Collection System Failure(0500)Urban Runoff/Storm Sewers (4000)	Surfactants (0400)Arsenic (0510)Copper (0530) Lead (0550)Cyanide (0720)Low Dissolved Oxygen (1200)Thermal Modifications (1400)Fecal Coliform (1700) Turbidity (2500)Ammonia (0600)
RIO GRANDE DE LOIZA	RIO TURABO PRER14J	54.7	NS L-5	4a	1	1	2	P	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure(0500) Minor Industrial Point Source (0120) Minor Municipal Point Source (0220)	Fecal Coliform (1700) Turbidity (2500) Arsenic (0510) Cyanide (0720) Surfactants (0400)
RIO GRANDE DE LOIZA	RIO CAYAGUAS PRER14K	38.5	NS L-4	4a	1	3		D	Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Low Dissolved Oxygen (1200) Arsenic (0510) Cyanide (0720) Surfactants (0400) Turbidity (2500) Copper (0530) Lead (0550)
RIO GRANDE DE LOIZA	RIO EMAJAGUA PRER14L	8.5	SS 50051000	5	5	5	5	G	Onsite Wastewater Systems (6500)	Arsenic (0510) Cyanide (0720) Surfactants (0400) Fecal Coliform (1700)
RIO HERRERA	RIO HERRERA PRER15A	17	SS 50063045 50063065	5	5	5	1	G	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network	DESIGNATED USES AND CATEGORIES NOTES		NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle		
			SS = Synoptic Study	R1	R2	AL	DW			
RIO ESPIRITU SANTO	RIO ESPIRITU SANTO PRER16A	58.4	NS 50063800 SS 50064300 50064500 50064800	5	1	5	1		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Minor Industrial Point Source(0120) Landfills (6300) Collection System Failure(0500)	Surfactants (0400) Fecal Coliform (1700) Turbidity (2500) Arsenic (0510) Cyanide (0720) Copper (0530) Lead (0550)
RIO MAMEYES	RIO MAMEYES PRER17A	27.4	\$\$50066100 50065750 50066000 50066020 50066025 50065600 50065650 50065680	5	5	5		C	Onsite Wastewater Systems (6500)Minor Industrial Point Sources (0120) Confined Animal Feeding Operations (1640)Landfills (6300)	Fecal Coliform (1700)Low Dissolved Oxygen (1200)
QUEBRADA MATA D. PLATANO	E QUEBRADA MATA DE PLATANO PREQ18A	4	50066475 50066490 50066590		A. J.			G	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO SABANA	RIO SABANA PRER19A	23.3	55 50069050 50069000	5	5	5	1	G	Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Surfaces Mining (5100) Minor Industrial Point Sources (0120)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO JUAN MARTÍN	RIO JUAN MARTÍN PRER20A	7.8	SS 50069305	5	1	1	1	G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700)
QUEBRADA FAJARDO	QUEBRADA FAJARDO PREQ21A	10	SS 50069390 50069410 50070700 50069400	5	5	5	1	G	Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)

BASIN WATERBODY NAME		WB SIZE (MILES)	MONITORING STATIONS NS = Network	DESI AND	IGNA O CA'	ATEI TEG	D USES ORIES	NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle
			SS = Synoptic Study	R1	R2	AL	DW			· · · · · · · · · · · · · · · · · · ·
RIO FAJARDO	RIO FAJARDO PRER22A	59	NS 50071000 50072605 SS 50072500 50071195 50071950 50071190 50072000	5	1	5	5		Onsite Wastewater Systems (6500) Collection System Failure(0500) Confined Animal Feeding Operations (1640) Urban Runoff/Storm Sewers (4000) Landfills (6300) Minor Industrial Point Source (0120)	Arsenic (0510) Copper (0530) Fecal Coliform (1700) Turbidity (2500) <i>Cyanide (0720)</i> <i>Surfactants (0400)</i> <i>Low Dissolved Oxygen (1200)</i>
RIO DEMAJAGUA	RIO DEMAJAGUA PRER23A	2.8	SS 50072700	5	5	1		G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700)
QUEBRADA CEIBA	QUEBRADA CEIBA PREQ24A	5	\$\$ 50072775 56072810	5		5	14	G	Pnsite Wastewater Systems (6500)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
QUEBRADA AGUAS CLARAS	QUEBRADA AGUAS CLARAS PREQ25A	4.8	\$\$50078875 \$\$072900	5	5	/5		G	Major Municipal Point Sources (0210) Onshe Wastewater Systems (6500)Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Low Dissolved Oxygen (1200) Thermal Modifications (1400)
RIO DAGUAO	RIO DAGUAO PRER26A	13.8	\$ 5 30073275	5	1	5		G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
QUEBRADA PALMA	QUEBRADA PALMA PREQ27A	11.8	500 734 00	5	1	1	1	G	Package Plants (Small Flows) (0230) Onsite Wastewater Systems (6500)	Fecal Coliform (1700)
QUEBRADA BOTIJAS	QUEBRADA BOTIJAS PREQ28A	6	SS 50073500	5	5	5	1	G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO SANTIAGO	RIO SANTIAGO PRER29A	8.3	50074004 50073975 50073900	5	1	1	1	G	Collection System Failure (0500) Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Minor Industrial Point Sources (0120) Landfills (6300)	Fecal Coliform (1700)

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network	AING NS York S Study		D USES ORIES NOTES		SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle	
			SS = Synoptic Study	R1	R2	AL	DW			
RIO BLANCO	RIO BLANCO PRER30A	35	SS 50077500 50077525 50077550 50077600 50076300	5	5	5	1	G	Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Minor Industrial Point Sources (0120)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO BLANCO	QUEBRADA PEÑA POBRE PREQ30B	6.6	SS 50076300	5	5	5		C C	Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO ANTON RUIZ	RIO ANTON RUIZ PRER31A	15.9	SS 50078600	5	1	1	1	G	Onsite Wastewater Systems (6500) Sonfined Animal Feeding Operations (1640,	Fecal Coliform (1700)
QUEBRADA FRONTERA	QUEBRADA FRONTERA PREQ32A	2.9	SS 50078900	5	5	5		G	Collection System Failure (0500) Onsite Wastewater Systems (6500) Onfined Animal Feeding Operations (1640)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO HUMACAO	RIO HUMACAO PRER33A	55.8	NS 50082000 50082350 50082500 50082500 50082500 50082500 50082500 50082500		5	5	5		Collection System Failure (0500) Landfills (6300) Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640) Urban Runoff/Storm Sewers (4000)	Surfactants (0400) Arsenic (0510) Copper (0530) Lead (0550) Mercury (0560) Fecal Coliform (1700) Turbidity (2500) Thermal Modifications (1400) Cyanide (0720)
RIO CANDELERO	RIO CANDELERO PRER34A	10.4	SS 50082525	5	5	1	1	G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700)
RIO GUAYANES	RIO GUAYANES <i>PRER35A</i>	76.4	SS50086060 50086150 50084025 50085000 50083300	5	5	5	5	G	Minor Industrial Point Sources (0120)Landfills (6300)Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)Agriculture (1000)Package Plants (Small Flows) (0230)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
QUEBRADA EMAJAGUA	QUEBRADA EMAJAGUA PREQ36A	2.5	SS 50088000	5	1	1	1	G	Onsite Wastewater Systems (6500)	Fecal Coliform (1700)

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network	DESI AND	IGNA CA'	ATEI TEG	D USES ORIES	NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle
			SS = Synoptic Study	R 1	R2	AL	DW			compliance auring 2000 cycle
RIO MAUNABO	RIO MAUNABO PRER37A	36	NS 50091000 SS 50091290	5	1	5	5	A	Minor Industrial Point Source (0120) Minor Municipal Point Source(0220) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Agriculture (1000) Landfills (6300)	Surfactants (0400) Arsenic (0510) Fecal Coliform (1700) Cyanide (0720)
RIO GRANDE DE PATILLAS	RIO GRANDE DE PATILLAS PRSR43A1	4	NS 50092000 SS 50094300	5	1	5	5		Minor Industrial Point Source(0120) Major Municipal point source(0210) Onsite Wastewater Systems (6500)	Arsenic (0510) Fecal Coliform (1700)
QUEBRADA MELANIA	QUEBRADA MELANIA PRSQ50A	7	SS 50095900 50096010	4c	4c	5	4c	F	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300)	Low Dissolved Oxygen (1200)
QUEBRADA AMOROS	QUEBRADA AMOROS PRSQ52A	0.7	\$S 50098600	4c	4c	5	4 c	A	Onsite Wastewater Systems (6500)	Low Dissolved Oxygen (1200)
RIO NIGUAS DE SALINAS	RIO NIGUAS DE SALINAS PRSR54A	102.5	SS 50100400 50100450 50100150 50100250 50100700 50099300 50101400 50101800 50101600 50102010	4	40	5	4c	A	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Confined Animal Feeding Operations (1640) Surfaces Mining (5100)	Low Dissolved Oxygen (1200) Fecal Coliform (1700)
RIO COAMO	RIO COAMO PRSR57A2	59	NS 50106500	5	1	5	5		Onsite Wastewater Systems (6500)Confined Animal Feeding Operations (1640)Agriculture (1000)Minor Industrial Point Source (0120)Landfills (6300)Urban Runoff/Storm Sewers (4000)Minor Municipal Point Source(0220)	Surfactants (0400)Arsenic (0510)Cyanide (0720)Fecal Coliform (1700)

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network	DESI AND	IGNA CA'	ATEI FEG	D USES ORIES	NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle	
			SS = Synoptic Study	R 1	R2	AL	DW				
RIO BUCANA- CERRILLOS	RIO BUCANA-CERRILLOS PRSR62A1	27.8	NS 50114000 SS 50114600	5	1	5	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Surfaces Mining (5100)	Arsenic (0510) Cyanide (0720) Fecal Coliform (1700)	
RIO PORTUGUES	RIO PORTUGUES PRSR63A	54	NS 50115000 50116200 SS 50116500	5	5	5	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Minor Industrial Point Source (0120)	Arsenic (0510) Low Dissolved Oxygen (1200) Fecal Coliform (1700) Turbidity (2500)	
RIO GUAYANILLA	RIO GUAYANILLA PRSR67A	60	NS 50124700 SS 50123190 50124700	5	1	5	5		Minor Municipal Point Source (0220) Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Agriculture (1000) Landfills (6300)	Surfactants (0400) Arsenic (0510) Cyanide (0720) Ammonia (0600) Low Dissolved Oxygen (1200) Fecal Coliform (1700) Phosphorus (0910) Thermal Modifications (1400)	
RIO LOCO	RIO LOCO PRSR69A2	19.5	S\$ 50129620	5	1	1	Je-	A	Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Agriculture (1000)	Fecal Coliform (1700)	
QUEBRADA BOQUERON	QUEBRADA BOQUERON PRWQ71A	11.7	\$\$ 50130000	5	1	1	4c	A	Onsite Wastewater Systems (6500)	Fecal Coliform (1700)	
RIO GUANAJIBO	RIO GUANAJIBO PRWR77A	121.4	NS 50138000 50133600	5	1	5	5		Onsite Wastewater Systems (6500) Collection System Failure(0500) Urban Runoff/Storm Sewers (4000) Landfills (6300) Major Municipal Point Source (0210) Minor Industrial Point Source(0120)	Arsenic (0510) Ammonia (0600) Low Dissolved Oxygen (1200) Fecal Coliform (1700) Phosphorus (0910) Turbidity (2500)	

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network	DESI AND	GNA CA	ATEI FEG	O USES ORIES	NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMEN Noncompliance in 2006 but il compliance during 2008 evel	
			SS = Synoptic Study	R 1	R2	AL	DW			compliance aaring 2006 cycle	
RIO GUANAJIBO	RIO ROSARIO PRWR77C	58.3	NS 50136400	5	1	5	5	Δ	Onsite Wastewater Systems (6500)Landfills (6300)Urban Runoff/Storm Sewers (4000)Minor Industrial Point Source (0120)Minor Municipal Point Source (0220)Agriculture (1000)Confined Animal Feeding Operations (1640)	Surfactants (0400)Arsenic (0510)Fecal Coliform (1700)	
RIO YAGÜEZ	RIO YAGÜEZ PRWR79A	42.2	NS 50138800	5	1	5	5		Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Agriculture (1000)	Arsenic (0510) Fecal Coliform (1700)	
RIO GRANDE DE AÑASCO	RIO GRANDE DE AÑASCO PRWR83A	126	NS 50146000 50144000 50143000 SS 50143800	5	7 8 1	5	5		Collection System Failure(0500) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Minor Industrial Point Source (0120) Confined Animal Feeding Operations (1640) Agriculture (1000)	Arsenic (0510) Fecal Coliform (1700)	
RIO GRANDE DE AÑASCO	RIO CAÑAS PRWR83B	54.4	S\$ 50146065	5	1	1			Onsite Wastewater Systems (6500) Agriculture (1000)	Fecal Coliform (1700)	
RIO GRANDE DE AÑASCO	RIO CASEY PRWR83C	38.1	SS 50145600	5	1	5	5		Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510) Fecal Coliform (1700)	
RIO GRANDE DE AÑASCO	RIO MAYAGUECILLO PRWR83F	18	SS 50143600	5	1	5	5		Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510) Fecal Coliform (1700)	
RIO GRANDE DE AÑASCO	RIO GUABA PRWR83G	68.1	SS 50143110 50143150 50143250	1	1	5	5		Minor Industrial Point Source (0120) Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510)	
RIO GRANDE DE AÑASCO	RIO PRIETO PRWR83I	59.8	SS 50142710 50142900	5	1	5	5		Confined Animal Feeding Operations (1640) Agriculture (1000) Onsite Wastewater Systems (6500) Minor Industrial Point Source (0120)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500)	

BASIN	WATERBODY NAME	WB SIZE (MILES)	MONITORING STATIONS NS = Network	DES AND	IGNA CA'	ATEI FEG	O USES ORIES	NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle
			SS = Synoptic Study	R1	R2	AL	DW			·····
QUEBRADA GRANDI DE CALVACHE	EQUEBRADA GRANDE DE CALVACHE PRWQ88A	14.8	SS 50146150	4c	4c	5	4c	Α	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
QUEBRADA LOS RAMOS	QUEBRADA LOS RAMOS PRWQ89A	6.9	SS 50146155	4c	4c	5	4c	A	Landfills (6300) Collection System Failure(0500) Onsite Wastewater Systems (6500)	Low Dissolved Oxygen (1200)
RIO GUAYABO	RIO GUAYABO PRWR94A	43.1	SS 50146610 50146550 50146620 50146400 50146300	5	1	5	2		Package Plant Small Flows(0230) Onsite Wastewater Systems (6500)Collection System Failure(0500)Urban Runoff/Storm Sewers (4000)	Low Dissolved Oxygen (1200)Fecal Coliform (1700)
RIO CULEBRINAS	RIO CULEBRINAS PRWR95A	142.6	NS 50149100 50147600 SS 50146665 50146800 50147050 50147800 50147800 50148050	5	5	5	5		Ousite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Minor Municipal Point Source (0220) Major Municipal Point Source (0210) Minor Industrial Point Source (0120) Landfills (6300) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700) Turbidity (2500) Surfactants (0400)
RIO CULEBRINAS	RIO CAÑO (RIO CAÑAS) PRWR95B	33.3	SS 50148500 50148700	5	5	5	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Arsenic (0510) Fecal Coliform (1700)
RIO CULEBRINAS	QUEBRADA GRANDE (SECTOR CUCHILLAS) PRWQ95C	11.4	SS 50147997	5	1	5	5		Onsite Wastewater Systems (6500) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700)
RIO CULEBRINAS	QUEBRADA LAS MARIAS PRWQ95D	9.8	SS 50147900	5	5	5	5		Onsite Wastewater Systems (6500) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700)
RIO CULEBRINAS	QUEBRADA LA SALLE PRWQ95F	11.8	SS 50147675	5	5	5	5		Onsite Wastewater Systems (6500) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700)

305(b) and 303(d) Integrated Report

BASIN	N WATERBODY NAME WB SIZE (MILES) MONITORING STATIONS (MILES) NS = Network SS = Sympotic Study		O USES ORIES	NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle				
			ss = synopuc study	R1	R2	AL	DW			
RIO CULEBRINAS	QUEBRADA EL SALTO PRWQ95G	7.8	SS 50147630	5	5	5	5		Onsite Wastewater Systems (6500) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700)
RIO CULEBRINAS	QUEBRADA SALADA PRWQ95I	7.9	SS 50147475	5	5	5	5		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700)
RIO CULEBRINAS	RIO SONADOR PRWR95J	37.7	SS 50147400 50147450	5	1	5	5		Onsite Wastewater Systems (6500) Agriculture (1000) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700)
RIO CULEBRINAS	RIO GUATEMALA PRWR95K	20.3	SS 50147200	5	1	5	5		Minor Municipal Point Source (0220)Minor Industrial Point Source (0120)Landfills (6300)Confined Animal Feeding Operations (1640)Urban Runoff/Storm Sewers (4000)Onsite Wastewater Systems (6500)	Arsenic (0510)Fecal Coliform (1700)

Notes:

A - Watershed and subwatersheds under Category 4c are waterbodies that lack adequate flow, which impaired some of the designated uses.

B - Watershed that have an approved TMDL. For Río Cibuco the TMDL was approved on September 2002, the pollutant was fecal coliform.

C - Watershed that have an approved TMDL. For Río La Plata the TMDL was approved on September 2003, the pollutant was fecal coliform.
 D - Watershed that have an approved TMDL. For Río Grande de Loíza the TMDL was approved on September 2006, the pollutant was fecal coliform.
 E - This segment was inadvertently omitted from the 305b/303d 2006 Cycle Integrated Report.

F - 7.4 miles of this waterbody, Río Arroyo Cajul, was not evaluated because this watershed was always dry in this cycle.

G - Watershed and subwatershed that were monitored by a synoptic study and were included in the 2006 303(d) List.

R1 - Primary Contact Recreation

R2 - Secondary Contact Recreation

AL - Aquatic Life

DW - Raw Source for Drinking Water

Table 48: 2008 Cycle 303(d) List – List of Estuaries

BASIN	WATERBODY NAME ASSESSMENT UNIT-ID	WATERBODY SIZE	MONITORING STATIONS NS = Network	DES	IGNAT CATI	TED USI EGORII	ES AND ES	NOTES	S SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle.
		(ACKES/MILES)	SS = Synoptic Study	R1	R2	AL	DW			
RIO HERRERA PRER15A	RIO HERRERA PREE15A	65.28	SS 50062800	5	5	1	N/A		Landfills (6300) Onsite Wastewater Systems (6500)	Fecal Coliforms (1700)
RIO ESPIRITU SANTO PRER16A	RIO ESPIRITU SANTO PREE16A	316.8	SS 50064910 50065100	5	5	5	N/A		Minor Municipal Point Sources (0220) Onsite Wastewater Systems (6500)	Fecal Coliforms (1700) Low Dissolved Oxygen (1200)
RIO ESPIRITU SANTO PRER16A	RIO ESPIRITU SANTO PREE16A	51.71	SS 50064000				N/A		Collection System Failure (0500) Minor Municipal Point Sources (0220) Major Industrial Point Sources (0110) Onsite Wastewater Systems (6500)	Fecal Coliforms (1700)
RIO DEMAJAGUA PRER23A	RIO DEMAJAGUA PREE23A	1.79	S. ¹ 50072690	5 (0		N/A		Collection System Failure (0500) Onsite Wastewater Systems (6500)	Fecal Coliforms (1700)
RIO HUMACAO PRER33A	RIO HUMACAO PREE33A	79.36	55 30082400	5	Ş	1	N/A		Landfills (6300) Onsite Wastewater Systems (6500)	Fecal Coliforms (1700)
RIO CANDELERO PRER34A	RIO CANDELERO PREE34A	49.92	SS 50082700	5	1	5	<i>N/A</i>		Onsite Wastewater Systems (6500)	Fecal Coliforms (1700) Low Dissolved Oxygen (1200)
CAÑO SANTIAGO PREK34.1	CAÑO SANTIAGO PREE34.1	73.72	SS 50087200	5	5	5	N/A		Major Industrial Point Sources (0110) Onsite Wastewater Systems (6500) Agriculture (1000)	Fecal Coliforms (1700) Low Dissolved Oxygen (1200)

305(b) and 303(d) Integrated Report

BASIN	WATERBODY NAME ASSESSMENT UNIT-ID	WATERBODY SIZE	MONITORING STATIONS NS = Network	DES	IGNAT CATI	TED USH EGORIE	ES AND ES	NOTES	S SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in
		(ACKES/WIILES)	SS = Synoptic Study	R1	R2	AL	DW			compliance during 2008 cycle.
CAÑO SANTIAGO PREK34.1	CAÑO SANTIAGO PREE34.1	9.0 miles	SS 50087000	5	1	1	N/A		Urban Runoff/Storm Sewers (4000) Onsite Wastewater Systems (6500) Major Municipal Point Sources (0210) Minor Industrial Point Sources (0120) Landfills (6300)	Fecal Coliforms (1700)
RIO GUAYANES PRER35A	RIO GUAYANES PREE35A	23.29	SS 50086475 50086500 NS 50083500	5			N⁄A		Onsite Wastewater Systems (6500) Agriculture (1000)	Arsenic (0510) Fecal Coliform (1700)
QUEBRADA GRANDE CALVACHE PRWQ88A	QUEBRADA GRANDE CALVACHE PRWE88A	1.28	SS 50146150	40	4c	5	N/A	A	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)
RIO GUAYABO PRWR94A	RIO GUAYABO PRWE94A	18.43	S\$ 50146630	5		5	N/A		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Confined Animal Feeding Operations (1640) Land Development (3200)	Fecal Coliform (1700) Low Dissolved Oxygen (1200)

Notes:

A - Watershed and subwatersheds under Category 4c are waterbodies that lack adequate flow, which impaired some of the designated uses.
R1 - Primary Contact Recreation
R2 - Secondary Contact Recreation
AL - Aquatic Life
DW - Raw Source for Drinking Water

BASIN	WATERBODY NAME ASSESSMENT UNIT-ID	WATERBODY SIZE	MONITORING STATIONS	DES	SIGNAT CATI	TED USH EGORIE	ES AND ES	NOTES	SOURCES OF	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle.
	ASSESSMENT UNIT-ID	(ACRES/MILES)	NS = Network	R1	R2	AL	DW		IOLLUTION	
SISTEMA ESTUARINO	PREE13A1 Caño Control de La Malaria Bahía de San Juan Caño San Antonio Laguna Del Condado	8.0 mi 5.5 mi 3.4 mi 0.6 mi 0.6 mi 0.5 mi	NS 50049920 070 071 072	5	1	2	N/A		Onsite Wastewater System (Septic Tanks) (6500) Urban Runoff/Storm Sewers (4000) Major Industrial Point Sources (0110) Major Municipal Point Sources (0210) Minor Industrial Point Sources (0120) Marinas and Recreational Boating (7900)	Fecal Coliform (1700)
SISTEMA ESTUARINO	PREE13A2 Río Piedras Lago Las Curías	64.6 acres 55.9 mi	NS 89027 89028 50049100 50048800	5	5	5	3	1	Onsite Wastewater System (Septic Tanks) (6500) Urban Runoff/Storm Sewers (4000) Landfills (6300) Major Industrial Point Sources (0110) Collection System Failure (0500) Confined Animal Feeding Operations (1640)	Arsenic (0510) Copper (0530) Lead (0550) Fecal Coliform (1700) Low Dissolved Oxygen (1200) Ammonia (0600) Surfactants (0400) Turbidity (2500)
SISTEMA ESTUARINO	PREE13A3 Caño Martín Peña Quebrada Juan Méndez Quebrada San Antón Quebrada Blasina Canal Machicote Canal Suárez Laguna San José Laguna Torrecillas Laguna de Piñones	403.2acres 47.9 mi 1,129acres 608.0 acres 249.0 acres	NS 50050300 50049820	5	5	5	N/A		Onsite Wastewater System (Septic Tanks) (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure (0500) Confined Animal Feeding Operations (1640) Major Industrial Point Sources (0110) Upstream Impoundment (7350)	Fecal Coliform (1700) Arsenic (0510) Low Dissolved Oxygen (1200) Surfactants (0400)

Table 49: 2008 Cycle 303(d) List – List of San Juan Bay Estuary System

MUNICIPALITY	WATERBODY NAME	ASSESSMENT UNIT (AU-ID)	MONITORING STATIONS NS = Network	WB SIZE (ACRES)	DESIGNATED USES AND CATEGORIES			Notes	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in compliance during 2008 cycle.	
					R1	R2	AL			, , , , , , , , , , , , , , , , , , ,	
VEGA BAJA - MANATÍ	Laguna Tortuguero	PRNN0006	NS 50038200	554	1	1	5	1	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Arsenic (0510) <i>Cyanide (0720)</i>	
FAJARDO	Laguna Grande	PREN0012	SPECIAL STUDY	216	1	1	5	l I	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Marinas and Recreational Boating (7900)	Low Dissolved Oxygen (1200) pH (1000)	

Table 50: 2008 Cycle 303(d) List – List of Lagoons

Notes:

Special Study - Baseline Water-Quality Conditions for Laguna Grande, Fajardo, Puerto Rico, December 2005 - September 2006, USGS.

R1 - Primary Contact Recreation **R2** - Secondary Contact Recreation

AL - Aquatic Life

DW - Raw Source for Drinking Water

BASIN	WATERBODY NAME	WB SIZE	MONITORING STATION	DESIC	GNATE CATEG	D USES ORIES	S AND	Notes	SOURCES OF	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in	
		(ACKES/MILES)	NS = Network	R1	R2	AL	DW		FULLUTION	compliance during 2008 cycle.	
RIO GUAJATACA	LAGO GUAJATACA PRNL3A1	1000 ac. 2.6 mi	NS 50010720 50010790 50011000	1	1	5	5		Onsite Wastewater Systems (6500)	Arsenic (0510) Low Dissolved Oxygen (1200) Mercury (0560)	
RIO GRANDE DE ARECIBO	LAGO DOS BOCAS PRNL ₁ 7A1	634 ac. 6.9 mi	NS 50025110 50027090	1		- Indexed Street	1		Confined Animal Feeding Operations (1640) Minor Industrial Point Sources (0120) Onsite Wastewater Systems (6500) Agriculture (1000)	Low Dissolved Oxygen (1200) Fecal Coliform (1700) Arsenic (0510) Cyanide (0720) Copper (0530) Surfactants (0400)	
RIO GRANDE DE ARECIBO	LAGO CAONILLAS PRNL ₂ 7C1	700 ac. 11.8 mi	NS 89001 89002 89003		1	5	1		Onsite Wastewater Systems (6500) Agriculture (1000)	Pesticides (0200) Low Dissolved Oxygen (1200)	
RIO GRANDE DE ARECIBO	LAGO GARZAS PRNL₃7A3	108 ac. 2.7 mi	NS 50020050	1	1	IA			Agriculture (1000)	Pesticides (0200) <i>Low Dissolved Oxygen (1200)</i>	
RIO GRANDE DE MANATÍ	LAGO GUINEO PRNL ₁ 8C1	54 ac. 1.7 mi	NS 89007 89008	Q		5	1		Agriculture (1000)	Pesticides (0200) <i>Low Dissolved Oxygen (1200)</i>	
RIO GRANDE DE MANATÍ	LAGO MATRULLAS PRNL ₂ 8C1	77 ac. 3.0 mi	NS 89009 89010	5	1	1	1		Confined Animal Feeding Operations (1640)	Fecal Coliform (1700) Low Dissolved Oxygen (1200) **	
RIO DE LA PLATA	LAGO DE LA PLATA PREL ₁ 10A1	560 ac. 15.0 mi	NS 50044400 50044950	1	1	5	1		Confined Animal Feeding Operations (1640) Onsite Wastewater Systems (6500) Package Plants Small Flows (0230) Landfills (6300)	Low Dissolved Oxygen (1200) pH (1000) Phosphorus (0910) Arsenic (0510) Cyanide (0720)	
RIO DE LA PLATA	LAGO CARITE PREL ₂ 10A5	333 ac. 11.3 mi	NS 50039900 50039950	1	1	1	1		None	Low Dissolved Oxygen (1200)	

Table 51: 2008 Cycle 303(d) List – List of Lakes

•

BASIN	WATERBODY NAME	WB SIZE	MONITORING STATION	DESI	GNATE CATE(D USES GORIES	S AND	Notes	SOURCES OF	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in	
		(ACKES/MILES)	NS = Network	R1	R2	AL	DW		POLLUTION	compliance during 2008 cycle.	
RIO BAYAMON	LAGO CIDRA PREL12A2	268 ac. 8.3 mi	NS 89029 89030 89031	1	1	5	1		Onsite Wastewater Systems (6500) Confined Animal Feeding Operations (1640)	Low Dissolved Oxygen (1200)	
RIO GRANDE DE LOIZA	LAGO LOIZA PREL14A1	713 ac. 7.2 mi	NS 50057500 50058800 50059000	5		5	5		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000) Collection System Failure(0500) Confined Animal Feeding Operations (1640)	Arsenic (0510) Fecal Coliform (1700) Low Dissolved Oxygen (1200) Turbidity (2500) <i>Phosphorus (0910)</i>	
RIO GRANDE DE PATILLAS	LAGO PATILLAS PRSL43A1	312 ac.	NS 89022 89023 89024 89025		1	5	1		Onsite Wastewater Systems (6500)Agriculture (1000)	Pesticides (0200)Low Dissolved Oxygen (1200)	
QUEBRADA MELANIA	LAGO MELANIA PRSL50A	.35 ac.	NS 89026	1	1	5	1		Agriculture (1000)	Pesticides (0200) Low Dissolved Oxygen (1200)**	
RIO JACAGUAS	LAGO GUAYABAL PRSL ₁ 60ª	373 ac. 5.9 m	NS 89011 89012 89013		A	5	1		Onsite Wastewater Systems (6500) Collection System Failure(0500) Agriculture (1000)	Pesticides (0200) Low Dissolved Oxygen (1200)	
RIO JACAGUAS	LAGO TOA VACA PRSL ₂ 60A	836 ac. 31.5 mi	NS 89014 89015 89016	1	1	5	1		Onsite Wastewater Systems (6500)	Low Dissolved Oxygen (1200)	
RIO BUCANA- CERRILLOS	LAGO CERRILLOS PRSL62A	700ac.	89032 89033 89034	5	1	5	1		Urban Runoff/Storm Sewers (4000)	Low Dissolved Oxygen (1200) Fecal Coliform (1700)	
RIO YAUCO	LAGO LUCHETTI PRSL68A1	266 ac. 14.0 mi	NS 89017 89018 89019	5	1	5	1		Onsite Wastewater Systems (6500) Agriculture (1000)	Pesticides (0200) Low Dissolved Oxygen (1200) Fecal Coliform (1700)	
305(b) and 303(d) Integrated Report

BASIN	WATERBODY NAME	WB SIZE	MONITORING STATION	DESIGNATED USES AND CATEGORIES				Notes	SOURCES OF	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in
		(ACKES/WILLES)	NS = Network	R1 R2 AL DW	FOLLUTION	compliance during 2008 cycle.				
RIO LOCO	LAGO LOCO PRSL69A	69 ac. 1.5 mi	NS 89020 89021	5	1	5	1		Onsite Wastewater Systems (6500)	Low Dissolved Oxygen (1200) Fecal Coliform (1700)
RIO GRANDE DE AÑASCO	LAGO GUAYO PRWL83H	285 ac. 12.7 mi	NS 89004 89005 89006	1	1	5	1		Onsite Wastewater Systems (6500) Agriculture (1000) Minor Industrial Point Sources (0120) Major Industrial Point Sources (0110)	Pesticides (0200) Low Dissolved Oxygen (1200)

Notes:

** - This parameter was also in compliance during cycle 2006 but noncompliance during 2004 cycle.
R1 - Primary Contact Recreation
R2 - Secondary Contact Recreation
AL - Aquatic Life
DW - Raw Source for Drinking Water

ASSESSMENT UNIT ID	WATERBODY NAME	WATERBODY	DESIGNATED USES AND CATEGORIES			NOTES	SOURCES OF POLLUTION	CAUSES OF IMPAIRMENT Noncompliance in 2006 but in
		SIZE (miles)	R1	R2	AL			compliance during 2008 cycle.
PRES0002f_00	ENSENADA BOCA VIEJA	3	1	1	2	Α		Turbidity (2500)
PRES0002g_02	CAÑO SAN ANTONIO TO BAHIA DE SAN JUAN	5.5	2	2	2	A		Pathogens (1700) Fecal Coliforms Dissolved Oxygen (1200) Metals (0500) Arsenic Copper
PRNS0001h_02	PEÑON BRUSI	1.8	5	1	2		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Enterococcus
PRES0002j_00	LAGUNA DEL CONDADO	0.6	5	1	2		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms
PRES0002x_00	RIO HERRERA AT MOUTH	3	5	r	2	7 54	Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Enterococcus
PRES0002z5_00	RIO FAJARDO	1.8		1	2		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms
PRES0002z9_00	PUERTO DE NAGUABO	1.9	5	1	2		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms
PRES0002z10_01	TROPICAL BEACH, NAGUABO	0.8	10	1	2		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms, Enterococcus
PRES0002z17_00	PLAYA GUAYANES	2.1	5		2	Α	Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms, Enterococcus <i>Turbidity</i> (2500)
PRES0002z19_01	PLAYA DE LUCIA	0.5	5	1	2		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Enterococcus
PRSS0003a_02	RIO CHICO, BALNEARIO PATILLAS	3	5	1	2		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms, Enterococcus
PRSS0003d_00	PUNTA OLA GRANDE	2	1	1	2	A		Turbidity (2500)
PRSS0003j_00	CENTRAL AGUIRRE	3	5	1	2		Major Industrial Point Sources (0110) Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms
PRWS0004d_00	MALECON DE MAYAGÜEZ	1.9	5	1	2		Onsite Wastewater Systems (6500) Urban Runoff/Storm Sewers (4000)	Pathogens (1700) Fecal Coliforms
	TOTAL	30.9						

Table 52: 2008 Cycle 303(d) List – List of Coastal Shoreline

Notes:

- A For category 2 there is insufficient monitoring data to make attainment determinations for designated uses.
 R1 Primary Contact Recreation
 R2 Secondary Contact Recreation
 AL Aquatic Life

APENDIX II Monitoring Strategy for Unmonitored Waters Synoptic Studies Figure 5: USGS Synoptic Survey Río Grande de Manatí Watershed

-0

Figure 6: USGS synoptic Survey Río Grande de Añasco Watershed

-0

Figure 7: USGS Synoptic Survey Río Culebrinas Watershed

Figure 8:Synoptic Survey at Streams in South and West Coasts of Puerto Rico – Map 1 of 5

-0

Figure 9: Synoptic Survey at Streams in South and West Coasts of Puerto Rico – Map 2 of 5

Figure 10: Synoptic Survey at Streams in South and West Coasts of Puerto Rico – Map 3 of 5

Figure 11: Synoptic Survey at Streams in South and West Coasts of Puerto Rico – Map 4 of 5

Figure 12: Synoptic Survey at Streams in South and West Coasts of Puerto Rico – Map 5 of 5

APENDIX III

Public Notice

APENDIX IV

Environmental Quality Board Determination R-08-14-1